
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011 4595

The In-Crowd Algorithm for Fast
Basis Pursuit Denoising

Patrick R. Gill, Albert Wang, Student Member, IEEE, and Alyosha Molnar, Member, IEEE

Abstract�—We introduce a fast method, the �“in-crowd�” algo-
rithm, for nding the exact solution to basis pursuit denoising
problems. The in-crowd algorithm discovers a sequence of sub-
spaces guaranteed to arrive at the support set of the nal solution
of -regularized least squares problems. We provide theorems
showing that the in-crowd algorithm always converges to the
correct global solution to basis pursuit denoising problems. We
show empirically that the in-crowd algorithm is faster than
the best alternative solvers (homotopy, xed point continuation
and spectral projected gradient for minimization) on certain
well- and ill-conditioned sparse problems with more than 1000
unknowns. We compare the in-crowd algorithm�’s performance
in high- and low-noise regimes, demonstrate its performance on
more dense problems, and derive expressions giving its computa-
tional complexity.

Index Terms�—Algorithms, computation time, optimization
methods, tomography.

I. INTRODUCTION

A. Basis Pursuit Denoising

F INDING the best sparse representation for high-dimen-
sional data is an important step for many applications in

signal processing [1]�–[3] and statistics [4], [5]. Solving the un-
derdetermined system of linear equations (where is
an matrix and) subject to a sparsifying regu-
larizer is effective in identifying such representations. Regular-
ization can be thought of as a mathematical implementation of
Occam�’s Razor: in the face of many possibilities, all of which
are plausible, favor the simplest candidate solutions. In this con-
text, is the vector of observed data, is a transform
matrix composed of atoms, and is the solution vector.
One way to ensure maximum sparsity in is to solve the

problem:

(1)

where is simply the number of nonzero components of
. Unfortunately, solving (1) usually involves a combinatorial
search, making it computationally intractable. Minimization

Manuscript received May 28, 2010; revised October 08, 2010, February 16,
2011, and May 10, 2011; accepted June 20, 2011. Date of publication July 05,
2011; date of current version September 14, 2011. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Dr.
Arie Yeredor. This work was funded in part by the NIH under R21 Grant EB
009841-01.
The authors are with the School of Electrical and Computer Engineering,

Cornell University, Ithaca, NY 14853 USA (e-mail: prg56@cornell.edu;
aw383@cornell.edu; am699@cornell.edu).
Digital Object Identier 10.1109/TSP.2011.2161292

using the norm, which often delivers the same solution as the
norm [6], [7], is frequently substituted:

(2)

The above minimization problem is also known as basis pur-
suit [8]. Although the norm is weaker than in ensuring
sparsity, -regularized optimization is a convex problem and
admits efcient solution via linear programming techniques.
In many applications (see Section II) it is desirable to trade off

exact congruence of and in exchange for a sparser . In
these cases, a more appropriate formulation is basis pursuit de-
noising (BPDN) [3], [9]. BPDN involves solving the following
problem:

(3)

BPDN [closely related to LASSO regression [4] and see (6)]
is simply least-squares minimization with an regularizer to
penalize complex solutions. The regularization parameter
establishes the cost of complexity relative to the least-squares
error .

Notation
We introduce some notation for the problem in (3) that will

be useful later. Let be candidate solutions of (3). Let be the
residual . is the total error to minimize, such
that . This total error can be divided into
a reconstruction imperfection term and the regularizer

. The imperfection term penalizes the deviation of
the expected observations from the actual observations ,
while penalizes solutions where the sum of is high.
The dot product of two vectors is denoted with angle brackets
and element-by-element vector multiplication is . Let be

the number of nonzero components of the that solves (3). We
assume that the norm of the columns of is 1, and that
lies within the subspace spanned by these columns.1

B. Organization of the Manuscript
In Section II, we describe applications of BPDN, including

the 3-D imaging application [10], [11] that motivates us to
look for fast BPDN solvers. Section III outlines prior work
towards obtaining solutions to (3). The in-crowd algorithm is
given in Section IV along with convergence proofs (also see
Appendix A) and iteration bounds. Section V compares the
accuracy of BPDN reconstructions to those of some alternative
sparse solvers. Section VI benchmarks the in-crowd algorithm
1Relaxing this constraint would put a portion of orthogonal to any possible
and therefore irrelevant to the optimization problem.

1053-587X/$26.00 © 2011 IEEE

4596 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011

against alternatives, and investigates the effect of changing .
Section VII investigates a regime of dense BPDN problems
where alternative solvers are faster than the in-crowd algorithm.
Finally, Section VIII derives an expression for the computa-
tional complexity of an iteration of the in-crowd algorithm and
provides avenues of exploration that may yield faster variants
of the in-crowd algorithm for different problem scales.

II. MOTIVATION AND BACKGROUND

A. Applications of BPDN

There are two broad categories of application in which
solving (2) will not recover a useful, sparse ; specically:

Category 1: where may be sparse, but
is noise with a large enoughmagnitude that solving
(2) exactly would constitute unacceptable overtting. For
these problems, is set to be high enough that the effect of
the regularizer in (3) is at least as large as the effect of .
Category 2: was not generated by the linear matrix mul-
tiplication of an matrix with a sparse .

Problems falling into Category 1 include the following:
i) computer vision and reconstruction problems [12];
ii) recovering sparse, noisy signals or images [13], [14].
Problems falling into Category 2 include the following:
i) lossy image or video compression or encoding with over-
complete dictionaries [15]�–[18];

ii) reconstructing the few sparse, strongest components of
a dense , typical in compressed sensing [19] imaging
applications;

iii) image denoising with an overcomplete basis [20].
The denoising form of basis pursuit is therefore used for many

real-world problems.

