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Abstract: Planar Fourier Capture Arrays (PFCAs) are imaging devices made from unmod-
ified CMOS Angle-Sensitive Pixels (ASPs). PFCAs require no external imaging optics to
photograph distant objects. Here, we explore PFCAs miniaturization in two analyses. First,
we show an efficient method of tiling Fourier space with ASPs.Second, we show that the area
of an optimally-tiled PFCA scales as the square of the effective number of pixels.
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1. Introduction

The Planar Fourier Capture Array [1,2] (PFCA) is an imager composed of angle-sensitive pixels [3–6] (ASPs) capable
of photographing arbitrarily distant objects without resorting to any focusing element or moving part (Figure1). ASPs
individually have a sinusoidal sensitivity to light as a function of incident angle along their optically-active axis.As
each ASP relates the intensity of an image filtered by a sinusoid, the correct ensemble of ASPs yields Fourier-complete
information about the far-away scene.

One of the strengths of PFCAs as imagers is their tiny size, since they need no focal distance and can be manufac-
tured in unmodified CMOS. Indeed, the first prototype PFCA [1]is a factor of 105 smaller than the smallest focusing
camera [7] by volume. Here, we demonstrate a method for tiling Fourier space more efficiently, then we derive the
scaling properties of the area of a PFCA needed to capture images of a given resolution.
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Fig. 1. PFCA Overview. (a) A simulated ASP with two gratings (in black) passes light (intensity
in color) to a photodiode below with a sensitivity that is sinusoidal in incident angle. (b) Measured
transfer function of an ASP from [1]. (c) Light micrograph showing ASP diversity in a portion of a
PFCA. (d) Sample reconstructed image from [1].

2. Tiling Fourier Space Efficiently

Individually, ASPs have a sensitivity to incoming light that can be modeled as follows [2]:

R = I0(1−mcos(bθ +α))F(θ )(1+η), (1)

whereR is the photocurrent observed by the ASP,I0 is proportional to the photon flux at the ASP,θ is the incident
angle (relative to the normal) along the sensitive axis,b is the angular sensitivity of the ASP,m is the modulation depth



of the ASP,α is a designable phase offset caused by a displacement between the top and bottom gratings,F(θ ) is a
slowly-varying aperture function andη is multiplicative noise. By considering the difference signal between 2 ASPs
with α differing by π , one can isolate the sin or the cos term through subtraction.A “quadruplet” is 2 pairs of ASPs
of a givenb and orientation withα = {0, π

2 , π , 3π
2 }, relating full quadrature information at a givenb and orientation.

Quadruplets share a common top grating to save space, as reported previously [6].
Here, we report a way of selecting ASPs such that they tile Fourier space more efficiently (see Figure2) than

our manufactured prototype [1, 2]. Our improved procedure consists of four steps. First, we select manufacturable
ASP designs [2] with an acceptablem and an evenly-spaced range1 of bs. Second, we select a target ASP count, or
equivalently a target device area. In this example we chose a13×13 grid of ASP quadruplets, with the center device
replaced by 4 low-b devices characterized elsewhere [8]. Third, we allocate the 168 ASP quadruplets among our 23
ASP designs2 such that a design’s count is proportional to the swath of Fourier space it must cover. Fourth, we rotate
the sensitive axis of each quadruplet individually so as to cover Fourier space optimally.

Optimizing orientation is a non-convex problem. It can be solved satisfactorily by gradient descent on the sum of
the inverse fourth powers of all inter-ASP distances in Fourier space given fixed radius but variableθ . Specifically, if
θi is the orientation of theith ASP quadruplet andbi is its b, we minimize:

min
{θ}

(

167

∑
i=1

168

∑
j=i+1

1

[(bi cos(θi)− b j cos(θ j))2+(bi sin(θi)− b j sin(θ j))2]
2

)

. (2)

We use a momentum term [9] to speed convergence, fixθ1 = 0 to account for rotational symmetry, and select the best
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Fig. 2. Optimized tiling covers Fourier space efficiently. (a) Spatial frequencies in a PFCA whose
orientations have been optimized to reduce gaps in Fourier space. (b) Map of distances to the nearest
ASP in (a); maximum 3.09. (c) Spatial frequencies in a PFCA identical to that in (a) except with
all ASP types including one common orientation(0◦) and evenly-spaced orientation differences. (d)
Map of distances to the nearest ASP in (c); maximum 5.56. Color scale identical to that in (b).

of 100 optimizations of (2) with random, reasonable initial starting conditions: each device type has equally-spaced
ASPs with a random angular offset.

A PFCA is Fourier complete if the basis functions from neighboring ASPs have at most a one-cycle difference over
the range of observable incident angles. Here, we refine the equation reported in [1] relating the maximum half-angle
h < 90◦ over which the PFCA can be Fourier-complete to the following:

h =
90◦

∆bmax
(3)

where∆bmax is the maximum distance from any point in Fourier space in therange reported by the PFCA to the
nearest coverage by an ASP. Using (3), we see that with naive tilingh is 16.2◦ while with optimized tilingh is 29.1◦.
The Nyquist limit on the effective number of pixelsn depends onbmaxandh in the following way:

n ≈ b2
max

(

h
90◦

)2

. (4)

1Specifically, we chose 23 ASP designs withbs of 7.4, 8.9, 10.4, 11.8, 13.3, 14.7, 16.2, 17.6, 19.1, 20.5, 22.0, 23.4, 24.8, 26.3, 27.7, 29.1, 30.6,
32.1, 33.5, 34.9, 36.3, 37.8, and 39.0.

2The counts of ASP quadruplets for eachb were 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 11,11, and 11.



From (4), the naively-tiled PFCA hasn = 49 effective pixels, while the optimally-tiled PFCA hasn = 159 effective
pixels. In this example, careful tiling more than triples the effective number of pixels. In general,n in a well-tiled
PFCA (here 159) approximately equals3 the number of ASP quadruplets (168). If each quadruplet fits into a 10×10
micron area, this PFCA would occupy less than 0.017 mm2 on the die.

3. Scaling Properties of PFCAs

In Section2 we saw that the effective number of pixelsn measured by a well-tiled PFCA is approximately equal to
the number of ASP quadruplets. We will now derive an expression for the scaling of the area of a PFCA as a function
of n. In order to ensure the light hitting the analyzer grating has passed through the diffraction grating [3], the width
of an ASP quadruplet of thickness no more thanzmax should be

w = szmaxtan(h) (5)

wheres > 1 is a safety margin. Devices with a highb require an increasedz, andzmax can be found in terms of

bmax[3]: zmax=
pminbmax

2π wherepmin is the minimum pitch used. Substituting into (5),

w = s
pminbmax

2π
tan(h). (6)

From (4) expressed in radians,bmax=
√

n π
2h , so

w = s
pmin

√
n

4
tan(h)

h
. (7)

For h <
π
4 , assumes tan(h)

h = 4, so (7) becomesw = pmin
√

n. The total areaA of the PFCA isw2n, so total area of a
PFCA scales withn andpmin as:

A ≈ p2
minn2

. (8)

The area of a well-tiled PFCA therefore scales as the square of the effective number of pixels reported, indicating that
small PFCAs are particularly space-efficient.
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