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◦ Review the course outline.

◦ The importance of time series analysis

� The study of time series analysis is important in many fields:

∗ engineering - the “filtering” of a noisy electro-magnetic signal (e.g. car stereo equalizer
or radio tuner).
∗ medicine - incidence of particular disease in a given geographical area over time.
∗ meteorology - monitoring and predicting weather conditions.
∗ economics - measuring economic fundamentals like the GDP growth rate (see Figure 1).

Figure 1: US GDP growth forecast, 1948-2011
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� The basic idea is that the past tells us something about the future. Or put another way, the past
repeats itself. That is, there are patterns in the past that will occur again in the future.

� We wish to construct a mathematical probability model that most accurately “fits” the given
historical data and which provides reasonable forecasts of the future based on these patterns
“hidden” in the data.
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Definition 1. Stochastic process:
Given a probability space (Ω,F , P ) and a measurable space (S,S), an S-valued stochastic
process is a collection of S-valued random variables on Ω indexed by a totally ordered set
T (i.e. time). That is a stochastic process X is a collection Xt : t ∈ T where each Xt is an
S-valued random variable on Ω. The space S is called the state space of the process.

� The above definition is basically a fancy way of saying that we can always consider any time
series, Xt, to be the result of some random occurrences across time.

∗ Of course, the “true” process in question is actually deterministic,1 but usually extremely
complicated, and so it is easier to model it using the mathematics of randomness.

� Typically we will also impose a parametric model on the probability distribution of the pro-
cess across time (notice that Definition 1 above says nothing about the probability law P that
defines Xt.)

∗ That is, we will write down some equations that we believe describe the “true” behaviour
of the process, and these equations will then define the probability distribution of the
process.
∗ We call this assumed “true behaviour” the Data Generating Process (or DGP). For exam-

ple, we may assume that:

xt = axt−1 + εt, where εt ∼ N(0, 1) (1)

This means that xt is always a function of its past value xt−1 plus some random variable
εt which is Normally distributed with mean 0 and variance 1.
∗ We can see that if we recursively substitute back in time, this model implies that E[xt] =
aE[xt−1] + 0 = a(aE[xt−2] + 0) + 0 = . . . , etc, so that given some starting value of the
process x0 we have E[xt] = atE[x0].
∗ The same type of analysis can be applied to determine the other moments (e.g. both the

conditional and unconditional variance, skewness, kurtosis, etc) which define the proba-
bility distribution of the stochastic process xt.
∗ We will talk more about what a “moment” of the process is in the probability review

section below, but the basic idea is that the “moments” of the process define its probability
density function.
∗ Of course, our assumed DGP is never correct. It is simply a matter of how well it describes

the underlying relationships we are trying to model, that are hidden in the data. Figuring
out how well it describes these relationships is also not as easy as it first seems since
we need to determine some measure of performance. This course is all about how we
model different types of macroeconomic and financial time-series data, and ways we can
go about testing model performance.

◦ Historical context

◦ The Dynamics of Keynesian Theory: The Klein-Goldberger Model of the 1950’s

1Excluding exotic phenomenon like quantum particles, for example.
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� The way we used to model the economy was through massive systems of simultaneous equa-
tions models. For example, consider the Keynesian model of the closed economy from your
first year macro class:

The IS curve:
Yt = Ct + It +Gt (2a)
Ct = αIS + βIS(Yt − Tt) (2b)
It = γIS − δISrt (2c)

The LM curve:
Mt/Pt = RMt = L(rt, Yt) = αLMYt − βLMrt (2d)

� Thousands of equations like this that defined the relationships between different sectors of the
economy were each estimated by OLS. The results were then used to predict the economy or
to inform policy decisions. Needless to say it didn’t work very well – one of the reasons being
that the parameters (e.g. αIS) were fixed after being estimated.

� Models such as the Klein-Goldberger above are considered structural models, since they try to
model structural relationships between economic variables that are informed by theory.

∗ The opposite of structural models are reduced form models.
∗ The reduced form model is where we write each of the endogenous variables in terms of

only the exogenous variables of the model (in the above model, we assume that Gt = Tt
and so Gt and RMt are the exogenous variables.)
∗ For example, if we combine the equations in (2) we get:

Yt = αIS + βIS(Yt − Tt) + γIS − δISrt +Gt where Gt = Tt (3a)
= (αIS + γIS) + βISYt +Gt(1− βIS)− δISrt (3b)

Mt/Pt = RMt = L(rt, Yt) = αLMYt − βLMrt (3c)

so the IS equation can be rewritten as Yt = f1(rt, Gt), that is, Yt as some linear function
of rt and Gt, and the LM equation can be written as Yt = f2(rt, RMt), that is, as a linear
function of rt and RMt (the interest rate and real money supply). If we combine the two
equations, we can solve for the reduced forms, Yt = g1(Gt, RMt) and rt = g2(Gt, RMt).

� It is very important to note, that when we write out an equation for the parametric model, like in
equation (1) above, we are really writing out the reduced form of some structural relationship
we do not know (where xt−1 and εt are the exogenous variables.) We will discuss this fact in
more detail later in the 3rd part of the course when we consider the VAR(p) models which are
propular in Macroeconomics.

∗ While we can usually go from the structural form to the reduced form as we did above
(given certain mathematical conditions), going from the reduced form to the structural
form is not so easy. That is, suppose I estimated (1), and determined the parameter a. It is
not clear what structural model this reduced form implies.

� Either way, modern econometric time series methods make use of models such as those defined
in equation (1) all the time.

∗ Even though it says nothing about the theory behind the economic relationship between
xt and xt−1, (1) is still an extremely useful model for forecasting purposes since it models
the future as a random function of the past.
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∗ In fact, nearly all the models we will discuss in this course will say nothing theoretical
about the economic relationships between variables, as you will see.

◦ Time domain vs. Frequency domain analysis

� When we write down an equation like that in (1), we are saying that xt is some random function
of xt−1 and εt in terms of the time subscript t. Functions such as this are called stochastic
difference equations. 2

� However, we know from Fourier Analysis that any time series can be analyzed in either the
time-domain or the frequency-domain.

∗ What does this mean? It means that any function of time can always be rewritten as a
sum of Sine(ωt) and Cosine(ωt) functions (where 1/ω denotes the periodicity of these
functions); that is, any function of time can be written as:

f(t) =
∞∑

ω=−∞

aωCos(2πtω) + bωSin(2πtω)

∗ Don’t believe me? Take for example the repeating function f(t) = t3 where t ∈ (0, 2)
(see Figure 7, where K is the number of terms in the sum when we use less than infinity).

2If we were in continuous time the analog to (1) is the stochastic differential equation, dxt = axtdt+ σtdWt, where Wt is
a Wiener process. This is also known as the Ornstein-Uhlenbeck process.
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Figure 2: K=100

Figure 3: K=30

Figure 4: K=10

Figure 5: K=2
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� Of course, it is the coefficients aω and bω that determine what function we get. They are the
heart of the magic!

� Therefore, if we do not include enough of the “high” frequency terms in the sum, we do not
get the sharp edges of f(t) being represented correctly.

� How is this relevant to economic time-series? Well the frequency approach decomposes the
time-series by frequency so that we can analyze which coefficients aω and bω have the most
“weight.” For example, if a3/12 and b3/12 were large, given monthly data, this might suggest
some pattern that repeats every 3 months (seasonality). That is, the functions Sin(2π 3

12
t) and

Cos(2π 3
12
t) are important in describing the movement in f(t).

� While we will not deal with the frequency domain analysis in this class, it is important to know
that it exists! It really is one-half of the story, so to speak.

◦ Review of Probability Theory

Definition 2. Cumulative Distribution Function (CDF):
For every real number x, the CDF of the random variableX is given by FX(x) = P (X ≤ x), where
P (X ≤ x) denotes the probability that X ≤ x.

Definition 3. Probability density function (PDF):
For every real number x, the PDF of the random variable X is given by some function fX(x) such
that

∫∞
−∞ fX(x)dx = 1 and P (a ≤ X ≤ b) =

∫ b
a
fX(x)dx.

Corollary 1. If fX(x) is continuous at x, then the PDF represents the derivative of the CDF. That
is, fX(x) = dFX(x)/dx.

Corollary 2. We have that P (a ≤ X ≤ b) = FX(b)− FX(a).

Definition 4. Bayes Theorem:
We have that fX|Y (x|y) = fX,Y (x, y)/fY (y) = fY |X(y|x)fX(x)/fY (y), where fX|Y (x|y) is called
the conditional probability density function of X , conditioned on the random variable Y .

Definition 5. Moments about the origin (uncentered):
We call E[Xp] =

∫∞
−∞ x

pfX(x)dx, the p’th moment about the origin.

Definition 6. Centered moment:
We call E[(X − E[X])p] =

∫∞
−∞(x− E[X])pfX(x)dx, the p’th centered moment.

◦ It turns out that the uncentered and centered moments tell us a lot about the probability distribution
of X . In fact, the whole notion of a “moment” is a way, loosely speaking, of quantifying the
relationship between a set of points.
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� For example, the 1st uncentered moment, E[X], is called the mean of the distribution.

� Moreover, the second centered moment is called the variance, E[(X − E[X])2]. Of course,
if the mean is equal to zero, then the variance is the 2nd uncentered moment, E[X2]. The
variance tells us about how much the values of the distribution are dispersed evenly around the
mean.

� There is a nice trick you can use if it is sometimes difficult to find the 2nd centered moment,
but easier to find the uncentered ones. It can be shown thatE[(X−E[X])2] = E[X2]−E[X]2.

� The third central moment, E[(X − E[X])3] is called the skewness (or the standardized skew-
ness as E[(X − E[X])3]/(E[(X − E[X])2])3/2). The skewness tells about any asymmetry in
the distribution on the left or right sides of the mean.

� Finally, we have the kurtosis, E[(X −E[X])4]/(E[(X −E[X])2])2, which tells us about how
much “weight” the tails of the probability distribution carry.

� If we subtract 3 from the kurtosis, we get “excess” kurtosis, which for a Normal distribution
is 0. That is, the standard Normal distribution with mean 0 and variance 1 has kurtosis 3. Be
careful which value you are using! Some software uses the regular version and other’s use the
excess kurtosis – read the documentation!

� If a distribution has excess kurtosis greater than zero, we call the distribution “fat tailed”,
“heavy tailed,” or “leptokurtic.” What this means is that outliers are more commonly occurring
than with the Normal distribution. That is, there are more often cases of “rare” events that
take place in the tails of the distribution. This will be important when we talk about models in
Finance later.

Definition 7. Conditional moments:
We call EX|Y [(X − EX|Y [X])p] =

∫∞
−∞(x − EX|Y [X])pfX|Y (x|y)dx, the p’th conditional centered

moment and EX|Y [Xp] =
∫∞
−∞ x

pfX|Y (x|y)dx, the conditional uncentered moment (about the ori-
gin).

◦ Note that sometimes you see the conditional moment denoted as EX|Y [X] ≡ EX [X|Y ] ≡ E[X|Y ],
but I like to be very specific in notation so that there is no confusion which underlying density
fX|Y (x|y) we are integrating across. Sometimes authors do not specify any subscripts on E[X|Y ]
and this can lead to much confusion, if we do not know what density to integrate with.

◦ When are talking about a time-series, Xt, we often denote the conditional densities and expectations
by t instead of by X and Y . That is, EXt|Xt−1 [Xt] ≡ Et−1[Xt], is the conditional first uncentered
moment of Xt conditioned on only the last value that occurred, Xt−1. Note that we must use the
conditional density ft−1(xt) ≡ f(xt|xt−1), when integrating.

◦ We will also sometimes speak of the “information set.” The information set in the above case is
simply Xt−1, and we may denote it as Ft−1 = {Xt−1}. Of course, the information set can include
many past values of Xτ , where τ = {t− 1, t− 2, . . . , t0} for example–it need not only include the
last value! We will see more on this later.

Corollary 3. From Bayes Theorem we have that if Ft−1 is an information set, such that Ft−1 =
{Xt−1, Xt−2, Xt−3, . . . , X0} then we can write the conditional density of Xt, conditioned on the
information set, as:
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f(xt|Ft−1) = f(Ft−1, xt)/f(Ft−1) = f(Ft)/f(Ft−1) = f(Ft−1|xt)f(xt)/f(Ft−1)

Corollary 4. Factorization of the joint density:
We can always factorize a joint density fX,Y (x, y) as fX|Y (x|y)fY (y).