B. Imaging With ASPs and BPDN

Finding fast solutions to large-scale, ill-conditioned BPDN
problems is needed for a 3-D imaging application described in
the remainder of Section II.
Determining the three-dimensional arrangement of light

sources is an important component of many biological assays
and studies [21], [22]. As static optical sensors can only mea-
sure information at a xed two-dimensional plane, the recovery
of three-dimensional structure is intrinsically an underdeter-
mined problem. The majority of contemporary techniques
rely on scanning or complex optical systems to overcome this
measurement deciency [22]. We have recently demonstrated
a new class of angle sensitive pixel (ASP) based imager which
directly recovers sufcient information to permit 3-D recon-
structions of sparse light sources [10], [11]. An ASP observes
a signal which follows the relation:

(4)

where is the readout of the ASP, is a constant proportional
to the light ux at the ASP, is the incident angle along the op-
tically sensitive axis, is the angular sensitivity (designed to be
in the 7�–50 range), is the modulation depth of the ASPs (de-
signed to be maximal; typical values of are approximately
0.6), is a designable phase offset, is a slowly varying

Fig. 1. Distribution of correlation coefcients of the columns of for a sample
imaging problem with and .

aperture function and is multiplicative noise. Compared to tra-
ditional intensity-sensitive pixels, the outputs of heterogeneous
arrays of ASPs have a more independent output when exposed
to out-of-focus light sources.We search for a sparse set of candi-
date light sources that account for the observed signal by posing
a BPDN problem that reconstructs the location and intensity of
several nearby light sources, as follows.
Assume that there is some volume of interest in which we

wish to determine the location and magnitude of a variety of
light sources. We parcel the volume into individual subre-
gions, and form the vector , where the
component represents light source intensity at the subre-
gion. Using (4), we determine the response of the ASPs for
unit intensity at each individual subregion. The normalized in-
dividual responses to light at one location dene one column
of the matrix . The system is linear, so for a given arrangement
of sources in space , the product predicts the sensor out-
puts we would observe. Therefore, for a given observed set
of outputs , the solution to (3) provides a reasonable guess at
the true structure of the few luminous sources.
Two features that are readily apparent are the scale of the

optimization problem and the ill-conditioned nature of the ma-
trix . Dividing a volume of one cubic millimeter into parcels
10 microns on a side results in an of , while a small
imager might have �– sensors. Furthermore, spa-
tially adjacent sources are likely to produce very similar re-
sponses. This results in a high mutual coherence [23] for (see
Fig. 1 for the distribution of off-diagonal entries of for a
sample problem with 12 500 spatial locations and 625 sensors).
Therefore, any BPDN solver appropriate for this reconstruction
problemmust be able to handle poorly conditioned matrices and
very large problem scales. These two requirements drove our
development of the in-crowd algorithm.

III. SOLVING BPDN
In this section, we review established approaches to solving

(3) quickly for sparse . One popular approach to solving BPDN
is based on homotopy [24]. Homotopy methods trace the global
optimal solution path over changing . For , the optimal
solution is trivial: . Relaxing from causes the optimal
solution path to leave the origin and introduce nonzero compo-
nents. Further decreases may introduce new nonzero compo-
nents or drive existing components to zero; hence, homotopy
methods return not only a solution for a given , but also the
solution trajectory illustrating the optimal solution for a

GILL et al.: THE IN-CROWD ALGORITHM FOR FAST BASIS PURSUIT DENOISING 4597

whole range of . By virtue of their reliance on the overall op-
timum solution as components enter and exit the active set, these
optimizers are very efcient for sparse (see [25] and the asso-
ciated implementation at [26]). Homotopy is the fastest alterna-
tive to the in-crowd algorithm for solutions to (3) on our imaging
application (see Section II-B), as will be shown in Section IV-B.
Another fast methodwhich can bemade to converge to the so-

lution to (3) is the spectral projected gradient for L1 minimiza-
tion (SPGL1) [27], [28]. This method probes the shape of the
trade-off curves between solutions of minimization of for a
constrained [see (5)] and minimization of for a con-
strained [(6), also known as the LASSO problem [4]]. This
method is faster than homotopy for problems where columns of
are nearly orthogonal, as will be shown in Section VI-A.
Implementations of SPGL1 do not directly solve (3), rather

they solve either

(5)

or

(6)

For benchmarking purposes, in this paper we determine the time
taken for SPGL1 to reach the exact solution of (3) by rst com-
puting where is the homotopy BPDN solution, then
solving (6) with SPGL1.
Interior point methods solving (3) as a general convex

problem also solve BPDN. A method using the preconditioned
conjugate gradients algorithm to compute a search direction has
shown itself to perform well on large problems [29]. However
for the problems presented in this paper we found the homotopy
implementation to be faster than these methods, so we will not
cover them in detail.
Fixed-point continuation (FPC) [30], both using Barzilai-

Borwein steps [31] and with an active set implementation [32],
is also potentially an attractive BPDN solver. As will be
shown in Section VI-A, for sparse problems the active set
FPC method�’s run times compare with homotopy�’s and for
more dense problems FPC is the fastest BPDN solver (see
Section VII). However, FPC is known to produce incorrect
solutions in some hard cases [30]. In fact, on the imaging
problem Section VI-B), we will show active set FPC routinely
fails to converge to a solution close to the correct (see Fig. 5).
For no problem was the speed of the Barzilai-Borwein FPC
method [31] competitive, as will be shown in Section VI-A and
Section VI-B. FPC can take a value of as an input so that
its target is to solve (3); we have provided this as an input
throughout the paper.
One additional class of interest for smaller problems is

gradient projection for sparse reconstruction (GPSR) [33].
Although we investigated this class of BPDN solver, under
no circumstances did it deliver a solution faster than some
alternative solver (be it homotopy, active set FPC or SPGL1),
so we do not report its results.

IV. IN-CROWD OPTIMIZATION
In this section, we introduce the in-crowd algorithm, an it-

erative method for solving BPDN that is effective especially

for large scale sparse problems, and prove its convergence. The
avor of the in-crowd algorithm can be summarized as follows:
think globally, but not too often. The computational complexity
of solving (3) with sufciently large and small is often dom-
inated by searching the dictionary of possible atoms for ap-
propriate additions to the active set . The in-crowd algorithm
is partially insulated from the size of the global problem by con-
sulting the full dictionary only rarely. Very often, candidates
for additions to remain viable even after adding other can-
didates. Performing an entirely new search over the possible
additions after each addition to thus can be computationally
wasteful. Instead, the in-crowd algorithm admits a whole group
of atoms to , where is a xed small integer, before refer-
ring to the full matrix again.

