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Abstract: Planar Fourier Capture Arrays (PFCAS) are imaging devicadenfrom unmod-
ified CMOS Angle-Sensitive Pixels (ASPs). PFCAs require rtemal imaging optics to
photograph distant objects. Here, we explore PFCAs miridtion in two analyses. First,
we show an efficient method of tiling Fourier space with ASR=cond, we show that the area
of an optimally-tiled PFCA scales as the square of the affectumber of pixels.
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1. Introduction

The Planar Fourier Capture Array [1,2] (PFCA) is an imagenposed of angle-sensitive pixels [3—6] (ASPs) capable
of photographing arbitrarily distant objects without resg to any focusing element or moving part (Figi)eASPs
individually have a sinusoidal sensitivity to light as a €tion of incident angle along their optically-active axfs
each ASP relates the intensity of an image filtered by a sidu correct ensemble of ASPs yields Fourier-complete
information about the far-away scene.

One of the strengths of PFCAs as imagers is their tiny sinegsihey need no focal distance and can be manufac-
tured in unmodified CMOS. Indeed, the first prototype PFCA§H factor of 18 smaller than the smallest focusing
camera [7] by volume. Here, we demonstrate a method fogtHiaurier space more efficiently, then we derive the
scaling properties of the area of a PFCA needed to capturgeisnaf a given resolution.
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Fig. 1. PFCA Overview. (a) A simulated ASP with two gratings lflack) passes light (intensity
in color) to a photodiode below with a sensitivity that istsnidal in incident angle. (b) Measured
transfer function of an ASP from [1]. (c) Light micrograplosting ASP diversity in a portion of a

PFCA. (d) Sample reconstructed image from [1].

2. Tiling Fourier Space Efficiently

Individually, ASPs have a sensitivity to incoming light tltan be modeled as follows [2]:

R=1lo(1—mcogb6+a))F(6)(1+n), 1)

whereR is the photocurrent observed by the A&fis proportional to the photon flux at the AS#Pjis the incident
angle (relative to the normal) along the sensitive axis,the angular sensitivity of the ASRis the modulation depth



of the ASP,a is a designable phase offset caused by a displacement lrethheetop and bottom gratings(6) is a
slowly-varying aperture function angl is multiplicative noise. By considering the differencermafjbetween 2 ASPs
with a differing by 17, one can isolate the sin or the cos term through subtracidquadruplet” is 2 pairs of ASPs
of a givenb and orientation witta = {0, Z, m, 3m | relating full quadrature information at a giverand orientation.
Quadruplets share a common top grating to save space, asaepeeviously [6].

Here, we report a way of selecting ASPs such that they tileriEpgpace more efficiently (see Figu?g than
our manufactured prototype [1, 2]. Our improved proceduresests of four steps. First, we select manufacturable
ASP designs [2] with an acceptabieand an evenly-spaced rargef bs. Second, we select a target ASP count, or
equivalently a target device area. In this example we chd$2al3 grid of ASP quadruplets, with the center device
replaced by 4 lowb devices characterized elsewhere [8]. Third, we allocatel8 ASP quadruplets among our 23
ASP designésuch that a design’s count is proportional to the swath ofiEospace it must cover. Fourth, we rotate
the sensitive axis of each quadruplet individually so aste@c Fourier space optimally.

Optimizing orientation is a non-convex problem. It can blvad satisfactorily by gradient descent on the sum of
the inverse fourth powers of all inter-ASP distances in kspace given fixed radius but varialfleSpecifically, if

6 is the orientation of thdh Asp quadruplet anl is its b, we minimize:
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We use a momentum term [9] to speed convergencé; fix 0 to account for rotational symmetry, and select the best

Efficient Tiling Max Distance = 3.09 Naive Tiling Max Distance = 5.56
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Fig. 2. Optimized tiling covers Fourier space efficiently) Spatial frequencies in a PFCA whose
orientations have been optimized to reduce gaps in Fourées (b) Map of distances to the nearest
ASP in (a); maximum 3.09. (c) Spatial frequencies in a PFG&niital to that in (a) except with
all ASP types including one common orientati@i) and evenly-spaced orientation differences. (d)
Map of distances to the nearest ASP in (c); maximum 5.56.1Gulale identical to that in (b).

of 100 optimizations ofZ) with random, reasonable initial starting conditions:ledevice type has equally-spaced
ASPs with a random angular offset.

A PFCA is Fourier complete if the basis functions from neigtibg ASPs have at most a one-cycle difference over
the range of observable incident angles. Here, we refineghatien reported in [1] relating the maximum half-angle
h < 90° over which the PFCA can be Fourier-complete to the following

9
h = 3
Abmax ®)
whereAbmax is the maximum distance from any point in Fourier space inrémge reported by the PFCA to the
nearest coverage by an ASP. Usig) (ve see that with naive tiling is 16.2° while with optimized tilingh is 29.1°.

The Nyquist limit on the effective number of pixeidlepends obbmaxandh in the following way:

N~ b3 L 2. 4)
max | 9o

1Specifically, we chose 23 ASP designs withof 7.4, 8.9, 104, 118, 133, 147, 162, 17.6, 191, 205, 220, 234, 248, 263, 277, 291, 306,
321, 335, 349, 363, 37.8, and 390.
2The counts of ASP quadruplets for edztvere 2, 3,3, 4,4,5,5,6,6,7,7,7,8,8,9,9, 10, 10, 11, 11111and 11.




From (@), the naively-tiled PFCA has = 49 effective pixels, while the optimally-tiled PFCA has= 159 effective
pixels. In this example, careful tiling more than triplee thffective number of pixels. In generaljn a well-tiled
PFCA (here 159) approximately equathe number of ASP quadruplets (168). If each quadrupletrfitsa 10x 10
micron area, this PFCA would occupy less than 0.017ramthe die.

3. Scaling Properties of PFCAs

In Section2 we saw that the effective number of pix@lsneasured by a well-tiled PFCA is approximately equal to
the number of ASP quadruplets. We will now derive an expogskir the scaling of the area of a PFCA as a function
of n. In order to ensure the light hitting the analyzer grating passed through the diffraction grating [3], the width
of an ASP quadruplet of thickness no more tlzgiax should be

w = szmaxtanh) (5)
wheres > 1 is a safety margin. Devices with a highrequire an increasez] andzmax can be found in terms of

bmax[3]: zmax= pmigiimax wherepmp is the minimum pitch used. Substituting intg) (
W o— Dm|2bmaxt anh). ©)
From () expressed in radianBmax = \/ﬁz—’}] SO0
w = SpmiTn\/ﬁw. (7

Forh< 7, assumesta”(h) 4, so () becomesv = pyiny/N. The total area of the PFCA isw?n, so total area of a
PFCA scales withn and Pmin as:

A~ Phinn’ (8)

The area of a well-tiled PFCA therefore scales as the squdne effective number of pixels reported, indicating that
small PFCAs are particularly space-efficient.
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