Corollary 5. The above implies that since Ft−1 is a set, we can factorize over and over. That is:

f(xt, Ft−1) = f(xt|Ft−1)f(Ft−1) = f(xt|Ft−1)f(xt−1, Ft−2) = f(xt|Ft−1)f(xt−1|Ft−2)f(Ft−2)
· · · = f(xt|Ft−1)f(xt−1|Ft−2) . . . f(x0)

◦ This type of factorization will be important later when we talk about how models such as the one
defined by the expression in (1) for example, imply both a conditional distribution (conditional on
xt−1 in (1)) and an unconditional distribution.

Definition 8. Law of iterated expectations (sometimes called “Tower property of expectations”):
We have that EY [EX [X|Y ]] = EX [X]. And if we condition on some other variable, Z we have:
EY [EX [X|Y ]|Z] = EX [X|Z].

◦ What this is really saying is that sinceEX [X|Y ] is random (for any outcome of Y we have a different
expectation), if we take the expectation again, with respect to Y then this is just the same as taking
the expectation across all values of X , irrespective of Y .

◦ In terms of a time-series processXt, we have the equivalent representation whereX ≡ Xt+τ+v, Y ≡
Xt+τ , Z ≡ Xt (and where I now use the alternative notation Et[Xt+1] ≡ E[Xt+1|Xt]):

Et[Et+τ [Xt+τ+v]] = Et[Xt+τ+v]

◦ So now we see that taking the expectation of an expectation at a later time is the same as just taking
the expectation at the earlier time. That is, intuitively, our “best guess” at time t of our best guess at
time t+ τ is just our best guess at time t (confusing?).

◦ Some other useful properties are:

� Et[Xt] = Xt. That is, the best guess at time t is just the value at time t.

� Also, Et[a + bXt+τ ] = a + bEt[Xt+τ ], so expectation is a linear operator; that is, it “passes
through” linear functions. However, Et[a+ bX2

t+τ ] 6= a+ b(Et[Xt+τ ])
2!

� Et[XtXt+τ ] = XtEt[Xt+τ ], that is, we can treat Xt as a constant if we are conditioning on
time t information, Ft.

� Finally, remember that Xt and Xt+τ are different random variables; as such E[XtXt+τ ] 6=
E[Xt]E[Xt+τ ] unlessXt andXt+τ are independent. Generally,E[XtXt] = E[X2

t ] 6= E[Xt]E[Xt]
so we always “group” random variables with the same time subscripts together before deter-
mining expectations.
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◦ The theoretical model vs. the sampling distribution

◦ Finally, we need to always keep in mind the difference between the theoretical model, or DGP, that
we assume on the data, and the sampling distributions.

◦ For example, consider the random variable X . We will assume the DGP is X ∼ N(µ, σ2). Now
suppose we calculate the mean X̂ =

∑T
t=1Xt/T from some finite sample of size T . Of course,

X̂ will have its own distribution completely different from X since it is a random variable too for
every sample we take. In this case, it has the distribution X̂ ∼ N(µ, σ2/T ). The distribution of X̂
is called the “sampling distribution” of the estimator X̂ .

◦ As another example, consider the random variable Y . We will assume that Y has a DGP that
is conditional on X , so let’s say for example Y |X ∼ N(a + bX, σ2). Of course, for every X ,
Y = a+ bX + σZ where Z has unconditional distribution Z ∼ N(0, 1).

� Now suppose we want to estimate b. Since the DGP (or theoretical model) we chose is linear,
we can use OLS. Using OLS will get us some estimate β̂.

� The point is that β̂ is a random variable for any sample of X and Y .

� Therefore, β̂ has its own sampling distribution that is totally different (but based on) the distri-
butions of X and Y .

� In this case we know from the results on the “simple regression” model version of OLS (i.e.
the univariate X version) that the estimator of b is given as:

β̂ =
ˆCov(X, Y )

ˆV ar(X)

And the estimate of a is α̂ = ȳ − β̂x̄, where x̄ is the sample mean of X .

� Therefore, the estimate of b is the sample covariance of X and Y divided by the sample vari-
ance of X .

� It can be shown that the sampling distribution of β̂ is such that E[β̂] = b (we say it is an
unbiased estimator) and that V ar(β̂) = σ2/(

∑N
n=1 x

2
n). Moreover, as N → ∞ the sampling

distribution of β̂ approaches the Normal distribution.

◦ Part 1: ARIMA models

◦ Stationarity and white noise

◦ Consider the time series from the introduction discussion, which i’ve redisplayed below:

◦ What can we say about this time series?

� Well for one thing, it looks like if we took the sample mean of the entire series it would match
up approximated with the green line.

� Moreover, for most parts of the series, say if we took the segment between 25 and 50, the mean
is the same as it is between any other segment, say between 150 and 175.
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Figure 6: US GDP growth forecast, 1948-2011
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� That is, the series doesn’t just seem to wander up or down indefinitely so that the mean is
growing or declining as a function of time (at least approximately).

� Moreover, let us not only consider taking the sample mean, but let us also imagine taking the
sample variance. Does it look like the sample variance would change if we took it across
different segments of the sample?

◦ Intuitively, what we are asking when we say “does this time series’ moments look like they are
relatively fixed over time” is the quesiton of whether a time-series is what we call stationary.

◦ A series is in some sense “as stationary as its moments are fixed” so to the extent that more moments
are “fixed” we can say the series is more or less stationary.

� Bear in mind I am speaking loosely here since even if an infinite number of moments are
both finite and constant across time, this doesn’t necessarily imply that the distribution itself is
constant across time.

◦ Also it is important to remember two things:

1. We are talking about the unconditional moments here–NOT the conditional moments. This
distinction is important, since the conditional moments are still allowed to change in a station-
ary series.

� Recall the factorization I spoke of in corollary 5.
� In that case, we wrote out the joint PDF as a factorization of conditional densities: f(xt, Ft−1) =
f(xt, xt−1, . . . , x0) = f(xt|Ft−1)f(xt−1|Ft−2) . . . f(x0).
� Therefore, we can allow for the joint density to be constant for any series Xτ , τ = t, t −

1, t−2, . . . , 0, as time changes, while the conditional densities themselves are all different
for each time τ .
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� This is very important since we often speak of writing out expressions for our model’s
DGP (the theoretical model) which define the conditional moments and which we usually
have to solve for the unconditional ones (we will do this shortly–also recall what we talked
about above in relation to equation (1)).

2. Even though I used the example of taking the sample moments at different points in time, recall
our earlier discussion about the difference between the theoretical model and the sampling
distributions.

� When I speak of fixed moments through time, what I really mean is a fixed DGP or the-
oretical model. Since we never really know what the true DGP is, we are always just
making a “guess” or an “assumption” on what we think it is. We then test the assump-
tion by means of sampling distribution statistics (like testing the sample mean and sample
variance to see if they are constant), but we must always remember that the concept of
stationarity of the DGP is an assumption we place on the theoretical model.

◦ So, with all that said, let us now present the official definitions of a stationary processXt. Note there
are two version usually used, the first is called the strict (or strong form) stationarity and the second
is called weak stationarity. In this course we will primarily be concerned with the weak form.

Definition 9. Strictly stationary series:
Given a strictly stationary series Xt, we have that:

F ({Xt}) = F ({Xt+τ}), ∀t, τ ∈ N

where F (·) is the cumulative distribution function (CDF) of the stochastic process {Xt}.

◦ So what this definition is saying is that the CDF is not changing for any theoretical stochastic process
(i.e. times series) {Xt}.

◦ The reason why this is framed in terms of the CDF, and not the PDF, is because for some processes
the derivative of F (·) does not exist.

Definition 10. Weakly stationary series:
Given a weakly stationary series Xt, we have that:

� E[Xt] = µ <∞
� E[(Xt − µ)2] = σ2 = RX(0) <∞
� E[(Xt − µ)(Xt−s − µ)] = RX(s) only depends on s.

◦ So weak stationarity says the following:

� The mean of every Xτ , τ = t, t− 1, t− 2, . . . , 0 must be the same across time and finite. This
is the same as saying that the mean of Xt must not be a function of t.

� The variance of every Xτ , τ = t, t − 1, t − 2, . . . , 0 must be the same across time and finite.
Again, this is the same as saying that the variance of Xt must not be a function of t.

� Finally, the autocovariance E[(Xt− µ)(Xt−s− µ)] = RX(s) must only be a function of s, not
a function of t.
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∗ But you might be asking, what is the autocovariance and how does it differ from the
variance? Well the answer is simple. The autocovariance, RX(s) is just the variance, but
not betweenXt and itself (which would beRX(0)), but betweenXt andXt−s. Remember,
that I said earlier that even though Xt and Xt−s (for any s ∈ Z but not s = 0) are part of
the same stochastic series {Xt}, they are different random variables.
∗ Intuitively, what the autocovariance condition of weak stationarity is saying is that no

matter which lag we choose s, the covariance between Xt and Xt−s should be constant
across time t.

◦ So now that we have that our of the way, we can also define the normalized version of the autoco-
variance, the autocorrelation:

Definition 11. The autocorrelation function:
The autocorrelation function of the stochastic process Xt is defined as:

ρs =
E[(Xt − µ)(Xt−s − µ)]

E[(Xt − µ)2]
=
RX(s)

RX(0)

◦ It should be noted that nearly all of time-domain analysis (as opposed to frequency-domain analysis I
spoke of early) is dependent in some way on the autocovariance (autocorrelation) function, since it is
the autocorrelations that tell us how the series “repeats” over time. It is essentially the autocovariance
(autocorrelation) that defines the “hidden” patterns in the data, at least in the time-domain.

◦ Remember, correlation is a number between -1 and 1. That is, −1 ≤ ρs ≤ 1, while covariance does
not have such bounds.

◦ Note, that we can estimate the autocorrelation function the same way we estimate the covariance,
by finite sample equivalents:

Definition 12. Sample autocorrelation function:
The sample autocorrelation function is defined as:

ρ̂s =

∑T
t=s+1(xt − x̄)(xt−s − x̄)∑T

t=1(xt − x̄)2

where x̄ is the sample mean of Xt.

◦ In R, the command for the sample autocorrelation function is ACF().

◦ There is another version of the autocorrelation function that will also be helpful when we choose
the type of ARIMA model we want to use. It is called the “partial autocorrelation” function and is
described in the next definition below.

Definition 13. Partial autocorrelation function:
The partial autocorrelation function of the stochastic process Xt is defined as:

ρΦ,s =
EΦ[(Xt − EΦ[Xt])(Xt−s − EΦ[Xt−s])]

EΦ[(Xt − EΦ[Xt])2]
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where Φ = {Xt−1, Xt−2, . . . , Xt−(s−1)} denotes the intermediate values ofXt−j with 1 ≤ j ≤ s−1.

◦ So what the partial autocorrelation is doing is not as mysterious as it seems. The expression is like
the “conditional” version of the autocorrelation expression above, where we are conditioning on this
set Φ. What does Φ represent? It represents all the random variables “between” Xt and Xt−s. If
we consider this fact, then we can see that Xt − EΦ[Xt] is just the “residual” that remains after we
subtract from Xt its conditional mean, conditioned on Φ.

◦ In R, the command for the sample partial autocorrelation function is PACF().

◦ Some further comments. . .

� Finally, before we move on to the concept of white noise, let me make a brief comment on
why stationarity is a useful assumption to make. Think about how we deal with estimating the
properties of the theoretical model. We typically will take some finite sample of the random
variable and then estimate sample moments, etc.

� For example, say we want to establish the average age of the Canadian population. We might
take a random sample from the cross-section of Canadian population. We can easily ask N
people their age, and as long as the sample is truly random the average of this sample will
converge to the “true” average age of the Canadian population.

� The problem inherent with time-series, however, is how do we draw samples over and over at
any given time t? Well we cannot do this the same way we do in a cross section since time is
always moving forward and we can really only grab one sample at any given time. While there
are ways around this, the easiest way to deal with the problem is just to assume that the series
is stationary. That way, we can sample over and over from each time t = 1, 2, . . . , T and this
entire sample of size T can then be used to estimate the moments of the distribution of Xt.

◦ White noise process

◦ Since we now have a tool at our disposal, the autocorrelation function, to quantify the nature of
repeating patterns in the historical time-series, we can now talk about a particular type of time-series
process which exhibits no patterns what so ever. This is what we call, white noise.

Definition 14. Strict white noise (SWN):
A strict white noise process Xt is mean zero and i.i.d. (that is, independent and identically dis-
tributed).