A. The In-Crowd Algorithm

The following is the procedure for in-crowd optimization.
Step 1) Declare to be , so .
Step 2) Declare the active set to be the empty set.
Step 3) Calculate the �“usefulness�” ,

where denotes the complement of .
Step 4) If on no , then terminate.
Step 5) Otherwise, add the components with the largest

to , but do not add any component for which
.

Step 6) Solve (3) exactly on the subspace spanned by all of
the components in . Use current values of to
warm-start the solver. This subproblem is expected
to be dense.

Step 7) Take any zero-valued members of the exact solution
of Step 6) out of .

Step 8) Set all components of to be 0 except for the compo-
nents in ; set these to the value found by the exact
solution of Step 6).

Step 9) Update ; n.b. can be found during
the subproblem of Step 6) since .

Step 10) Go to Step 3).
In Step 5), the best choice of depends on the relative speed

of Steps 6) and 3) for a specic problem and computer archi-
tecture. We nd to be reasonable for most problems
and we have used it exclusively throughout this paper. How-
ever, for different choices of matrix or for problems (such
as partial Fourier observations) with an implicit fast method
for nding , other xed or adaptive choices for can pro-
vide advantages in computation time (see Section VIII-C). We
used Matlab�’s built-in function [34], [35] for our sub-
problem solver (see Section VIII-B) in Step 6) when the cardi-
nality of was and an alternative quadratic programming
solver2 [36] when the cardinality of was .
The stopping criterion in Step 4) is equivalent to terminating

when does not change from one iteration to the next. In
practice, subproblem solvers may not fully optimize in Step 6),
2Matlab�’s built-in quadprog does not always respect the boundary conditions

given when the cardinality of , necessitating an alternative exact solver.
In our benchmarks, this alternative solver was almost never used since the cardi-
nality of usually remained well below , but was needed as a patch especially
for larger problems with small .

4598 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011

so this alternative stopping criterion can be more numerically
robust.

B. Convergence of the Algorithm

To show that the in-crowd algorithm always terminates at the
global optimum, it sufces to prove the following.

Item 1) The error calculated in Step 6) is completely
specied by .

Item 2) There are a nite number of possible sets .
Item 3) Step 6) will always decrease the error relative to

the previous round; i.e., .
Item 4) At termination, nonzero components of sat-

isfy , and zero components
of satisfy .

Items 1) and 2) are trivial, but Items 3) and 4) are subtle
enough to warrant a proof. Item 3) is proven in Theorem A.1;
moreover, under certain circumstances, the error is proved
to decay exponentially with iteration count (see Appendix A).
Step 6) will nd the solution that minimizes on and may
not end up assigning a nonzero value to all of the newly added
components, but the nal error is guaranteed by Theorem
A.1 to be lower than during the previous execution of Step 6).
The in-crowd algorithm therefore cannot retrace its own path,

eliminating the potential for cycles. Moreover, it makes use of
the best possible choices for additions to given local knowl-
edge of by adding components to with the highest . Since
the in-crowd algorithm never retraces its path and traverses a -
nite number of elements, it must terminate. We now prove that
the in-crowd algorithm terminates only at the exact BPDN so-
lution [see Item 4)] by pointing out a feature of the in-crowd al-
gorithm�’s stopping condition that we will tie to general convex
optimization theory in Appendix B.
Theorem 4.1: When the in-crowd algorithm terminates, all

components of are either equal to zero and ,
or alternatively are nonzero and satisfy .

Proof: By Step 4), the in-crowd algorithm does not termi-
nate if for any , . Regarding the
nonzero components , their values have been op-
timized by the exact solver of Step 6). On , the gradient
of exists (since there are no discontinuities in the gradient
of except where), and (by force of the exact opti-
mization) must equal , since any nonzero gradient would imply
a better solution than the one found by the exact subproblem
solver. By (8) of Appendix B, the gradient being implies that

.
As established by general convex optimization theory, the

conditions established in Theorem 4.1 are both necessary and
sufcient for the optimality of the solution (see Appendix B)
generated by the in-crowd algorithm. Therefore, the in-crowd
algorithm halts only at the global minimizer to (3).

C. Lower Iteration Bound

A lower bound on the iteration count, , is given by the
fact that at least iterations are required increase the cardi-
nality of to , and one partial iteration [terminating at Step 4)]

is required to conrm the optimality of (i.e., to check that the
subdifferential of contains , see Appendix B).
There is no guarantee that the same few elements will be not

be added then pruned multiple times, however by Items 1) and
3) above, we are guaranteed that each temporary addition to
must be made with distinct combinations of components in ,
each with lower associated than all previous combinations,
limiting the number of possible cyclic additions and deletions
of all atoms. As will be shown in Section VIII-A and the insets
of Figs. 3, 4, 6, and 7, the lower bound given here is in fact
reasonably tight.

V. GREEDY SOLVERS AND BPDN

A. Greedy Solvers

As is a convex function, improved solutions can be
found using only local knowledge of around . Several ex-
isting heuristics take advantage of this property to nd sparse
where . Examples include orthogonal matching pur-

suit (OMP) [37] and least angle regression (LARS) [38]. These
approaches build their solution element by element, choosing
the best available atom at each iteration. Every iteration adds
this to an active set of columns.
Recent solutions in a similar spirit to the in-crowd algorithm

are CoSaMP [23] and subspace pursuit [39]. Both of these add
the ability to prune unnecessary elements from the current ac-
tive set of columns, and both solve a least squares problem on
their active sets at each iteration. Indeed, the primary difference
between the in-crowd algorithm and these two procedures is that
with the in-crowd algorithm, an regularizer (with a equal to
that of the global problem) is included in the subproblem.
It should be noted that unlike the greedy solvers mentioned

above, the in-crowd algorithm solves (3) exactly.

