
Suggested Exercises for the Midterm

APM 384: PDEs

Autumn 2013

1 Questions

Below are some suggested problems you may want to attempt in preparation for the
midterm. There are many excellent problems in Haberman for which you can find
solutions in the back: those are marked with an asterisk.

1. Definitions and basic classification of differential equations: Go through
Chapter 1 of Haberman. Whenever you see a PDE, make sure you can state
its order and whether it is linear and/or homogeneous.

2. The method of characteristics: In class, the exercises and handouts we
saw many examples of how to apply the method of characteristics to fist-order
linear PDEs in two variables. Try to extend this method to three dimensions:
i.e. try to solve the PDE

ux + yuy + zuz = 0 (1)

subject to the boundary condition u(0, x, y) = sin(x) cos(y).

3. Separation of Variables:

(a) We only touched very briefly on solving Laplace’s equation in a rectangle.
It is a great exercise to solve this fully using the method of separation of
variables and then Fourier series.

(b) Do exercises 2.4.1-2.4.3 in Haberman

(c) Whenever we solved an eigenvalue problem we chose a particular sign
for the eigenvalues. Check that we did not lose any generality by show-
ing that there is no eigenvalue for the other sign (you can do this with
the various cases of the heat equation as well as Laplace’s equation we
discussed.)

(d) Do the starred exercises in section 2.5 of Haberman:

4. Complex differentiable and harmonic functions:

(a) Show that the following functions are harmonic:

u1(x, y) = x− y
u2(x, y) = ex sin(y).
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(b) Check that the mean value theorem holds by computing∫ 2π

0

u1(x+ cos(θ), y + sin(θ)) dθ

(c) Find minima and maxima for u1 on the unit disk {(x, y) ∈ R2 : x2 +
y2 ≤ 1}. Check the maximum principle by showing that they lie on the
boundary.

5. (a) Find the Fourier series for the following functions fj : [−1, 1] −→ R
i. f1(x) = x

ii. f2(x) = cos(x)

iii. f3(x) = ex

(b) Find the Fourier sine series of f : [0, L] −→ R defined by f(x) = x2.

(c) On the problem sheet you found Fourier series for certain functions f .
Check that the method of complex Fourier series works by finding coef-
ficients cn such that f(x) =

∑
n∈Z cne

inπx
L using the method of today’s

lecture.

2 Answers

1. This should be straightforward.

2. We are looking for curves γ(t) such that u is constant along γ(t), i.e. d
dt
u(γ(t)) =

0. Writing γ(t) = (t, y(t), z(t)) and using the chain rule (check the details using
the equation!) this yields

d

dt
y(t) = y(t) and

d

dt
z(t) = z(t) (2)

i.e. any curve of the form γ(t) = (t, y0e
t, z0e

t) has the property that u is
constant along γ. It follows that for any t > 0 and any y0, z0 ∈ R,

u(γ(t)) = u(γ(0)) (3)

i.e.

u
(
t, y0e

t, z0e
t
)

= u(0, y0, z0). (4)

Let now (x, y, z) ∈ R3. In order to find u(x, y, z) we need to find values of
y0, z0 ∈ R and t ≥ 0 such that (x, y, z) = γ(t) = (t, y0e

t, z0e
t). Clearly t = x

and then y0e
x = y and z0e

x = z. Hence y0 = ye−x and z0 = ze−x. By (4) it
now follows that

u(x, y, z) = u(0, y0, z0) = u
(
0, ye−x, ze−z

)
. (5)
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Thus, for any continuously differentiable function f : R2 −→ R, the function
u defined by u(x, y, z) = f(ye−x, ze−x) satisfies our PDE. The boundary con-
dition tells us that u(0, x, y) = sin(x) cos(y), i.e.

sin(x) cos(y) = f(x, y).

Hence the solution to the PDE with boundary condition is

u(x, y, z) = sin
(
ye−x

)
cos
(
ze−x

)
(6)

3. (a) You can check your answers by looking at section 2.5.1 in Haberman.

(b) These are solved in Haberman.

(c) The answer is given in the question.

(d) Solved in Haberman.

4. (a) Differentiating u1 twice with respect to either variable gives zero, so the
function is harmonic. For u2 you have two choices: you can either com-
pute directly or use the connection to complex analysis: the real and
imaginary parts of a complex differentiable function are harmonic. Since
u2 is the imaginary part of f(z) = ez it is harmonic.

(b) This is a straightforward computation:∫ 2π

0

u1(x+ cos(θ), y + sin(θ)) dθ =

∫ 2π

0

[(x+ cos(θ))− (y + sin(θ))] dθ

= 2π(x− y) +

∫ 2π

0

cos(θ) dθ −
∫ 2π

0

sin(θ) dθ

= 2π(x− y) = 2πu(x, y)

which by the mean value theorem is the right answer.

(c) u1 is maximised when x = 1 and y = 0 and minimised when x = 0 and
y = −1. Thus, the maxima lie on the boundary.

5. (a) You can check if your answer is A0 +
∑∞

n=1An cos(nx
π

) +
∑∞

n=1Bn sin(nx
π

)
where the coefficients are given below:

i. Clearly there are no cosine terms (An = 0 for all n)because x is an odd

function. Moreover Bn =
∫ 1

−1 x sin(nx
π

)dx = (−1)n+1 2
nπ

(integration
by parts!).

ii. cos(x) is its own Fourier series: A1 = 1 and Am = Bn = 0 for all
other n and all m ∈ N.

iii. We have Bn =
∫ 1

−1 e
x sin(nx

π
)dx. Using integration by parts twice we

get an expression involving Bn and constants that solves to Bn =

(−1)n+1 nπ(e2−1)
e()1+n2π2 . Clearly A0 = 1

2

∫ 1

−1 e
x = sinh(1). Finally

An =

∫ 1

−1
ex cos(

nx

π
)dx = (−1)n

e2 − 1

e(1 + n2π2)
.
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(b) Because we are looking for the sine series we need to chose the odd ex-

tension of f , i.e. f̂o : [−L,L] −→ R defined by

f̂o(x) =

{
x2 if x ≥ 0

−x2 if x < 0.

Since f(0) = 0 this gives a continuously differentiable function, however

f̂o(−L) = −L2 6= L2 = f̂o(x)(L), so we do not expect the Fourier series to

converge to f at the end points. In fact, f̂o(x)(L)+ f̂o(x)(−L) = 0, so this
is where the Fourier sine series will converge at −L and L. Computing
the coefficients, we get A0 = An = 0 (because of odd-ness) and

Bn =
2

L

∫ L

0

x2 sin

(
nLx

π

)
dx = (−1)n

4L2

n2π2
.

(c) Your answer is correct when you get the same result as in the problem
sheet!

4