Definition 15. Weak white noise (WWN):
A weak white noise process Xt is such that:

(i) E[Xt] = 0

(ii) E[(Xt − µ)2] = σ2 = RX(0) <∞
(iii) E[(Xt − µ)(Xt−s − µ)] = RX(s) = 0,∀s ∈ Z

◦ That is, the weak white noise process exhibits an ACF (autocorrelation function) that spikes at s = 0
with a value of 1 and is zero everywhere else.
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◦ Note, that a strict white noise is also a weak white noise, but not necessarily the other way around.

◦ The importance of a white noise should not be underestimated. What a strict white noise process
implies is that the past can tell us nothing about the future. That is, knowing the past values of the
series Xt (if Xt is a SWN) tell us nothing about its future values. Therefore, both the conditional
and unconditional means are the same, E[Xt] = 0.

◦ Moreover, while a WWN may exhibit no autocorrelation, this does not mean the series is unpre-
dictatable. In fact, since we have no idea if Xt (as a WWN) is actually independent (or i.i.d.) it is
possible that the conditional density is not equal to the unconditional, that is f(Xt|Ft−1) 6= f(Xt)
necessarily.3

◦ Interestingly, the name “white noise” comes from engineering and the frequency-domain approach
to time-series analysis. We say that something is “white noise” if it exhibits all of the frequencies of
the spectrum equally.

� That is, in the Fourier series we talked about earlier, all the “weights” aω and bω are the same.

� The analogy comes from white light which includes all colours of the frequency spectrum in
equal proportion.

� If you recall, in the old days a scrambled “greyish” signal would appear on your television if
the TV station went off-line and so we called this “white noise.” Therefore, what we really
meant is that the signal we were seeing on the television was completely random! That is, it
exhibited no inherent patterns (i.e. autocorrelations) over time.

� Conversely then if a signal is not white noise and does exhibit autocorrelations, RX(s), that
are non-zero for some s 6= 0 then we call this “coloured noise.”

◦ The AR(p) and MA(q) models

◦ Before talking about what the ARIMA model is, we first need to consider both the autoregressive
process of order p (the AR(p) model) and the moving average process of order q (the MA(q) model).
These are the standard building blocks of the ARIMA(p,d,q).

Definition 16. The AR(p) model:
A stochastic process Xt follows an autoregressive model of order p (an AR(p) model) if Xt can be
expressed as:

Xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + εt, where εt ∼ N(0, σ2
ε )

◦ So, we are saying that if we assume that the theoretical model for Xt is AR(p), for some lag order
p, the above expression defines the process. That is to say it defines its moments, of which we will
now derive the first two.

3In fact, while the series is not linearly predictable, this does not mean it can’t be predicted by a non-linear function. For
example, the ARCH model, which we will talk about in the next section is WWN, but it can be predicted by a non-linear
function.
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◦ First uncentered moment of AR(p):
Proving the moments of the AR(p) is much easier when we assume that Xt is weakly stationary, so
I will make that assumption below. Of course, stationarity implies that E[Xt] = E[Xs] for all t and
s, so we have:

E[Xt] = E[α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + εt]

= α1E[Xt−1] + α2E[Xt−2] + · · ·+ αpE[Xt−p] + µε

= E[Xt]

p∑
j=1

αj + µε (4a)

⇒ E[Xt] =
µε

1−
∑p

j=1 αj
where µε = 0 (4b)

◦ Notice that we are deriving the unconditional 1st uncentered moment here.

◦ The conditional 1st uncentered moment is given as:

E[Xt|Ft−1] = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p (5)

◦ where Ft−1 is the information set we discussed above, that is Ft−1 = {Xt−1, Xt−2, . . . , X0}. Notice
that in the AR(p), the conditional 1st uncentered moment only depends on information up to Xt−p.

◦ Second centered moment of AR(p):
Again, we assume that Xt is stationary. Instead of going with E[(Xt − E[Xt])

2] I will work with
V ar(·) which avoids having to deal with the square. Since the variance is an integral, it is a linear
operator and passes through linear functions, except we square any constants in front of random
variables.

V ar[Xt] = V ar[α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + εt]

= α2
1V ar[Xt−1] + α2

2V ar[Xt−2] + · · ·+ α2
pV ar[Xt−p]

+ 2

p∑
k=1

p∑
j=k+1

αkαjCovar[Xt−kXt−j] + σ2
ε

= V ar[Xt]

p∑
j=1

α2
j + 2

p∑
k=1

p∑
j=k+1

αkαjE[Xt−kXt−j] + σ2
ε , since E[Xt] = 0 (6a)

⇒ V ar[Xt] =
2
∑p

k=1

∑p
j=k+1 αkαjE[Xt−kXt−j] + σ2

ε

1−
∑p

j=1 α
2
j

(6b)

◦ where the result follows from the fact that V ar[aX+bY ] = a2V ar[X]+b2V ar[Y ]+abCovar[X, Y ].

◦ The above expression gives the unconditional variance of the AR(p) process.

◦ Notice that the 2
∑p

k=1

∑p
j=k+1 αkαjE[Xt−kXt−j] term represents the sum of the autocovariance

functions RX(s), and it is not clear at this point what the autocovariance of the AR(p) is.
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� Needless to say, the unconditional variance, RX(0) of the AR(p) is a complicated expression
to deal with.

◦ However, if we assume instead an AR(1) model, then the unconditional variance is given asRX(0) =
σ2
ε/(1− α2

1).

◦ The conditional 2nd centered moment is given as:

V ar[Xt|Ft−1] = σ2
ε (7)

since all the Xt−1 to Xt−p values are conditioned on and have zero variance.

◦ Therefore, all the conditional variance is generated through the residual εt.

◦ Summary

◦ So to summarize, we have established that the properties of the weakly stationary AR(1) model are
such that:

� the unconditional distribution of the AR(1) isXt ∼ N(µε/(1−α1), σ2
ε/(1−α2

1)) where µε = 0.
� the conditional distribution is Xt|Ft−1 ∼ N(α1Xt−1, σ

2
ε ).

� the distributions are Normal because a linear sum of Normal random variables is also Normal.

I tried to derive the variance of the AR(p) if only to demonstrate how complicated these types of
derivations can become.

Definition 17. The MA(q) model:
A stochastic process Xt follows a moving average model of order q (an MA(q) model), if Xt can be
expressed as:

Xt = β1εt−1 + β2εt−2 + · · ·+ βqεt−q + εt, where εt ∼ N(0, σ2
ε )

◦ So, again we are saying that if we assume that the theoretical model for Xt is MA(q), for some lag
order q, the above expression defines the process. That is to say it defines its moments, of which we
will now derive the first two.

◦ First uncentered moment of MA(q):

E[Xt] = E[β1εt−1 + β2εt−2 + · · ·+ βqεt−q + εt]

= β1E[εt−1] + β2E[εt−2] + · · ·+ βqE[εt−q] + µε

= µε

q∑
j=1

βj + µε (8a)

⇒ E[Xt] = µε(1 +

p∑
j=1

βj) where µε = 0 (8b)
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◦ Notice that we are deriving the unconditional 1st uncentered moment here.

◦ The conditional 1st uncentered moment is given as:

E[Xt|Ft−1] = β1εt−1 + β2εt−2 + · · ·+ βqεt−q (9)

◦ where Ft−1 is still the information set we discussed above, that is Ft−1 = {Xt−1, Xt−2, . . . , X0}.
Again notice that in the MA(q), the conditional 1st uncentered moment only depends on information
up to Xt−q. The reason why we use a set of Xτ ’s as information here is because the Xτ ’s are
functions of the ετ ’s by virtue of the MA(q) DGP. That is, if we know Xt−1 say, then we also know
εt−1, εt−2, up to εt−q.

◦ Second centered moment of MA(q):
Again, instead of working with E[(Xt − E[Xt])

2] I will work with V ar(·) which avoids having to
deal with the square. Note that this time around, however, because the autocovariances Rε(s) are
zero for all values of s 6= 0 (that is, εt is a WWN 4) it is much easier to derive the variance of the
MA(q) than it was to try and derive it for the AR(p).

V ar[Xt] = V ar[β1εt−1 + β2εt−2 + · · ·+ βqεt−q + εt]

= β2
1V ar[εt−1] + β2

2V ar[εt−2] + · · ·+ β2
qV ar[εt−q] + 2

q∑
k=1

q∑
j=k+1

βkβjCovar[εt−kεt−j] + σ2
ε

= σ2
ε

q∑
j=1

β2
j + σ2

ε , since Rε(s) = 0 ∀s 6= 0 (10a)

⇒ V ar[Xt] = σ2
ε (1 +

q∑
j=1

β2
j ) (10b)

◦ The above expression gives the unconditional variance, RX(0), of the MA(q) process.

◦ So, if we assume instead an MA(1) model, then the unconditional variance is given as RX(0) =
σ2
ε (1 + β2

1).

◦ The conditional 2nd centered moment is given as:

V ar[Xt|Ft−1] = σ2
ε (11)

since all the εt−1 to εt−q values are conditioned on and have zero variance.

◦ Therefore, all the conditional variance is generated through the residual εt.

◦ Summary
4In fact, it is also SWN, since if a variable Zt is Normally distributed and uncorrelated, this implies it is independent or i.i.d.
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◦ So to summarize, we have established that the properties of the weakly stationary MA(q) model are
such that:

� the unconditional distribution of the MA(q) is Xt ∼ N(µε(1 +
∑p

j=1 βj), σ
2
ε (1 +

∑p
j=1 β

2
j ))

where µε = 0.

� the conditional distribution is Xt|Ft−1 ∼ N(β1εt−1 + β2εt−2 + · · ·+ βqεt−q, σ
2
ε ).

� the distributions are Normal because a linear sum of Normal random variables is also Normal.

◦ The AR(1) and MA(q) autocorrelation functions

◦ So, to this point we have derived the 1st uncentered moments (the conditional and unconditional
means) and 2nd centered moments (the conditional and unconditional variances) of both the AR(p)
and MA(q) processes (assuming weak stationarity).

◦ We will now derive the autocorrelation functions for both the AR(1) and MA(q) processes. The
reason why I am avoiding the AR(p) case is because as we noticed earlier, the lagged regressors
in the AR(p) are correlated with each other (which isn’t the case in the MA(q)), which makes it is
difficult to work with.

◦ Autocorrelation of the AR(1)

◦ The derivation is as follows, were again we assume that the mean, µε, of εt is zero (and so we have
that the unconditional mean of Xt, E[Xt] = 0). First we have that:

E[XtXt−s] = RX(s) = E[(α1Xt−1)(α1Xt−1−s)] (12)

Moreover, if we take the AR(1) and recursively substitute in each lagged value of Xt−1 over and
over we get:

Xt = α1Xt−1 + εt

= α1(α1Xt−2 + εt−1) + εt

= α2
1Xt−2 + α1εt−1 + εt

= α2
1(α1Xt−3 + εt−2) + α1εt−1 + εt (13a)

And so on, until at the end when we reach X0 = ε0 we get:

Xt = αt1X0 + αt−1
1 εt−(t−1) + · · ·+ α2

1εt−2 + α1εt−1 + εt (14)

So subbing (14) into (12), and shifting forward in time s periods (the autocovariance is independent
of t since we are assuming stationarity) we have:

E[Xt+sXt] (15a)
= E[(αt+s1 X0 + αt−1+s

1 εt−(t−1) + · · ·+ α1εt−1+s + εt+s)(α
t
1X0 + αt−1

1 εt−(t−1) + · · ·+ α1εt−1 + εt)]
(15b)

18



So what we have done here is replaced the values α1Xt−1 and α1Xt−s by the random variables εt.
This makes it easier to take cross products and determine the autocovariance. Therefore, multiplying
(15b) out we get:

E[Xt+sXt] = σ2
ε (α

s
1 + αs+2

1 + αs+4
1 + · · ·+ αs+2t

1 )

= σ2
εα

s
1

1− α2(t+1)
1

1− α2
1

(16a)

Keeping in mind that all the cross product expectations are zero since εt is WWN. It turns out that
assuming that |α1| < 1 is enough to ensure stationarity of the AR(1) process (more on this later).
Moreover, if we let X0 trail off into the infinite past we get:

E[Xt+sXt] = σ2
εα

s
1

1

1− α2
1

(17)

However, we recognize σ2
ε

1
1−α2

1
= RX(0) and so we have that:

ρs =
E[Xt+sXt]

E[XtXt]
=
RX(s)

RX(0)
= αs1 (18)

◦ And so the autocorrelation function of the AR(1) declines geometrically to zero as s → ∞ if
|α1| < 1.