B. BPDN Yields Better Imaging Reconstructions

For our imaging application, the accuracy of reconstructions
is higher for BPDN than for the other sparse solutions found
by OMP, CoSaMP and subspace pursuit. To quantify the ben-
et of BPDN, we took the imaging problem whose matrix
generated Fig. 1 and judged reconstruction of sources based on
a noisy signal. In more detail, true sources with intensity3 in

were chosen randomly to generate , and noiseless
data were generated. We presented the solvers
with , where is Gaussian noise
such that the signal-to-noise ratio of is 10. Fig. 2 then plots
the mean correlation coefcient between and over 100
runs for solutions of (3) with along with those from
OMP, subspace pursuit and CoSaMP.
Subspace pursuit and CoSaMP4 fare particularly poorly at

this task, since the pseudoinverse tends to partition power
equally among components of with highly correlated corre-
sponding (see Fig. 1).
3We allowed negative light sources to compensate for the fact that the imple-

mentations of some of the methods we wished to benchmark did not allow us to
restrict solutions to having exclusively nonnegative components.
4CoSaMP is usually implemented with an approximate least squares solver

that is only accurate when columns of are nearly orthogonal. For our problem
we used an exact pseudoinverse since many columns were highly correlated.

GILL et al.: THE IN-CROWD ALGORITHM FOR FAST BASIS PURSUIT DENOISING 4599

Fig. 2. Accuracy of four reconstruction methods for the imaging problem with
, and various numbers of light sources .

TABLE I
PROBLEM DEFINITIONS

VI. OBSERVED PERFORMANCE OF THE IN-CROWD ALGORITHM

A. Matrices With Small Correlations

To the extent that it is possible to control , for nearly all
applications it is advantageous to make the columns of as
orthogonal as possible. As a consequence, many applications
that use BPDN employ matrices with small-magnitude
correlations between rows. Although when it is
impossible to have columns totally orthogonal, by the central
limit theorem the expected magnitude of correlation coef-
cients between columns of a random i.i.d. Gaussian goes as

. Benchmarking solutions to (3) with a random matrix
therefore gives a reasonable approximation to the expected
running times of applications where the columns of are
nearly orthogonal.
We generated a sequence of problems (see Table I) dened

by a spherical Gaussian random matrix with
various and . We generated synthetic data in a manner
similar to that of Section V-B, i.e., by starting with a vector

with nonzero components pulled from a random uni-
form distribution over , applying and injecting multi-
plicative Gaussian noise to arrive at an SNR of 10. Solving (3)
with results in a solution with a number of nonzeros
that may be greater or smaller than , and the average was also
found to depend on the problem type (Gaussian or Imaging
�—see Section VI-B). To avoid favoring methods using

Fig. 3. Running time for random Gaussian matrices. For clarity, every second
problem size is labeled; for a full list of problem sizes see Table I. Inset: mean
in-crowd iteration count as a function of Ceil ; log scale used.

TABLE II
RUNNING TIMES IN SECONDS FOR GAUSSIAN RANDOM PROBLEMS

Matlab�’s built-in functions, we translated all methods into
via Matlab�’s command and compiled the

code with with all optimizations possible. We timed
the execution of 50 problems on a 2.4 GHz Core i7 system with
turbo boost disabled to obtain the benchmarks for in-crowd, the
fastest homotopy solver we found for these problems [26], the
spectral projected gradient for L1 minimization (SPGL1) [27],
[28] and two implementations of FPC: Barzilai�–Borwein FPC
(BB FPC) [31] and active set FPC (FPC AS) [32]. Mean run-
ning times in seconds are plotted in Fig. 3 and listed in Table II.
The inset of Fig. 3 shows that the number of iterations the
in-crowd algorithm takes is close to the lower bound derived
in Section IV-C.
As can be seen in Fig. 3 and Table II, the in-crowd method

is up to 5.5 times faster than all other solvers for
Its closest rival (SPGL1) in fact solves LASSO [see (6)] rather
than BPDN; the fastest alternative BPDN solver of problem 17

4600 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011

Fig. 4. Running time for the imaging problem. For clarity, every second
problem size is labeled; for a full list of problem sizes see Table I. Inset: mean
in-crowd iteration count as a function of Ceil ; log scale used.

TABLE III
RUNNING TIMES IN SECONDS FOR IMAGING PROBLEMS

(homotopy) is more than 23 times slower than the in-crowd
algorithm.
The maximum deviation of the in-crowd and homotopy so-

lutions (i.e., -) for any5 run was within
the range of deviations entirely accountable by nite machine
precision: . SPGL1 converges iteratively to the exact
LASSO solution. Using the default SPGL1 stop criterion [28]
(optimality tolerance), SPGL1 halted relatively close
to the solution found by the other solvers. SPGL1�’s maximum
deviation was 0.004, which, while larger than that of the solu-

tion delivered by homotopy, results in only a minuscule increase
in nal .
5Excluding runs with , where the homotopy implementation we used

[26] takes a single initial step.

Fig. 5. Proportion of problems where active set FPC failed to discover a solu-
tion with an within a factor of 2 of the correct BPDN solution as a function
of problem number (see Table I).

B. 3-D ASP Imaging Application

We ran a suite of test problems similar to those of
Section IV-A but with based on models of our imaging
application (see Section II-B); the timing results can be found
in Fig. 4 and Table III (n.b. the FPC variant mentioned here is
Barzilai�–Borwein). The inset of Fig. 4 shows that the number
of iterations taken by the in-crowd algorithm is a factor of
2.56�–6.86 greater than the lower iteration bound derived in
Section IV-C. The increased number of iterations compared to
the previous set of benchmarks is due to the difculty selecting
the appropriate atom out of a collection of atoms that are highly
correlated. Still, the ratio of iterations taken by the in-crowd
algorithm to the lower bound is small, indicating that the
in-crowd algorithm is relatively robust in the face of poorly
conditioned problems.
On these problems, we discovered that SPGL1, the fastest

exact solver aside from the in-crowd for nearly orthogonal
problems, does not converge quickly, so we ceased our bench-
marks of this method for large-scale problems. SPGL1 still
seems to converge exponentially, but the exponential constant
is small.
We found the active set implementation of FPC [32] did