◦ Autocorrelation of the MA(q)

◦ Again, as before we write:

E[Xt+sXt] = E[(β1εt−1+s +β2εt−2+s + · · ·+βqεt−q+s + εt+s)(β1εt−1 +β2εt−2 + · · ·+βqεt−q + εt)]
(19)

So this time we do not need to recursively substitute anything which makes the job simpler. Again,
expectation of cross products are zero and so we have:

E[Xt+sXt] =

{
σ2
ε (βs + βs+1β1 + βs+2β2 + · · ·+ βs+qβq) 0 ≤ s ≤ q

0 s > q
(20a)

So recalling that RX(0) = σ2
ε (1 +

∑q
j=1 β

2
j ) and letting β0 = 1 we have that:

ρs =

{∑q
j=0 βs+jβj/

∑q
j=0 β

2
j 0 ≤ s ≤ q

0 s > q
(21a)

Remember that βs+j where s+ j > q are all zero!

◦ And so it is clear that the ACF of the MA(q) is zero for all |s| > q, since by symmetry we have
that RX(s) = RX(−s). That is for any real process Xt the ACF of both the AR(p) and MA(q) are
symmetric about zero (they are even functions of s).

◦ Lag polynomials
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◦ There is a nicer way to deal with the AR(p) and MA(q) processes which involves something call the
lag operator.

◦ The lag operator is the operator L such that LXt = Xt−1, L−1Xt = Xt+1, and LjXt = Xt−j (and
L−jXt = Xt+j).

◦ Therefore we can write the AR(p) model as:

Xtα(L) = εt (22)

where α(L) = 1− α1L− α2L
2 − · · · − αpLp.

◦ And we can write the MA(q) model as:

Xt = β(L)εt (23)

where β(L) = 1 + β1L+ β2L
2 + · · ·+ βqL

q.

◦ Stationary conditions and the lag polynomials

Definition 18. Any lag polynomial can be factored as:

α(L) = 1− α1L− α2L
2 − · · · − αpLp = (1− λ1L)(1− λ2L)(1− λ3L) . . . (1− λpL) (24)

◦ Example:
Take for example, the MA(3) process with lag polynomial β(L) = 1 + β1L+ β2L

2 + β3L
3.

We have:

β(L) = 1 + β1L+ β2L
2 + β3L

3

= (1− λ1L)(1− λ2L)(1− λ3L)

= (1− (λ1 + λ2)L+ λ1λ2L
2)(1− λ3L)

= 1− (λ1 + λ2 + λ3)L+ ((λ1 + λ2)λ3 + λ1λ2)L2 − λ1λ2λ3L
3 (25a)

So we have that β1 = −(λ1 + λ2 + λ3), β2 = ((λ1 + λ2)λ3 + λ1λ2), and β3 = −λ1λ2λ3.

Definition 19. Discount factor representation of the geometric polynomial series:
Any geometrically declining polynomial can be represented as:

a/(1− λ) =
∑∞

j=0 λ
ja = a(λ0 + λ1 + λ2 + . . . )

where |λ| < 1.

That is, the above definition does not hold if |λ| ≥ 1 since the polynomial will explode (that is, will
approach∞ as the λj terms just get bigger and bigger).
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◦ Notice in the above definition that a is just some constant. If we allow a to be a random variable,
say εt, then we can use this result to determine if the AR(p) or MA(q) processes are stationary.

◦ Note that we can write: εt/(1− λL) =
∑∞

j=0 λ
jLjεt =

∑∞
j=0 λ

jεt−j .

Example: AR(1)

� We have α(L)Xt = (1− α1L)Xt = εt.

� This implies that Xt = εt/(1− α1L) =
∑∞

j=0 α
j
1L

jεt =
∑∞

j=0 α
j
1εt−j .

� It can be shown that if |α1| < 1 then the three conditions for stationarity from Definition 10
all hold. You should try and think about this yourself; recall how we derived the 1st uncen-
tered moment and 2nd centered moments for the AR(1) above (both unconditional moments
of course).

� The actual proof is on pg.539-540 of Heij et. al.

Example: MA(q)

� We have Xt = (1 + β1L+ β2L
2 + · · ·+ βqL

q)εt.

� This implies that Xt = β(L)εt =
∑q

j=0 βjL
jεt =

∑q
j=0 βjεt−j , where β0 = 1.

� It is easy to see that if q < ∞, that is if q is a finite number, then the stationarity conditions
always hold (as long as none of the βj’s are infinite!).

� If q = ∞, that is we have an MA(∞) model, then stationarity depends on if
∑∞

j=0 β
2
j con-

verges.

Example: AR(p)

� Recall that we can always factorize the AR(p) polynomial as:

α(L) = 1− α1L− α2L
2 − · · · − αpLp = (1− λ1L)(1− λ2L)(1− λ3L) . . . (1− λpL)

� This implies that Xt = εt/
∏p

k=1(1− λkL).

� It can be shown, similar to how was done in the AR(1) case, that if any of the λk’s are such
that |λk| ≥ 1 then the three conditions for stationarity are violated.

� If any of the (1− λkL) = 0 so that
∏p

k=1(1− λkL) = 0, and we have that |λk| < 1, we must
also have that L = |1/λk| > 1. 5 This is sometimes called the “root” of the lag polynomial,
1/λk, being “outside the unit circle.” (We reserve the unit circle terminology for the case where
the roots are complex variables).

� That is, the roots of the lag polynomial being outside the unit circle imply that all the λk’s are
less than one in absolute value.

� See the Heij et.al. textbook Chapter 7, pg.539, for more details.

5Well L is really an operator so it can’t take on a value 1/λk but we can treat it as a real valued variable for the sake of
determining the properties of the lag polynomial.
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◦ Invertibility condition

◦ You may have noticed something interesting when we represented the geometrically declining poly-
nomial in its discounted series representation.

◦ Consider the AR(1) model Xtα(L) = Xt(1− α1L) = εt.

� If |α1| < 1 we have Xt = εt/(1− α1L) =
∑∞

j=0 α
j
1εt−j .

� But by “inverting” the lag polynomial α(L) we have effectively created an MA(∞) from the
AR(1)!

� That is, we say that if |α1| < 1 then the AR(1) model is invertible into an MA(∞).

� Likewise, given a similar condition on β1 we have that the MA(1) is invertible into an AR(∞).

◦ Therefore, given our discussion above, the AR(1) models that are invertible are also stationary,
however, stationary MA(q) models are not necessarily invertible! Confusing!

◦ The real importance of invertibility though is that it allows us to represent an MA(q) model as an
AR(p) for forecasting purposes. That is, it is usually easier to forecast an AR(p) than an MA(q).
More on this later.

◦ ARIMA models

◦ Finally! We have reached our goal. Despite the hype the ARIMA model is not so much different
than the AR(p) or MA(q) models. In fact, it is simply a combination of the two.

◦ However, first we need to quickly discuss what an integrated process is.

Definition 20. Integrated process of order ’d’:
An integrated process, Xt, of order ’d’, is a process that must be differenced d times to be made
stationary. We call these processes I(d) processes.

Definition 21. Random walk:

A random walk Zt is a process such that Zt =
t∑

j=0

εt where the εt’s are i.i.d.

Corollary 6. Random walk is an integrated process:
A random walk is an I(1) process since its first differences, ∆Zt = εt are stationary.

◦ And with those definitions at our disposal we can now define both the regular ARMA(p,q) and its
generalization the ARIMA(p,d,q).

Definition 22. ARMA(p,q) model:
An autoregressive, moving average model of orders p and q (an ARMA(p,q) model) is such that:

α(L)Xt = β(L)εt
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where εt ∼ N(0, σ2
ε ), and α(L) is an AR(p) lag polynomial and β(L) is an MA(q) lag polynomial.

◦ Notice that if α(L) is invertible, then we have that Xt = β(L)
α(L)

εt and so the ARMA(p,q) is invertible
into an MA(l) model (we don’t know the value of l yet!) and the same can be said if β(L) is
invertible, we can derive an AR(m) model.

◦ Therefore, all the analysis we used above to determine the moments of the AR(p) and MA(q) mod-
els can be reused here since we just replace the original lag polynomial with the new ratio of lag
polynomials.

◦ Of course, we must solve for the values of the parameters in the new ratio lag polynomial and this
is not always an easy task!

Example: ARMA(1,1)

� Say we have Xt(1− α1L) = εt(1 + β1L).

� This implies that if |α1| < 1 then we have Xt =
β(L)

α(L)
εt =

(1 + β1L)

(1− α1L)
εt.

� Therefore, we have: Xt =
∞∑
j=0

αj1L
j(εt + β1εt−1) =

∞∑
j=0

γjεt−j , where we can solve for the

values of the γj parameters.

� So the ARMA(1,1) can be rewritten as an MA(∞). (Likewise, if β(L) is invertible we can
rewrite the ARMA(1,1) as an AR(∞)).

� Therefore we have the important fact that while the ARMA(1,1) only involves two parameters,
α1 and β1, it “replicates” the behaviour of either an MA(∞) or an AR(∞). Therefore, it
achieves what would have otherwise required an infinite amount of parameters for the price of
only two!

Definition 23. ARIMA(p,d,q) model:
An autoregressive, moving average model of orders p and q, applied to the dth order integrated
process (an ARIMA(p,d,q) model) is such that:

α(L)∆dXt = β(L)εt

where εt ∼ N(0, σ2
ε ), and α(L) is an AR(p) lag polynomial and β(L) is an MA(q) lag polynomial.

◦ So the ARIMA(p,d,q) is just an ARMA(p,q) applied to a seriesXt that has been differenced d times.

Example: Random walk

◦ The random walk must be differenced once for it to be stationary. Therefore, the random walk has
the ARIMA(0,1,0) form:

α(L)∆Zt = β(L)εt
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where α(L) = β(L) = 1.

◦ Model forecasts:

◦ So now that we understand the AR(p), MA(q), and ARIMA(p,d,q) models, we might ask how we
can use them to forecast a time series? That is, how might we use them to derive a “best guest” as
to the future path of the time-series given what we know about the past.

◦ In order to judge the performance of forecasts, we need metric. Usually the metric chosen is the
Minimum Mean Squared Error or MMSE.

Definition 24. The Mean Squared Error:
The MSE is defined as:

E[(Xt − X̂t)
2]

where X̂t is the forecasted value of Xt and we call Xt − X̂t the forecast error.

� It turns out that the MSE is really the variance of the forecast error.

� So we want a forecast that minimizes the MSE, which is equivalent to minimizing the variance
of the forecast error.

� Remember, Xt is still a random variable! Moreover, so is X̂t since our forecasts will be
conditioned on time t−1 information, Ft−1 (that is, we get a different forecast for any different
past outcome).

� So what we really want to do is minimize the squared forecast error on average.

◦ It turns out that in general, the forecast that minimizes the MSE is the conditional 1st uncentered
moment, the conditional expectation (or conditional mean).

◦ That is, we choose our forecast to be X̂t = E[Xt|Ft−1] = Et−1[Xt].

◦ Example: AR(1)

◦ Suppose we wish to forecast the AR(1) model at time T , which is the last period in our sample of
the past values FT = {xT , xT−1, . . . , x0}.

◦ The MMSE forecast at time T + 1 is therefore X̂T+1 = ET [XT+1] = ET [α1XT + εT ] = α1xT .

◦ The MMSE forecast at time T + 2 is therefore X̂T+2 = ET [XT+2] = ET [α1XT+1 + εT+1] =
α1X̂T+1 = α2

1xT .

� Recall from pg.8 above that ET [ET+1[XT+2]] = ET [XT+2].

◦ And we can repeat this for any time period T + τ all the way until τ →∞.

◦ It should become clear that we have for any period T + τ , X̂T+τ = ET [XT+τ ] = ατ1xT .

24



◦ Therefore, we have that if the AR(1) process is stationary (that is, if |α1| < 1), then the forecast
will converge to E[Xt] = 0 as τ → ∞. That is, for any stationary AR(1) model, the forecast (i.e.
the expectation conditioned on time T information) will converge to the unconditional mean of the
process, which in this case is 0.

◦ That is, as we forecast further and further out, the information we condition on at time T , FT ,
becomes less and less informative, until eventually all we can say is that the best guess is the uncon-
ditional mean, E[Xt] = 0.

◦ It turns out this is a general result for all stationary AR(p), MA(q), and ARIMA(p,d,q) models.

◦ The AR(1) forecast error:

◦ Notice that we have that XT+1 − ˆXT+1 = XT+1 − ET [XT+1] = XT+1 − α1XT = εT+1.

◦ So it turns out the forecast error at time T + 1 is just εT+1.

◦ At time T+2 we have that,XT+2− ˆXT+2 = XT+2−ET [XT+2] = XT+2−α1X̂T+1 = εT+2+α1εT+1.

◦ And so the forecast error at time T + 2 is εT+2 + α1εT+1.

◦ Therefore, repeating this process, we find that for any τ we have that the forecast errorXT+τ− ˆXT+τ

is:

XT+τ − ˆXT+τ =
τ−1∑
j=0

αj1εT+τ−j

◦ Comments:

◦ See pg.81-89 of Enders book for more details and an example of the forecast functions for the
ARMA(2,1).

◦ In general, the forecast functions of the AR(p), and ARMA(p,q) are more complicated than the
AR(1).

◦ Notice that the variance of the AR(1) forecast error is increasing in the horizon τ . This is a general
result that applies to MA(q) and ARMA(p,q) models as well.

� That is, as we forecast further out, the uncertainty in the accuracy of our forecasts increases.

◦ Given an MA(q) model, we require knowledge of the innovations, or εt’s in order to directly forecast.
For example the one-step ahead forecast of the MA(q) is just the conditional mean (conditioned on
time T information):

X̂T+1 = β1εT + β2εT−1 + · · ·+ βqεT−(q−1)

Therefore, if we do not know the innovations, and the MA(q) lag polynomial is invertible, it is
often easier to simply transform the MA(q) into an AR(∞) and then cut off the lags at some large
value, say z, and then forecast from the AR(z) instead since we have the values of the series xτ , for
τ = T, T − 1, . . . on hand directly.
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◦ In practical cases, you do not need to derive the forecast functions or forecast errors directly
since software does this for you. For example, in R, there are functions that estimate the ARIMA(p,d,q)
model, provide the residuals (innnovations εt), and also forecast the model.

◦ Some good R libraries you should download include: stats, tseries, and moments.

◦ The Box-Jenkins approach:

◦ Box and Jenkins were the ones who popularized the use of the ARIMA(p,d,q) models back in the
1970’s. At that time they suggested a very simplistic approach to modeling time-series that follows
a three step procedure:

1. First, the researcher should examine the time plot of the series both visually and using diag-
nostic tools such as the SACF (sample autocorrelation function) to try and identify the DGP of
the model.

2. Second, the researcher should estimate the parameters of the chosen model.

3. Third, the researcher should use some form of diagnostic checking to determine how “well”
the model both fits the data and forecasts out of sample.

◦ You should read the sections on the Box-Jenkins methodology in both Enders (Ch.2.8) and in Heij
(Ch.7.2) for a more in depth discussion.

◦ Identification stage:

◦ Some important things to check during the identification stage are as follows:

� Graph the time-series. Does it look stationary? What do the first-differences of the series look
like? Does it look like there are any upward or downward trends that should be removed first?

� Would some transformation of the time-series possibly make it stationary? E.g. taking logs?

� Estimate the time-series moments over time: are they fixed?

� Are there any outlier observations that may suggest an error in the data series?

� Plot out the SACF or SPACF and try to determine what a reasonable ARIMA(p,d,q) specifica-
tion may be based on their shapes.

◦ Assuming the model is stationary, the sample autocorrelation (SACF) can tell you a lot about which
model to use.

◦ Determining lag length with the SACF and PSACF functions:

◦ Recall that we dicussed earlier the differences between the ACF and PACF functions. The PACF
function is just the ACF where we have removed the effect of correlation between the variables Xt

and Xt−s.

◦ Consider the MA(q) model. Since the explanatory variables εt−1, εt−2, . . . , εq are uncorrelated, there
is no need to remove any correlation effect between them. Therefore, it is appropriate to look at
their sample ACF (SACF).
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◦ Below I have plotted examples of the SACF’s and SPACF’s of various series: for example, we have
the SACF of a MA(3), the SPACF of an AR(2), and the SACF of the AR(2).

Figure 7: SACF of MA(3)
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Figure 8: SPACF of AR(2)

Figure 9: SACF of AR(2)

◦ Notice the odd feature of the R ACF function: It includes the lag value s = 0. However, the PACF
starts at s = 1. Don’t get mixed up!
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◦ Also notice that the dotted blue lines are calculated automatically. They represent the region of
statistical significance. Any vertical bars “outside” this region are statistically significant (that is,
they most likely aren’t due to randomness).

◦ Notice that for the MA(3) model the number of significant lags according to the SACF is 3. This is
expected since the autocorrelation function of the MA(3) is 0 for all s > q. Recall our discussion
above when we derived its expression.

◦ However, why did I use the SPACF for the AR(2) model? Well as we know from our discussion
above on the autocorrelation function of the AR(1) model, the autocorrelation function dies off
slowly. That is, the ACF of an AR(1) is ρs = αs1. It turns out the same type of shape applies to the
AR(2) model as well.

◦ This suggests that there exist autocorrelation between the values of the regressors in the AR(p)
model (i.e. Xt−1, Xt−2, . . . , Xt−p). Since this is the case, it makes more sense to use the SPACF to
determine lag length, since it accounts for this inter-value correlation.

◦ Therefore, when we apply the SPACF analysis to the AR(2) simulated data, we see that it suggests
a lag length of 2 which is correct.

◦ Note, however, that since an ARMA(p,q) model is a mix of AR(p) and MA(q) models, SACF and
SPACF analysis becomes more difficult.

◦ You should refer to pg.548-549 in Heij et. al. for more details.

◦ Trends (side topic):

� The question of whether or not a trend exists and of what kind is complex. Generally we divide
trends into two types: deterministic trends and stochastic trends.

� Generally, if a trend exists then the DGP is non-stationary and direct application of ARIMA
models can have misleading results since their theory assumes the series is stationary.

� A deterministic trend in an AR(1), for example, can be represented as some function of time:
Xt = γt+α1Xt−1 + εt. These types of trends can be removed by fitting Xt = βt+ut by OLS
and then using the residuals as the new time-series in the AR(1).

� An example of a stochastic trend is the unit root process: Xt = Xt−1 + εt (that is, an AR(1)
with α1 = 1). You may recognize this as the random walk we talked about earlier (hint:
recursively substitute back to ε0). Again, if we first difference the I(1) random walk, then we
get a stationary I(0) process.

� We must be very careful in choosing which trend type to use! Statistical tests have been
developed to try and determine if a trend is deterministic or stochastic, for example the Dickey-
Fuller unit root test.

� However, keep in mind that trends themselves are only one type of non-stationarity, and other
types exist (an obvious example is the explosive AR(1) with |α1| > 1). Another type of non-
stationarity occurs if we assume that the parameters of our model depend themselves on time–
for example, if we allow α1(t) in our AR(1).

� We won’t deal much with trends in this course because the topic is quite vast. However,
interested students are welcome to read section 7.3 in Heij et. al. for more details.
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◦ The estimation stage:

◦ We won’t talk too much about the estimation stage in this class. For the most part the R routines
will handle this for you. However, you should know some basic facts.

◦ Consider the AR(p) model:

� Xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + εt where again, εt ∼ N(0, σ2
ε ).

� As we discussed, if this model is stationary, it is invertible into an MA(∞).

� Therefore, from the MA(∞) representation, we can clearly see that the regressors of the AR(p)
model,Xt−1, Xt−2, . . . , Xt−p, are uncorrelated with the residual, εt (sinceXt−1, Xt−2, . . . , Xt−p
are themselves functions of εt−1, εt−2, . . . ).

� We therefore say that the model satisfies the orthogonality condition and the AR(p) model can
be estimated by OLS.

◦ However, now consider the MA(1) model:

� Xt = εt + β1εt−1

� If |β1| < 1 then the model is invertible into an AR(∞).

� However, the expression for the inverted model, the AR(∞) looks like this:

Xt = εt + β1Xt−1 − β2
1Xt−2 + β3

1Xt−3 − . . .

(Try recursive substitution or see pg.543 in Heij et. al.)

� But this model is a non-linear regression model and standard OLS cannot be applied. There-
fore, a non-linear estimation method must be applied such as non-linear least squares (NLS)
or maximum likelihood estimation (MLE).

� This point will prove important later, when we talk about the difference between the ARCH
and GARCH models.

◦ Since the ARMA(p,q) includes an MA(q) lag polynomial in its construction, the same non-linear
estimation requirement applies to it as well.

◦ The diagnostic stage:

◦ The final stage in the Box-Jenkins methodology is the diagnostic stage.

◦ Once we have chosen a model (either an AR(p), MA(q), or ARMA(p,q)) in the identification stage,
and have estimated it, we should then use some diagnostic tools to determine how well the model
both “fits” the data and forecasts the future.

◦ In fact we should really try a number of different models and compare them according to the diag-
nostic tools.

◦ There exist a number of different diagnostic tools. Two of the most important include:

1. model information criteria such as the AIC and SIC.

2. tests of the model’s residuals such as the Box-Pierce or Ljung-Box tests.
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◦ The information criteria of Akaike and Schwarz: the AIC and SIC

◦ One way to determine how “well” a given model fits the data is to calculate an information criterion.

◦ These information criteria consider the tradeoff between how well the model fits versus how many
parameters we include. Generally a model that fits well with less parameters is preferred.

◦ The AIC criteria (or Akaike Information Criterion) is given as:

AIC(k) = ln s2
k +

2k

T

where:

◦ k is the number of parameters (that is k = p + q in an ARMA type model; note that information
criteria can be used with many different parametric models!)

◦ s2
k is the maximum likelihood (MLE) estimate of the variance of the innovation, that is σ̂2

ε .

◦ Finally, T is the sample size of our time-series.

◦ The SIC criteria (or Schwarz Information Criteria) is given as:

SIC(k) = ln s2
k +

k lnT

T

◦ The SIC is sometimes also called the BIC or Bayes Information Criterion.

◦ Therefore, the lower is the information criterion the better!

◦ Note that R has built in functions that calculate the AIC and SIC.

◦ The Box-Pierce and Ljung-Box tests

◦ Another way to test the chosen models “fit” of the data is to consider the fact that if the model fits
correctly it should “explain” most of the variation in the data.

◦ If a model explains all the variation in the data then the residuals of the model, the εt’s, should be
white noise.

� That is, they should be completely random with no autocorrelation.

� The reason being of course that if the model explains all the “hidden patterns” in the data, then
the residuals should just represent the small random component that is unexplainable.

� Therefore, if there is autocorrelation in the residuals then the model is missing something.

◦ Recall that the sample ACF function is given as:

ρ̂s =

∑T
t=s+1 εtεt−s∑T

t=1 ε
2
t
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since ε̄t = 0.

◦ One way to test autocorrelation of the residuals is to use the SACF. If the residuals of the model are
truly white noise then the SACF should should suggest that ρ0 = 1 and ρs = 0 for all s 6= 0.

◦ Another way to test the white noise condition is to test if the sample autocorrelations, ρ̂s, are all zero
jointly. That is, to test if they are all zero for s 6= 0 simultaneously.

◦ Two tests that do this are called the Box-Pierce and Ljung-Box test. They are both very similar and
rely on the fact that the sum of the squared sample autocorrelations is distributed Chi-square.

◦ The Box-Pierce test statistic is given as:

BP (S) = T

S∑
s=1

ρ̂2
s

where BP (S) ∼ χ2(S) under the null hypothesis of white noise.

◦ Therefore, we reject white noise if the BP (S) statistic is sufficiently large.

◦ Of course, we would like to test a large value of S, since this implies that the autocorrelations are
jointly zero across more lags, but it is not reasonable to choose S too large in practical situations.

◦ The Ljung-Box test statistic is given as:

LB(S) = T
S∑
s=1

T + 2

T − s
ρ̂2
s

◦ And so the Ljung-Box test is just the Box-Pierce test but where the sample autocorrelations are
weighted slightly differently, according to their lag values. That is, lags “further out” get more
weight (since they are by construction estimated given a smaller sample pool).

◦ Finally, note that we must have that S < T or else we cannot estimate.

◦ Part 2: ARCH models

◦ Some mathematical tools:

◦ Before we continue with the next section we need to briefly discuss some required math tools.

◦ Firstly we need a good definition of what exactly a financial “return” is.

Definition 25. One-period simple return:
We say that if an asset is held for one period from time t− 1 then the simple gross return is defined
as:
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1 +Rt = Pt/Pt−1

where Pt is the price of the asset at time t.