not converge well even for our smallest problems. In the
cases where the active set method did converge to the correct
solution, the discrepancy between its solution and that of other
BPDN solvers was of the order expected by nite machine
precision; however especially for problems larger than problem
2, for the large majority of problems the active set method had
a catastrophically large terminal : more than twice that of
the other solvers6 (see Fig. 5). In general, FPC is known to fail
to converge for some difcult problems [30], although solutions
delivered by Barzilai-Borwein FPC were more reasonable. As
such we benchmarked only the Barzilai-Borwein FPC variant.
Although the divergence between homotopy and the

in-crowd solutions was higher than for the Gaussian case
(for problem 17), the corresponding median differ-
ence in was within machine precision: . This
discrepancy is possible because level surfaces of around
the minimum will be elongated whenever two nonzero, nearly
parallel atoms exist as part of the true solution. As before, for
this problem type the in-crowd algorithm was the fastest solver
by a factor of 15 for the largest-scale problems.
6We were careful to allow a sufciently high maximum number of iterations

to the active set FPC solver, and exactly the same code was used to analyze
imaging problems as was used in Gaussian problems where this method returns
the correct answer. We speculate that the coherent matrix of imaging prob-
lems derails active set FPC.

GILL et al.: THE IN-CROWD ALGORITHM FOR FAST BASIS PURSUIT DENOISING 4601

As is evident from shown in Table I, BPDN did not in gen-
eral return the solution corresponding to the exact light source
locations. From Fig. 2, we see reconstruction accuracy is ap-
proximately 40% when is 20. However, due to the high
correlations of the columns representing adjacent spatial loca-
tions, often the discrepancy between ideal and observed cor-
responded to blurring, omitting dim sources or small shifts in
the inferred source location, and the reconstructed sources are
overall in a conguration similar to their actual locations. Our
imaging application [10], [11] introduced in Section II-B mo-
tivates our interest in high-noise, very sparse, very underdeter-
mined, ill-conditioned problems; the in-crowd algorithm excels
in this regime.

C. Changing and Noise Levels

Thus far, all benchmarks discussedwere runwith and
SNR = 10, meaning that the average inuence of noise on the
observed is relatively large and the strength of the regularizer
is about twice the strength of the noise. With a large enough ,
the cardinality of never grows to be too large, so the dense
subproblem of Step 6) can be solved relatively quickly. With a
smaller , it is possible that not only more components will be
involved with every subproblem (making individual iterations
slower), but also that the total number of iterations taken by
the in-crowd algorithm increases as the residual becomes more
inuenced by noise than by correct choices for additions to .
To observe the effect of decreasing we performed two

numerical experiments,7 both based on Gaussian problem 14
of Table I. In one, noise and are scaled down together [see
Fig. 6(a)] and in the other, noise is held with a constant SNR
of 10 while is scaled down [see Fig. 6(b)] The insets in these
gures plot the number of iterations taken by the in-crowd
algorithm as a function of the lower iteration bound (see
Section IV-C). Except where noise is much stronger than [to
the right of Fig. 6(b)], the lower iteration bound is relatively
tight.
The vertical dashed line in Fig. 6(b) divides problems with

choices of appropriate for denoising (to the left of the line)
from those with insufcient to denoise the signal (right of the
line). Most real problems of interest, where noise suppression
is desirable and overtting of noise is not, are expected to use
greater than noise. If high levels of noise are combined with

a low , the result is a high in-crowd iteration count [see inset
of Fig. 6(b)] and longer running times than the other methods.
Outside the zone where is too small and for the entirety of
Fig. 6(a) (which plots performance where is proportional to
noise), the in-crowd algorithm is still the fastest BPDN solver
for this class of problem.
We also tested the effect of lowering on imaging problem

14. As before, we tested the cases both where the signal-to-noise
ratio (SNR) equaled 10 and when the SNR was set to . As
shown in Table IV, running times increase modestly with de-
creasing .
7As before, homotopy and the in-crowd algorithm yielded solutions almost

exactly congruent with each other. The maximum deviation of the in-crowd
and homotopy solutions was less than for any problem.

Fig. 6. Performance of algorithms with alternative for Gaussian problem
14. Mean running times for changing with the noise-to- ratio xed at 0.5.
Inset: mean in-crowd iteration count as a function of Ceil ; log scale
used. Mean running times for changing with the signal-to-noise ratio xed
at 0.1. Problems to the right of the dashed line constitute tting noise. Inset:
mean in-crowd iteration count as a function of Ceil ; log scale used.

TABLE IV
RUNNING TIMES IN SECONDS FOR IMAGING PROBLEM 14 WITH CHANGING

VII. LOW-NOISE, DENSE PROBLEMS
The imaging problems that inspired work on the in-crowd al-

gorithm (see Section II-B) are of a scale with : less
sparse than some interesting BPDN problems, but sparser than
others. Typical video compression problems with an overcom-
plete basis [17] have ; a relatively high-magnitude

is acceptable and a correspondingly large is used. In ad-
dition to sparse, noisy problems, Fig. 6(a) demonstrates that the
in-crowd algorithm is even better suited to very sparse, very un-
derdetermined problems with low noise and , and thus small
nal .
Compressed sensing problems [1], [2], [19] give rise to a class

of very low-noise BPDN problems that are less sparse, with

4602 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011

TABLE V
DENSE PROBLEM DEFINITIONS; , SNR = 10 000

Fig. 7. Running time for random Gaussian matrices with low-noise, dense
problems. More problem details are found in Table V. Inset: mean in-crowd
iteration count as a function of Ceil ; log scale used.

and . Compared to the BPDN problems pre-
sented thus far, in these applications noise is small and there
are many more observations per unknown. Given the additional
high-delity data available, the underlying signal is ex-
pected to be reconstructed more or less exactly unless is over-
whelmingly large. We ran a set of dense problems dened in
Table V with results plotted in Fig. 7 and Table VI to charac-
terize in-crowd performance on dense problems. Despite the de-
ceptively high (which includes many almost-zero terms), for
every problem in this suite the correlation coefcient between
the recovered and was high (mean correlation given
in in Table V) and never less than 96% for any problem.
While the iterative methods (the active set FPC method and
SPGL1) both perform well on these problem scales, it is worth
noting that the in-crowd algorithm maintains a run-time advan-
tage over homotopy.Moreover, the fact that the number of itera-
tions taken by the in-crowd algorithm was almost exactly equal
to the lower iteration bound (shown by the proximity of points to
the diagonal in the inset of Fig. 7) indicates that extremely few
false steps were ever taken by the in-crowd algorithm. Perhaps
a choice of is overly cautious for this type of low-noise,

TABLE VI
RUNNING TIMES IN SECONDS FOR EXACT SOLUTIONS OF

DENSER GAUSSIAN PROBLEMS

nearly fully determined problem; see Section VIII-C for a dis-
cussion of potential modications to the in-crowd algorithm that
could make it faster on dense problems.

VIII. COMPUTATIONAL COMPLEXITY

A. Outer Loop Complexity

Here we provide an analysis of the algorithmic complexity
of the in-crowd algorithm. Step 3) dominates the complexity of
the outer loop [i.e., Steps 3)�–10), excluding Step 6)]. It requires
a matrix multiplication of (which is) with the
residual, requiring operations. A lower limit to the number
of times the outer loop is run is , derived in Section IV-C.
As with investigations into the number of homotopy iterations
needed to nd a solution [40], it is advantageous to empirically
investigate the ratio of the actual number of iterations to this
lower limit, henceforth denoted by . ranged from
1.007�–3.06 for all Gaussian random problems we investigated
(see insets of Figs. 3, 6, and 7) and from 2.56 to 6.86 for all our
imaging problems (see inset of Fig. 4). Although it is tempting
to declare to be effectively a constant, might scale
with or for certain types of problems, so we include it in
our expression of computational complexity of the outer loop:

.

B. Inner Loop Complexity

The subproblem solver used in Matlab�’s quadprog rou-
tine [34], [35] uses an active-set strategy that alternates
between using a least-squares solver on the nonzero compo-
nents of and a method of determining which components
should be added or subtracted to this active set. Constraints on
the associated quadratic programming problem (which enforce

) act on the complement of the active sets; since the
problem handed to the subproblem solver is dense and with
fewer than zero-valued components, the number of
active constraints is also small and the computational cost of
running the subproblem solver is dominated instead by the
complexity of the iterated least-squares problem. The rst
iteration of this problem has a complexity of , where is
the current cardinality of . Subsequent solutions to the least
squares problem are accelerated by a Cholesky update to the
initial problem as atoms enter and leave the active set,8 with a
8In principle, the Cholesky factorization could be passed from the termination

of one call to the subproblem solver to the initialization of the next subproblem
solver, requiring a computationally faster update to the Cholesky factorization
of complexity . However, in practice, a fresh factorization is usually
faster. With , computing the de novo Cholesky factorization is faster
than 25 incremental updates when .

GILL et al.: THE IN-CROWD ALGORITHM FOR FAST BASIS PURSUIT DENOISING 4603

computational complexity , where atoms are added
or subtracted; often is 1 or 2.

C. Potential Speed Improvements for Future Investigation
We can see several avenues for further speed improvements

to the in-crowd algorithm going forward. These include the
following.
1) Adaptively choosing the value of and the type of sub-
problem solver based on the type and scale of the problem
being solved,

2) Warm-starting the outer loop, the subproblem solver or
both, based on the guess of a good dense solver (like
SPGL1 or active set FPC) iterated only a few times.

3) Using the fact that the theorems proving in-crowd op-
timality are quite permissive, such that the subproblem
solver does not need to solve BPDN per se, as long as the
nal value of is smaller than that of the initial guess,
and that for all nonzeros in the subsolver solution,

.
Overall, there are many freedoms permitted by in-crowd op-

timization that we have yet to explore. The conjunction of this
exibility with the already-encouraging numerical results pre-
sented in this paper mean that the in-crowd algorithm will be
of considerable industrial and academic interest as a fast BPDN
solver.

IX. CONCLUSION
We have presented a new algorithm for solving BPDN which

we observe to be approximately 15 times faster (see Fig. 4 and
Table III) than the best available alternative method (homotopy)
for the types of imaging problems we encounter. It is approx-
imately 5 times faster than SPGL1 on large mostly orthogonal
problems (see Fig. 3 and Table II). The in-crowd algorithm per-
forms well with a range of provided that is high enough to
remove noise in the system (see Fig. 6). We expect it to perform
well for sparse, real-world, noisy, large-scale BPDN problems;
therefore it may be of great usefulness to applications such as
overcomplete video codecs and underdetermined model selec-
tion. SectionVII reveals that alternative BPDN solvers are faster
on dense problems, but Section VIII suggests that an alternative
subproblem solver that scales more gracefully with larger may
be possible. However, even without modication the in-crowd
algorithm is of immediate practical utility on sparse problems,
and potentially provides the groundwork for a family of spe-
cialized algorithms able to scale well for most BPDN problems
with many unknowns.

APPENDIX A
ERROR DECAY BOUND

Here, we will show that strictly decreases with iteration
under the in-crowd algorithm, and for arbitrary9 and , where

, this decrease is initially exponential.
Dene the minimum projection property of :

9 is trivially restricted to the span of the columns of , as mentioned in
Section I-A

Remark: For all matrices , .
This is clear by contradiction. If , then there must

be some such that . Such a must then lie
outside the span of .
Remark: For orthonormal matrices, ,

and adding additional columns to any can only increase
. Finding in general is a nonconvex problem.