Similarly, we also say that the simple net return is defined as:

Rt = (Pt − Pt−1)/Pt−1

Definition 26. Multi-period simple return:
We say that if an asset is held for k periods between dates t−k and t, then the k-period simple gross
return is defined as:

1 +Rt(k) = Pt/Pt−k =
Pt
Pt−1

Pt−1

Pt−2

. . .
Pt−(k−1)

Pt−k

=
k−1∏
j=0

(1 +Rt−j)

Similarly, we also say that the k-period simple net return is defined as:

Rt(k) = (Pt − Pt−k)/Pt−k

Definition 27. Continuously compounded return:
The natural logarithm of the simple gross return of an asset is called the continuously compounded
return, or log return:

rt = ln (1 +Rt) = ln

(
Pt
Pt−1

)
= pt − pt−1

where lnPt = pt.

Similarly, we also say that the k-period continuously compounded return is defined as:

rt(k) = ln (1 +Rt(k)) = ln
k−1∏
j=0

(1 +Rt−j) =
k−1∑
j=0

rt−j = pt − pt−k

◦ Therefore, dealing with continuously compounded returns is often much easier since the distribution
of a sum of random variables is usually simpler to deal with than the distribution of their product.

◦ The next tool that may be useful is called the change of variables theorem. It allows us to talk about
the distribution of some function of Xt, say Yt = f(Xt), in terms of the distribution of Xt.

Definition 28. Change of variables:
Let Xt be a continuous random variable with probability density function fX(Xt) defined over the
support c1 < xt < c2. Moreover, let Yt = u(Xt) be an invertible function of Xt with an inverse
function Xt = u−1(Yt). Then we have that the probability density function of Yt is:
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fY (Yt) = fX(u−1(Yt))|
du−1(Yt)

dYt
|

defined over the support u(c1) < yt < u(c2).

◦ Note that the term on the RHS is the absolute value of the derivative of Xt with respect to Yt but
written in terms of Yt.

Example:

◦ As an example, consider the bijective mapping Y = X2 over the domain 0 < x < 1 (we drop the
time subscript for convenience). A bijective mapping means it is one-to-one and so it has an inverse.

◦ In this case the inverse function is
√
Y = X .

◦ Furthermore, suppose that X has p.d.f. fX(X) = 3X2.

◦ Taking the derivative dX/dY we have 1
2
Y −1/2.

◦ Therefore using change of variables we have that fY (Y ) = 3
√
Y

2 1
2
Y −1/2 = 3

2
Y 1/2.

◦ Note that if the mapping is not invertible (i.e. not one to one) more care has to be taken.

◦ Finally, the last tool is useful to know since it is widely encountered in finance. It is known as the
t-distribution and defines the probability density function of a random variable with tails that are
leptokurtic (that is, they are “fatter” than the Normal distribution).

Definition 29. Standard t-distribution:
We say that a random variable Xt has the standard t-distribution if its probability density function
is defined as:

fX(Xt) =
1√
vπ

Γ
(
v+1

2

)
Γ
(
v
2

) (1 +
X2
t

v

)− v+1
2

where Γ(v) =
∫∞

0
tv−1e−tdt = (v − 1)! is the Gamma function and v > 0 is the degrees of freedom

parameter (real valued).

The distribution has:

� mean and median of 0 if v > 1, and the mean is undefined if v = 1.

� variance of v/(v − 2) for v > 2,∞ for 1 < v ≤ 2, and is undefined otherwise.

� skewness of 0 for v > 3, and is undefined otherwise.

� excess kurtosis of 6/(v − 4) for v > 4, and∞ for 2 < v ≤ 4, and is undefined otherwise.

◦ Note that for v = 1 the t-distribution is the same as the Cauchy distribution which has “infinitely”
fat tails. Moreover, as v →∞ the t-distribution converges on the Normal distribution.
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Figure 10: “fat” tails

◦ So the closer is v to 1, the “fatter” the tails of the t-distribution. Fat tails mean that extremely large
positive and negative values, while still rare, are drawn much more often than would be the case
with the Normal distribution. See figure 10 above.

◦ In finance, the t-distribution is popular since it has been found that empirically, financial asset returns
(e.g. stock price returns) have fatter tails than Normal. That is, extremely large positive or negative
returns occur more often than under the Normal distribution (one-day stock market crashes, etc).

◦ Stylized features of financial time-series

◦ Since the early 1960’s, a great deal of work has occurred in the field of empirical finance. Much of
this work has been devoted to describing general characteristics observed in the data for financial
asset returns. When a feature of the data is observed regularly and suggests a general pattern or
behaviour, we call these features stylized facts.6

◦ What follows is a non-exhaustive list of the most common stylized facts observed in financial time
series. Note that in the finance literature we often refer to the variance of returns as their volatility
(although some authors use volatility to refer to the standard deviation of returns, we will apply it to
the variance).

1. The distribution of returns are leptokurtic (i.e. have fat tails). This implies that extreme,
rare, events are more common than in the Normal distribution. This fact applies typically to
the unconditional distribution of returns, although there is evidence it may also apply to the
conditional distribution as well.

6One way of putting this is that we say that stylized facts are observed in the data in most cases or on average, although of
course we might occasionally observe inconsistencies.
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2. Asset returns are essentially random. That is they are white noise. Therefore, a reasonable
model for the price level of an asset return is a random walk.

3. Returns are characterized by “bursts” of volatility. That is, volatility tends to “cluster” together
over time. This is really the same as saying that the volatility process tends to follow an
autocorrelated pattern and is not white noise. (We’ll talk about what a volatility process is
below).

� Moreover, these volatility autocorrelations tend to die off very slowly. We say that the
volatility has long memory.
� Returns are less volatility in bull markets and more volatile in bear markets.
� Trading volumes have memory the same way volatility does.

4. Past returns are negatively correlated with future volatility. This is sometimes called the lever-
age effect.

5. There are also other stylized features that describe the correlation between returns in multivari-
ate models.

◦ So these are probably the most common stylized features of financial time-series returns you will
often encounter. In fact, the reason I bring them up is not only for their own sake but because it was
Robert Engle in 1982 that derived a model for financial time-series that essentially captured the first
three features in a very original and intuitive way.

◦ Engle called this model the ARCH(p) model which stands for “Autoregressive conditionally het-
eroskedasticity,” which is just a fancy way of saying that the model captures the fact that the 2nd
centered moment (i.e. the variance) is changing conditionally across time.

◦ Comments:

◦ However, before I reveal the ARCH(p) model, I’d like to make a few comments about the stylized
features presented above.

◦ What follows is a plot of the IBM stock adjusted closing price (in natural logarithms) between 1962
and 2013 (figure 11).

36



Figure 11: IBM stock, adjusted daily closing price in logs, 1962-2013

◦ And in figure 12 I have plotted the continuous compounded returns.

Figure 12: IBM continuously compounded returns, approximately last 3000 values of series
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◦ Notice the “volatility clustering” in the returns series (figure 12). This suggests that the conditional
volatility is changing across time.

◦ Moreover, if I was to take a histogram, say of the entire return series, it would suggest a shape with
“fatter” tails than the Normal distribution. This suggests the unconditional distribution of returns
is leptokurtic.

◦ Now let us focus on the ACF of the continuous compounded returns series (figure 13).

Figure 13: ACF of entire IBM returns series, approximately 13000 values

◦ Notice that it suggests it is white noise.

� This suggests some validity to the EMH (or Efficient Markets Hypothesis) which is popular
in Financial Economics. While we won’t spend a lot of time on the EMH in this class, basi-
cally what it says is that since all traders incorporate all available information about prices into
arbitrage opportunities, there should be very little if any information available left over to pre-
dict said prices. This suggests that prices are “informationally efficient” and should therefore
follow a random walk (i.e. movements in prices should be completely unpredictable!).

◦ However, if we square the returns series (figure 14) and take the ACF again we get a completely
different result!

38



Figure 14: ACF of entire IBM squared-returns series, approximately 13000 values

◦ We cannot discount the importance of this result.

◦ What it is telling us is that even though the prices themselves (i.e. returns) are completely unpre-
dictable, the volatility (i.e variance) of these prices is predictable.

� This has huge consequences for the pricing of anything whose price depends directly on the
risk of an underlying asset (e.g. derivative products such as options).

◦ So let’s take these two facts together (a) the unpredictability of returns and (b) the predictability of
volatility and try and construct a reasonable model.

1. First, if returns are unpredictable, we should have that the conditional mean of returns is equal
to the unconditional mean of returns (i.e. the past tells us nothing) and we will assume that
returns have a mean of zero. That is, we should have the following levels equation for our
DGP:

rt = εt where εt ∼ WWN(0, σ2
ε ), so that Et−1[rt] = 0

where rt is our continuously compounded return.

2. But let’s also change the model above slightly so that the volatility σ2
ε depends, in some pre-

dictable fashion, on time. First let us rewrite the model so we can emphasize how σ2
ε now

depends on time:
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rt = σε,tzt = εt where zt ∼ i.i.d.(0, 1)

Now, let us impose an AR(p) model not on the levels process, rt, but on the 2nd conditional
centered moment, σ2

ε,t.
7 That is, let:

r2
t = σ2

ε,tz
2
t = (α0 + α1r

2
t−1 + α2r

2
t−2 + · · ·+ αpr

2
t−p)z

2
t

(Notice that I have included a constant term in the AR(p) formulation. This is important and
the reason will be given later).
The above expression implies that we also have:

σ2
ε,t = Et−1[(rt − Et−1[rt])

2] = Et−1[r2
t ] = α0 + α1r

2
t−1 + α2r

2
t−2 + · · ·+ αpr

2
t−p

Since Et−1[z2
t ] = 1. Equivalently we have:

r2
t = α0 + α1r

2
t−1 + α2r

2
t−2 + · · ·+ αpr

2
t−p + ut

where ut ∼ WWN(0, σ2
u), and ut = r2

t − σ2
ε,t.

And so the squared returns follow an AR(p) process! That is, we have found a perfectly suitable
model to capture the autocorrelation exhibited in the squared returns, r2

t , even though returns
themselves, rt, are unpredictable.

◦ Notice what the above suggests.

� Returns cannot be a strong white noise since clearly f(rt|Ft−1) 6= f(rt); that is, the uncondi-
tional distribution of returns is not equal to the conditional. Returns do in some way depend
on the past, just not through the first moment of the distribution.

� However, returns clearly are a weak white noise.

� Moreover, the returns process is stationary, since the unconditional mean and variance are
constant and finite (we’ll show this next) and the autocovariance function only depends on the
lag s.

� Finally the model is now non-linear in the “basic” stochastic component, zt. That is, if we were
to substitute back in time recursively given rt = σε,tzt =

√
α0 + α1r2

t−1 + · · ·+ αpr2
t−pzt, we

would have a highly non-linear function of zt.

◦ So, given this broad discussion you may now be wondering what the point of it was. Well, it turns
out what we have actually done is derive the ARCH(p) model!

◦ The ARCH(p) model

Definition 30. The ARCH(p) model:
The autoregressive conditionally heteroskedastic model of order p, (the ARCH(p) model) is given as
follows:

rt = σtzt, where zt ∼ N(0, 1) (26a)
Et−1[r2

t ] = σ2
t = α0 + α1r

2
t−1 + α2r

2
t−2 + · · ·+ αpr

2
t−p (26b)

7Which in this case is really the 2nd uncentered moment since the conditional mean is zero.
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Or sometimes it is put another, equivalent, way:

rt = εt, where εt|Ft−1 ∼ N(0, σ2
ε,t) (27a)

and σ2
ε,t = α0 + α1r

2
t−1 + α2r

2
t−2 + · · ·+ αpr

2
t−p (27b)

with information set Ft−1 = {r2
t−1, r

2
t−2, . . . }

where in both cases α0 > 0.

◦ However, it is very important to note that, more generally, equations (26b) and (27b) are really
describing the conditional moments of the squared innovations of the returns level process, not
necessarily the squared-returns process, r2

t , itself, although we have used that example up until now
since we assumed the conditional mean of returns is zero.

� Take for example the model rt = µ+εt = µ+σtzt, where we have included the constant µ in the
returns levels process. Of course, since zt is i.i.d, µ is both the conditional and unconditional
mean of rt.

� The corresponding ARCH(p) conditional variance equation is now:

Et−1[(rt − µ)2] = Et−1[ε2t ] = σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + · · ·+ αpε

2
t−p

◦ The 1st and 2nd moments of the ARCH(1) model

◦ First, recall from above that the squared returns in an ARCH(1) model can be written as:

r2
t = α0 + α1r

2
t−1 + ut

where ut ∼ WWN(0, σ2
u), and ut = r2

t − σ2
ε,t.

◦ Therefore, as per our discussion of the AR(1) model, if |α1| < 1 then the squared-returns process is
stationary.

◦ That is, we have that:

� E[r2
t ] = α0/(1 − α1) < ∞. That is, the unconditional mean of the squared-returns process

exists and is finite.