With this denition in place, we have the following theorem
on the convergence of the in-crowd algorithm.
Theorem A.1: The error under the in-crowd algorithm

always decreases with iteration, and converges at least expo-
nentially in iteration count for matrices where = 1 while

and .
Proof: At iteration of the algorithm, suppose that we have

a current residual . For the algorithm to step
through an additional iteration, at least one new componentmust
be added to . This implies that there must exist some nonempty
set of indexes where the usefulness must
be larger than . Let . The optimizer has
available to it the candidate solution where is the unit
vector in the direction. Therefore, the optimizer will converge
on a solution with error at most equal to for the
choice of that minimizes at the end of iteration . Hence,

Using properties of the inner product,

Without loss of generality,10 consider only the case and
. Dene ; this rep-

resents the change to over a single iteration of the in-crowd
algorithm if error can be improved only11 by modifying .
Choosing makes ,
so , proving the rst part
of Theorem A.1, that always decreases with iteration count.
Solving for is feasible for a range of
when the following quadratic has real roots:

The requirement therefore is that

By the fact that the algorithm continued at Step 4),
, so it follows that

10True since so is always
negative and equal to .
11This is an unlikely worst case scenario for the in-crowd algorithm, only

attained when all the elements added to are almost parallel so that only one
is made nonzero, but orthogonal to the existing such that no co-optimization
with existing members of is possible.

4604 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011

The choice of implies that .
By the denition of and since , there exist
such that . It follows that

. A stricter requirement on the existence of a real
is therefore

which is the rst condition on of Theorem A.1. As long as
, we can nd an where .

Thus,

However, we desire a bound showing an exponential decrease
of the total error, not just the residual imperfection. Splitting the

term into two equal portions,

which implies

when , which is the second condition on
of Theorem A.1.

APPENDIX B
CONVERGENCE CRITERIA FOR BPDN

Prior work (for example, [41]) has shown that a convex func-
tion attains its global minimum at if and only if
the zero vector is an element of the subdifferential of . For a
given , the subdifferential of is

(7)

For the norm, the subdifferential is the set

Let be the support of . For those indexes , the re-
quirement that implies that

(8)

For those indexes , , we have that

for some

Equivalently,

(9)

To summarize, there are two necessary and sufcient criteria for
the minimizer of the function .
On the support of , the correlation between the residual and
the columns of must equal exactly . Off the sup-
port, the correlation must have magnitude less than or equal
to . To show that these two criteria together are equivalent to
nding the solution of (3), consider a candidate solution . Since
zero-valued components have ,
no change in for any can result in a lower total error. All
nonzero components satisfy , thus error is
locally stationary. Hence, it is impossible to alter any compo-
nent of to decrease total error. Therefore, is a local min-
imum. Since the problem is convex, the minimum is global.

ACKNOWLEDGMENT

The authors would like to thank W. Xu, M. Wang, and
A. K. Tang for their thoughtful comments on the algorithm,
the eld, and the manuscript. They also would like to thank
M. Salman Asif for his timely code contributions, and the two
anonymous reviewers for extensive help polishing this work
and pointing out items of interests that we initially overlooked.
The authors would also like to thank the NIH, who helped fund
this work.

REFERENCES

[1] M. Lustig, D. Donoho, J. Santos, and J. Pauly, �“Compressed sensing
MRI,�” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72�–82, 2008.

[2] U. Gamper, P. Boesiger, and S. Kozerke, �“Compressed sensing in dy-
namic MRI,�” Magn. Reson. Med., vol. 59, no. 2, pp. 365�–373, 2008.

[3] S. Chen, D. Donoho, and M. Saunders, �“Atomic decomposition by
basis pursuit,�” SIAM Rev., vol. 43, no. 1, pp. 129�–159, 2001.

[4] R. Tibshirani, �“Regression shrinkage and selection via the lasso,�” J.
Roy. Stat. Soc. B (Method.), vol. 58, no. 1, pp. 267�–288, 1996.

[5] P. Ravikumar, G. Raskutti, M. Wainwright, and B. Yu, �“Model selec-
tion in Gaussian graphical models: High-dimensional consistency of
l1-regularized MLE,�” Adv. Neural Inf. Process. Syst. (NIPS), vol. 21,
pp. 1329�–1336, 2008.

[6] J. Bergh and J. Löfström, Interpolation Spaces : An Introduction.
New York: Springer-Verlag, 1976.

[7] R. Gribonval andM. Nielsen, �“Beyond sparsity: Recovering structured
representations byminimization and greedy algorithms,�”Adv. Comput.
Math., vol. 28, no. 1, pp. 23�–41, 2008.

[8] S. Chen and D. Donoho, Basis Pursuit, vol. 1, pp. 41�–44, Oct. 1994.
[9] S. Becker, J. Bobin, and E. Candès, �“NESTA: A fast and accurate rst-

order method for sparse recovery,�” vol. 904, 2009 [Online]. Available:
http://arxiv.org/abs/0903.1443

[10] A. Wang, P. Gill, and A. Molnar, �“Light eld image sensors based on
the Talbot effect,�” Appl. Opt., vol. 48, no. 31, pp. 5897�–5905, 2009.

[11] A. Wang, P. R. Gill, and A. Molnar, �“Fluorescent imaging and local-
ization with angle sensitive pixel arrays in standard CMOS,�” presented
at the IEEE Sensors Conf., Waikoloa, Big Island, HI, Nov. 3, 2010.

[12] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan, �“Sparse
representation for computer vision and pattern recognition,�” Proc.
IEEE, vol. 98, no. 6, pp. 1031�–1044, 2010.

[13] A. Bruckstein, D. Donoho, and M. Elad, �“From sparse solutions of
systems of equations to sparse modeling of signals and images,�” SIAM
Rev., vol. 51, no. 1, pp. 34�–81, 2009.

[14] M. Elad and M. Aharon, �“Image denoising via sparse and redun-
dant representations over learned dictionaries,�” IEEE Trans. Image
Process., vol. 15, no. 12, pp. 3736�–3745, 2006.

[15] B. Olshausen and D. Field, �“Sparse coding with an overcomplete
basis set: A strategy employed by V1?,�” Vis. Res., vol. 37, no. 23, pp.
3311�–3325, 1997.

GILL et al.: THE IN-CROWD ALGORITHM FOR FAST BASIS PURSUIT DENOISING 4605

[16] J. Ye andM. van der Schaar, �“Fully scalable 3-D overcomplete wavelet
video coding using adaptive motion compensated temporal ltering,�”
U.S. Patent App. 10/531,195, Oct. 8, 2003.