∗ But notice that the unconditional mean of the squared-returns process is really just the
unconditional variance of the returns process (since the unconditional mean of the returns
process is zero).
∗ This is why we included a constant term α0 > 0; we don’t want the unconditional variance

to be equal to zero!

◦ Therefore, we can show that if |α1| < 1 then the ARCH(1) model for rt is both weak stationary and
a weak white noise.

◦ That is,

� The unconditional 1st uncentered moment (the mean) is:
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E[rt] = 0 <∞, since Et−1[rt] = Et−1[σtzt] = σtEt−1[zt] = 0,∀t

That is the unconditional mean is fixed at zero, since the conditional mean is zero for all values
of t.

� The unconditional 2nd centered moment (the variance) is E[r2
t ] = α0/(1 − α1) < ∞ as per

above.

� The autocovariance function is:

Rr(s) =

{
α0/(1− α1) s = 0

0 s 6= 0
since E[(σtzt)(σt−szt−s)] = 0 for all s 6= 0,

since the zt’s are i.i.d.

◦ The 4th moment of the ARCH(1) model:

◦ So, so far we have shown that the ARCH(1) model satisfies the second and third stylized features of
financial asset returns discussed above.

◦ That is the ARCH(1) model implies that:

� The returns proces rt is a weak white noise and this implies that the price process is I(1)
integrated (i.e. random walk).

� The conditional volatility formulation captures the “volatility clustering” effects. That is, it
captures the autocorrelated nature of the squared-returns process r2

t .

◦ Both of these results can also be shown to hold for the ARCH(p) model as well.

◦ However, we have so far said nothing about the first stylized feature, or that of the “fat tailed” nature
of financial asset return distributions.

◦ Well as I mentioned earlier, the ARCH(p) model solves this problem as well since even though the
conditional distribution of returns is Normal, the unconditional distribution of returns is fat tailed.

◦ Let’s show this, first by demonstrating that the conditional distribution of returns is Normal, which
is straightforward:

� From equation (34a) we have rt = σε,tzt where zt ∼ N(0, 1). Therefore, this implies that
rt|Ft−1 ∼ N(0, σ2

ε,t) which proves the result. Note that this is a direct application of the
change of variables formula.

◦ However, showing that the unconditional distribution of returns is not Normal is somewhat more
complicated. Basically it relies on showing that the 4th centered unconditional moment (i.e. the
Kurtosis) of rt under the ARCH(p) model is greater than 3 (or in other words, the excess kurtosis is
strictly positive).

◦ The proof for the ARCH(1) case is as follows. Do not worry if you don’t immediately understand
all of it; other than the co-integration material, this is probably the most difficult proof you will see
in this course. However, it is worthwhile to understand where the result is coming from.
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◦ The proof involves two “tricks.” The first one uses the fact that the conditional distribution of returns
is Normal. Therefore, we have that:

Kt−1 =
Et−1[(rt − Et−1[rt])

4]

Et−1[(rt − Et−1[rt])2]2
=

Et−1[r4
t ]

Et−1[r2
t ]

2
= 3 (28a)

⇒ Et−1[r4
t ] = 3Et−1[r2

t ]
2 = 3(α0 + α1r

2
t−1)2 (28b)

where Kt−1 is the conditional Kurtosis, conditioned on time t − 1 information. Since Normal
distributions have Kurtosis of 3, the result follows.

◦ The second trick is to use the law of iterated expectations, definition 8:

E[r4
t ] = E[Et−1[r4

t ]] = 3E[α0 + α1r
2
t−1]2 = 3E[α2

0 + 2α0α1r
2
t−1 + α2

1r
4
t−1] (29a)

◦ Now, let µ4,t be the 4th uncentered moment at time t. We have that:

µ4,t = 3(α2
0 + 2α0α1E[r2

t−1] + α2
1µ4,t−1) (30a)

◦ This is just a first-order difference equation in µ4,t. We know that E[r2
t−1] = α0/(1−α1), and so we

just treat it as a constant:

(1− 3α2
1L)µ4,t = µ4,t − 3α2

1µ4,t−1 = 3(α2
0 + 2α0α1 (α0/(1− α1))) (31a)

Which suggests that a stationary solution for the 4th moment exists if |3α2
1| < 1 which implies that

|α2
1| < 1/3. That is, as |α2

1| → 1/3 the Kurtosis of the ARCH(1) model goes to infinity.

◦ Finally, if we have a stationary Kurtosis, we have:

(1− 3α2
1L)µ4,t = 3(α2

0 + 2α0α1 (α0/(1− α1))) (32a)

⇒ µ4 =
3(α2

0 + 2α0α1 (α0/(1− α1)))

(1− 3α2
1)

(32b)

And it can therefore be shown (through algebraic manipulation) that the unconditional Kurtosis is
greater than 3:

⇒ K =
µ4

µ2
2

=
3(α2

0 + 2α0α1 (α0/(1− α1)))

(1− 3α2
1)

(1− α1)2

α2
0

> 3 (33a)

◦ The GARCH(p,q) model

◦ So now that we have the ARCH(p) model figured out, the GARCH(p,q) is not too difficult to under-
stand since it is just a generalization of the ARCH(p) model the same way the ARMA(p,q) model is
a generalization of the AR(p) model.

Definition 31. The GARCH(p,q) model:
The generalized autoregressive conditionally heteroskedastic model of orders p and q, (the GARCH(p,q)
model) is given as:

rt = σtzt, where zt ∼ N(0, 1) (34a)
Et−1[r2

t ] = σ2
t = α0 + α1r

2
t−1 + α2r

2
t−2 + · · ·+ αpr

2
t−p + β1σ

2
t−1 + β2σ

2
t−2 + · · ·+ βqσ

2
t−q (34b)
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Or again, put the other, equivalent, way:

rt = εt, where εt|Ft−1 ∼ N(0, σ2
ε,t) (35a)

and σ2
ε,t = α0 +

p∑
j=1

αjr
2
t−j +

q∑
j=1

βjσ
2
ε,t−j (35b)

with information set Ft−1 = {r2
t−1, r

2
t−2, . . . }

where in both cases α0 > 0.

◦ Notice that all we have done is added the lagged values of σ2
ε,t to the conditional variance equation,

(34b).

� However, this small change provides us a lot of freedom in specifying a very parsimonious
model with few parameters just as an ARMA(p,q) frees us to do so as opposed to large lag
AR(p)’s or MA(q)’s.

� How is this so? Recall from our previous conversation that an ARMA(1,1) can be represented
as either an AR(∞) or an MA(∞) by moving the lag polynomials around. (See Example:
ARMA(1,1) under definition 22 above).

◦ Notice that just as we could write the ARCH(p) model as an AR(p) on the squared-returns, r2
t =∑p

j=1 αjr
2
t−j + ut, we can also write the GARCH(p,q) model as an ARMA(p,q) on the squared-

returns.

◦ Example: GARCH(1,1)

◦ Take for example the GARCH(1,1). It can be shown that σ2
ε,t can be rewritten as:

r2
t = α0 + (α1 + β1)r2

t−1 − β1ηt−1 + ηt

where ηt = r2
t − σ2

ε,t, which is an ARMA(1,1) on the squared-returns.

◦ Immediately we can see what the condition for stationarity of the GARCH(1,1) is, by writing the
AR component as a lag polynomial:

α(L)r2
t = (1− (α1 + β1)L)r2

t = α0 − β1ηt−1 + ηt

and so in order to invert α(L) we require that |(α1 + β1)| < 1.

◦ And so the unconditional variance of rt is E[r2
t ] = α0/(1 − (α1 + β1)) (which is the same as the

unconditional mean of the squared-returns process).

◦ Estimation of the ARCH and GARCH models

◦ Recall from our earlier discussion on the estimation stage of the Box-Jenkins approach to time-series
analysis, that the AR(p) and MA(q) models (and thus the ARMA(p,q)) required different estimation
strategies.
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� At that point I explained that the while the AR(p) could be estimated by OLS, the MA(q)
(and ARMA(p,q)) required a non-linear estimation technique such as maximum likelihood
estimation (MLE).

� Furthermore, we also later discussed how an ARCH(p) model is like an AR(p) model on the
squared returns (or squared innovations if the mean is not zero), and a GARCH(p,q) is like an
ARMA(p,q) model imposed on the squared returns (or squared innovations).

◦ Therefore, since I would like you to avoid using pre-programmed R routines to estimate the GARCH
model on the 2nd assignment, we will now briefly review maximum likelihood estimation, since the
estimation of the GARCH model parameters requires a non-linear technique such as MLE, just as
estimation of an ARMA(p,q) does.

◦ Maximum likelihood estimation (MLE)

◦ Recall from definition 4 that Bayes Theorem implies that:

fX|Y (x|y) = fY |X(y|x)fX(x)/fY (y)

◦ While typically X and Y represent the random variables of our model, we can also think of the
parameters of the GARCH(p,q) model as random variables too (in fact this really forms the basis of
the “Bayesian approach” to statistics).

◦ That is, we assume that the parameters of the GARCH(p,q) model have their own probability distri-
butions. If this is the case, we can rewrite the above as:

fΘ|Y (θ|y) = fY |Θ(y|θ)fΘ(θ)/fY (y)

where θ = {α1, α2, . . . , αp, β1, β2, . . . , βq} is the set of parameters, and y = {yT , yT−1, . . . , y1} is
the observed sample data series we have on hand (that is, yt is the return at time t, or yt ≡ rt.)

◦ Let us now focus on the term fY |Θ(y|θ).

� Clearly since this is a pdf, if we integrate across all values of Y the integral must be 1. That is,
the area under the pdf must equal 1.

� However, if we consider fY |Θ(y|θ) rather as a function of θ, with Y held constant, we call this
the likelihood function and we write it as LΘ|Y (θ|y).

� Of course now the likelihood function will not integrate to 1 across all values of θ but this is
unimportant.

� What is important is that the maximum likelihood method of estimation basically says that
if we maximize LΘ|Y (θ|y) with respect to θ, this will give us a reasonable estimate of the
parameters of the model.

◦ Just for reference, the Bayesian approach goes further and says we should actually specify (i.e.
assume) some fΘ(θ) which is called the prior density, and then maximize the RHS of fΘ|Y (θ|y) ∝
fY |Θ(y|θ)fΘ(θ), where the LHS is called the posterior density (notice that the RHS is proportional
to the LHS so they have the same max).
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� That is, Bayesians believe that the posterior density better represents the “true” pdf of the
parameters conditional on the data we observe, y.

◦ Of course the debate between frequentists who rely on maximizing LΘ|Y (θ|y) and Bayesians who
maximize fY |Θ(y|θ)fΘ(θ) rages on, but for this class we will just maximize the likelihood (although
you are welcome to maximize the posterior if you feel more Bayesian!)

◦ Either way, we now need to find some expression of the likelihood that we can maximize.

� For complicated models like the GARCH(p,q) we will not be able to solve for an analytical
solution (that is a solution that gives a close-form formula for the answer).

� Rather we will solve the maximum of the likelihood function numerically which basically
means using a computer program like R to do the hard work.

� When you used the ARIMA() command in R for the 1st assignment, it was really solving for
the parameter estimates according to a numerical optimization routine of the type we are about
to talk about.

◦ An expression for the likelihood can be found by appealing to the result we discussed way back in
Corollary 5. That is, we can factorize the joint likelihood into a product of conditional densities
and then take logs. By doing so we turn the product into a sum which is easier to maximize.

� Of course, since taking logs is a monotonic transformation the maximum of the log-likelihood
is the same as that of the likelihood function.

◦ Example: The GARCH(1,1) log-likelihood

◦ Therefore, let us take the GARCH(1,1) model as an example:

◦ The likelihood function of the joint set of returns r = {rT , rT−1, . . . , r1} is given by LΘ|R(θ|r). Of
course this joint density can be factorized as:

LΘ|R(θ|r) = fR|Θ(r|θ) = fR|Θ(rT , rT−1, . . . , r1|θ)
= f(rT |FT−1, θ)f(rT−1|FT−2, θ) . . . f(r2|F1, θ)f(r1|θ) (36a)

where as usual, Ft−1 = {rt−1, rt−2, . . . , r1}.