[17] Y. Andreopoulos, M. Van der Schaar, A. Munteanu, J. Barbarien,
P. Schelkens, and J. Cornelis, �“Complete-to-overcomplete discrete
wavelet transforms for scalable video coding with MCTF,�” in Vis.
Commun. Image Process., Citeseer, pp. 719�–731.

[18] B. Olshausen and D. Field, �“Sparse coding of sensory inputs,�” Current
Opinion Neurobiol., vol. 14, no. 4, pp. 481�–487, 2004.

[19] D. Donoho, �“Compressed sensing,�” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289�–1306, Apr. 2006.

[20] K. Barthel, H. Cycon, and D. Marpe, �“Image denoising using fractal
and wavelet-based methods,�” in Proc. SPIE, Citeseer, 2003, vol. 5266,
pp. 10�–18.

[21] J. Pawley and B. Masters, �“Handbook of biological confocal mi-
croscopy,�” J. Biomed. Optics, vol. 13, 2008.

[22] A. Diaspro et al., Confocal and two-photon microscopy: foundations,
applications, and advances. New York: Wiley-Liss, 2002.

[23] D. Needell and J. Tropp, �“CoSaMP: Iterative signal recovery from in-
complete and inaccurate samples,�” Appl. Comput. Harmon. Anal., vol.
26, no. 3, pp. 301�–321, 2009.

[24] D. Malioutov, M. Cetin, and A. Willsky, �“Homotopy continuation for
sparse signal representation,�” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), 2005, vol. 5.

[25] M. S. Asif and J. K. Romberg, �“Dynamic updating for 11 minimiza-
tion,�” 2009 [Online]. Available: http://arxiv.org/abs/0903.1443

[26] M. S. Asif, L1 homotopy 2009 [Online]. Available: http://users.ece.
gatech.edu/~sasif/homotopy/index.html

[27] E. van den Berg and M. P. Friedlander, �“Probing the Pareto frontier
for basis pursuit solutions,�” SIAM J. Sci. Comput., vol. 31, no. 2, pp.
890�–912, 2008.

[28] E. van den Berg and M. P. Friedlander, SPGL1: A Solver for
Large-Scale Sparse Reconstruction, Jun. 2007 [Online]. Available:
http://www.cs.ubc.ca/labs/scl/spg11

[29] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, �“An inte-
rior-point method for large-scale 11-regularized least squares,�” IEEE
J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 606�–617, Dec. 2007.

[30] E. Hale, W. Yin, and Y. Zhang, �“Fixed-point continuation applied to
compressed sensing: Implementation and numerical experiments,�” J.
Comput. Math., vol. 28, no. 2, pp. 170�–194, 2010.

[31] E. Hale, W. Yin, and Y. Zhang, Fixed-Point Continuation (FPC) for
Large-Scale Image and Data Processing Applications of 11-Minimiza-
tion, Jun. 2008 [Online]. Available: http://www.caam.rice.edu/ opti-
mization/L1/fpc/

[32] Z. Wen and W. Yin, FPC as a Matlab Solver for 11-Regularization
Problems, Jul. 2010 [Online]. Available: http://www.caam.rice.edu/
optimization/L1/FPC_AS/

[33] M. Figueiredo, R. Nowak, and S. Wright, �“Gradient projection for
sparse reconstruction: Application to compressed sensing and other
inverse problems,�” IEEE J. Sel. Topics Signal Process., vol. 1, no. 4,
pp. 586�–597, 2007.

[34] MathWorks, Quadratic Programming: Optimization Algorithms
and Examples (Optimization Toolbox), Feb. 2011 [Online]. Avail-
able: http://www.mathworks.com/help/toolbox/optim/ug/brnox7l.
html#brozzpo

[35] P. Gill, W. Murray, and M. Wright, Practical Optimization. New
York: Academic, 1981.

[36] A. Wills, SPM: QPC�–Quadratic Programming in C�–HOME, Jan. 2010
[Online]. Available: http://sigpromu.org/quadprog/

[37] J. Tropp and A. Gilbert, �“Signal recovery from random measurements
via orthogonal matching pursuit,�” IEEE Trans. Inf. Theory, vol. 53, no.
12, p. 4655, 2007.

[38] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, �“Least angle re-
gression,�” Ann. Stat., vol. 32, no. 2, pp. 407�–451, 2004.

[39] W. Dai and O. Milenkovic, �“Subspace pursuit for compressive sensing
signal reconstruction,�” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp.
2230�–2249, 2009.

[40] I. Drori and D. Donoho, �“Solution of minimization problems by
LARS/homotopy methods,�” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), 2006, vol. 3, pp. 636�–640.

[41] P. Garrigues and L. Ghaoui, �“An homotopy algorithm for the Lasso
with online observations,�” Adv. Neural Inf. Process. Systems, vol. 21,
pp. 489�–496, 2009.

Patrick R. Gill received the B.Sc. (Hons.) degree from the University of
Toronto, Canada, in 2001 and the Ph.D. degree from the University of Cali-
fornia at Berkeley in 2007.
He is currently a Postdoctoral Researcher in the School of Electrical and

Computer Engineering and the Department of Psychology at Cornell Univer-
sity, Ithaca, NY. His research interests are in computational and theoretical neu-
roscience, with specialization in the elds of sensory neuroscience and neural
network behaviors.

Albert Wang (S�’07) received the B.A. degree from Harvard University, Cam-
bridge, MA, in 2005. He is currently working towards the Ph.D. degree in elec-
trical engineering at Cornell University, Ithaca, NY.
His research interests include analog and mixed signal circuits and hardware

based signal processing.

Alyosha Molnar (S�’06�–M�’07) received the Hon. B.Sc.Eng. degree from
Swarthmore College in 1997, the M.Sc. University of California at Berkeley
in 2003, and the Ph.D. degree from the University of California at Berkeley in
2007.
From 1998 to 2002, he was with the RF IC Group at Conexant Systems, Inc.

(now Skyworks Solutions, Inc.), Newport Beach, CA, where he developed their
rst-generation GSM direct conversion receiver. He is currently a member of
the faculty of the School of Electrical and Computer Engineering, Cornell Uni-
versity, Ithaca, NY.