Furthermore, we can now take logs:

LLΘ|R(θ|r) = ln fR|Θ(r|θ) = ln fR|Θ(rT , rT−1, . . . , r1|θ)
= ln f(rT |FT−1, θ)f(rT−1|FT−2, θ) . . . f(r2|F1, θ)f(r1|θ)

=
T∑
t=2

ln f(rt|Ft−1, θ) + ln f(r1|θ) (37a)
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So, since the GARCH(1,1) model is conditionally Normal we have:

LLΘ|R(θ|r) =
T∑
t=2

ln f(rt|Ft−1, θ) + ln f(r1|θ)

= −T − 1

2
ln 2π − 1

2

T∑
t=2

lnσ2
ε,t −

1

2

T∑
t=2

r2
t

σ2
ε,t

+ ln f(r1|θ)

= −T − 1

2
ln 2π − 1

2

T∑
t=2

ln (α0 + α1r
2
t−1 + β1σ

2
ε,t−1)− 1

2

T∑
t=2

r2
t

α0 + α1r2
t−1 + β1σ2

ε,t−1

+ ln f(r1|θ)

(38a)

where:

ln f(r1|θ) = −1

2
ln 2π − 1

2
lnσ2

ε −
1

2

r2
1

σ2
ε

and σ2
ε =

α0

1− (α1 + β1)

is the unconditional mean of the GARCH(1,1) process.

◦ See also Heij et. al. pg. 626-627 for more details.

◦ Numerical optimizer

◦ In R there are a few different numerical optimizer functions, for example nlm() and optim().

◦ Both routines can use the BFGS method which is a quasi-Newton method of numerical “hill-
climbing optimization.”

� See http://en.wikipedia.org/wiki/BFGS method for details.

� Basically what a quasi-Newton hill climbing method does is exactly as it sounds. It chooses
different parameter values θi over and over, checking to see if it has made the log-likelihood
larger.

� When it makes a change to θi and finds that the first derivative of the log-likelihood is zero and
the second is negative, it stops, assuming it has found a maximum.

� However, note that this could possibly be a local maxima if the log-likelihood is bi-modal,
though usually it is uni-modal and this isn’t a problem.

◦ The R routines typically do things backwards though: they minimize the negative of the log-
likelihood which is equivalent to maximizing the log-likelihood. Be careful!

◦ Moreover, since the joint density will be small in value for large T , typically the log-likelihood is
negative valued even at its maximum.
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Figure 15: Log-likelihood surface in 2D, given parameters α1 and β1

◦ Weaknesses of the ARCH and GARCH models

◦ The following weaknesses of ARCH models follows from the Tsay textbook, pg.119:

1. The model assumes that positive and negative shocks have the same effect on volatility because
volatility depends on the squared values of previous shocks.

� By “shocks” here, we mean εt = rt. Remember, if our ARCH model contains a constant,
then the “shock” is given by the difference between the return and that constant, that is
rt − µ = εt = σ2

ε,tzt. Of course given this model, the constant, µ, is the conditional and
unconditional mean of rt.
� In practice it is well known that financial asset returns respond differently to positive and

negative shocks.
� Moreover, financial asset returns tend to be correlated with volatility; this is called the

leverage effect.
� Therefore, modifications have been proposed to account for this failing. For example, see

the GARCH-M or E-GARCH models in the Tsay book.

2. The ARCH model is rather restrictive.

� For example, α2
1 < 1/3 must hold for the ARCH(1) model to have a 4th unconditional

moment that isn’t infinite.
� This constraint becomes even more complicated for higher order ARCH models.

3. The ARCH model does not “explain” what the sources of variation are in a financial time-
series. Rather it merely provides a mechnical way to describe patterns in the conditional vari-
ance process. It says nothing about what causes these patterns.

4. ARCH models are likely to overpredict the volatility because they respond slowly to large
isolated shocks in the returns series.
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◦ While we won’t go into too much detail here, you should know that the ARCH and GARCH models
have also more recently (late 1980’s) been modified to include a random component in the condi-
tional variance equation. That is, we have:

ln (σ2
ε,t) = α0 + β1 ln (σ2

ε,t−1) + β2 ln (σ2
ε,t−2) + · · ·+ βq ln (σ2

ε,t−q) + γt

where γt ∼ N(0, σ2
γ).

This model is called the Stochastic Volatility (SV) model and it adds a lot of flexibility to the
ARCH/GARCH models. In fact, it looks a lot like a GARCH(0,q) model, but with the following
modifications:

� We have taken logs to ensure that the volatility remains positive.

� We have added a random variable γt so that the volatility process is no longer a deterministic
function of past returns, but is now an entirely stochastic process.

It turns out that adding these features makes the SV model much more difficult to estimate than the
GARCH, however, as it requires a “filtering” method to extract the latent volatility. One way of
doing this is through state-space methods.

For next class, you should review matrices, their inverses, determinants, and the multivariate
Normal distribution. This will be useful for next week when we start discussing multivariate
models like the VAR(p) model.
Those students who are weak in Linear Algebra should refer to Appendix A in Johnston and Di-
nardo, (2007), Econometric Methods, 4th edition, McGraw-Hill Press. While the other recom-
mended texts may have good linear algebra reviews, the one in Johnston and Dinardo Appendix A
is the best i’ve seen.

◦ Part 3: Multivariate extensions for macro-econometrics

◦ Review of useful Linear Algebra results

◦ Before we begin the next section of the course, you should already have a good grasp of basic
Linear Algebra results like the use of matrices, their inverses, the notion of a determinant, and the
multivariate Normal distribution.

◦ What follows are some specific results that we will need in discussing the multivariate extensions of
the ARMA(p,q) class of models and their use in macro-econometrics.

Definition 32. The covariance matrix:
The covariance matrix of an n× 1 vector-valued, mean zero, random variableX t, is given as:

E[X tX
′
t] = ΣX

where ΣX is an n× n symmetric matrix, and the prime (’) notation denotes vector or matrix trans-
pose.
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◦ Example:

◦ Say thatX t is 2× 1. Then we have that the covariance matrix ofX t is given as: E[X2
1 ] E[X1X2]

E[X2X1] E[X2
2 ]

 = ΣX

◦ IfX t is not mean zero then we have the equivalent definition:

Definition 33. The covariance matrix (non-zero mean):
The covariance matrix of an n × 1 vector-valued random variable X t with mean E[X t], is given
as:

E[(X t − E[X t])(X t − E[X t])
′] = E[X tX

′
t]− E[X t]E[X t]

′ = ΣX

where ΣX is an n× n symmetric matrix.

Corollary 7. The correlation matrix (non-zero mean):
The correlation matrix of an n × 1 vector-valued random variable X t with mean E[X t], is given
as:

D−1ΣXD
−1

where ΣX is an n×n covariance matrix andD is the diagonal matrix of standard deviations. That
isD = diag{

√
ΣX,11,

√
ΣX,22, . . . ,

√
ΣX,nn}.

◦ Note: Of course there are also matrix analogs of the autocovariance function and autocorrelation
functions (ACF). Just replace the above expressions with time period lag t − s on the second Xt

variable.

We usually denote the matrix autocovariance at lag s as Γ(s). Therefore Γ(0) = ΣX , and we have
that the matrix autocorrelation function isD−1Γ(s)D−1.

See pg.390 in the Tsay textbook for more details.

◦ The following result generalizes the relationship between a scalar and a matrix. That is, in some
sense it describes how multiplying a vector by a scalar might be equivalent to multiplication by a
matrix.

Definition 34. The eigenvalues and eigenvectors of a matrix:
LetA be a square n× n matrix, c be an n× 1 vector, and λ be a scalar. If we have that:

Ac = λc, for some c 6= 0

Then we say that λ is an eigenvalue of the matrixA and c is an eigenvector.

◦ Example:
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◦ As an example, let’s solve for the eigenvalues of the matrixA =

4 2

2 1

.

◦ The condition above requires that:

Ac = λc

⇒ (A− Iλ)c = 0, for some c 6= 0. (39a)

But in order for c 6= 0 we must have that the determinant of (A − Iλ) is equal to zero. Therefore,
we can solve for the eigenvalues as the solutions to the characteristic equation:

det((A− Iλ)) = det


4− λ 2

2 1− λ


 = 0

⇒ (4− λ)(1− λ)− 4 = (4− 4)− λ(4 + 1) + λ2 = 0 (40a)

which has two solutions, λ1 = 5 and λ2 = 0. These are the eigenvalues ofA.

◦ For more complicated 2nd order polynomials you might have to use the quadratic formula:

λ =
−b±

√
b2 − 4ac

2a

Therefore, we need to keep in mind that if b2 − 4ac < 0 then the eigenvalue is a complex number!
This case is not unusual.

◦ To find the eigenvectors, fromAc = λc we have:

Ac =5c⇔

4 2

2 1


 1

c1

 = 5

 1

c1

⇒ c1 = 1/2 (41a)

Ac =0c⇔

4 2

2 1


 1

c2

 = 0

 1

c1

⇒ c2 = −2 (41b)

where we have normalized the first element of each eigenvector to one. So the two eigenvectors are

equal to c1 =

[
1 1/2

]′
and c2 =

[
1 −2

]′
.

◦ Notice that the eigenvectors are not unique! For any scalar α ∈ R we have that αc is also an
eigenvector. Moreover, if there are k ≤ n distinct eigenvalues (that is k different eigenvalues) then
there will also be k ≤ n linearly independent eigenvectors. However, when k < n then (n − k) of
the n eigenvectors will be linear combinations of the others (that is they will be linearly dependent),
since there will be (n− k) repeated eigenvalues.
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◦ Another useful concept when dealing with matrices is that of “positive-definiteness.”

� A positive-definite matrix is in some ways like the analog of a strictly positive scalar.

� Note that just as the variance of a random variable should always be positive, we desire that
our covariance matrices are always positive-definite.

Definition 35. Positive-definite matrix:
A necessary and sufficient condition for the real symmetric matrix A to be positive-definite is that
all the eigenvalues ofA are strictly positive.

◦ The next definition gives us a way of taking the “square root” of a square matrix. It is called the
Cholesky decomposition and is as follows.

Definition 36. Cholesky decomposition:
IfA is symmetric and positive-definite, a nonsingular, lower triangular matrix with strictly positive
diagonal entries, L can be found such thatA = LL′. We write L = A1/2.

◦ Example:

◦ Let C be the correlation matrix,D−1Γ(0)D−1 =

1 ρ

ρ 1

.

◦ The Cholesky decomposition is given as:1 ρ

ρ 1

 =

1 0

ρ
√

1− ρ2


1 ρ

0
√

1− ρ2



◦ Another useful result that is similar to the Cholesky decomposition is known as the diagonalization
of a square matrix.

Definition 37. Matrix diagonalization:
Given a (not necessarily symmetric) invertible (i.e. full rank) matrix A of dimension n × n, with n
distinct eigenvalues, we can write:

A = PΛP−1 (42a)

⇔ Λ = P−1AP (42b)

whereP has the n linearly independent eigenvectors ofA as its columns and Λ is a diagonal matrix
with the n distinct eigenvalues ofA along its main diagonal.

Note that in the case where A is symmetric, we have that P−1 = P ′. That is, P ’s inverse is its
transpose so that PP ′ = I . We call such matrices orthogonal.
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◦ The VARIMA(p) class of models

◦ Now, with these tools we can tackle the multivariate extensions of the ARIMA class of models. We
will start first with the VAR(p).

Definition 38. The VAR(p) model:
The vector autoregressive model of order p, (the VAR(p) model) is defined as:

X t = Φ1X t−1 + Φ2X t−2 + · · ·+ ΦpX t−p + εt, where εt ∼MVN(0,Σε)

where X t is an n × 1 vector, each of the autoregressive coefficient matrices Φi are n × n, and εt
is an n × 1 random vector distributed multivariate Normal with n × 1 mean vector 0, and n × n
covariance Σε.

◦ Just as was done for the AR(p) model, we can also solve for the first and second moments of the
VAR(p) process.

◦ First uncentered moment of the VAR(p)

◦ We can use the same type of proof as was done above to solve for expression (4b), where we assume
in advance thatX t is stationary:

E[X t] = E[Φ1X t−1 + Φ2X t−2 + · · ·+ ΦpX t−p + εt]

= Φ1E[X t−1] + Φ2E[X t−2] + · · ·+ ΦpE[X t−p] + µε

=

(
p∑
j=1

Φj

)
E[X t] + µε (43a)

⇒ µε =

(
I −

p∑
j=1

Φj

)
E[X t] (43b)

⇒ E[X t] =

(
I −

p∑
j=1

Φj

)−1

µε where µε = 0 (43c)

◦ So this gives us an expression for the unconditional mean of the VAR(p). Notice that the uncondi-
tional mean is a vector of length n× 1 (in this case equal to 0 since the mean of εt is zero).

◦ The conditional mean of the VAR(p) is likewise given as:

E[X t|Ft−1] = Φ1X t−1 + Φ2X t−2 + · · ·+ ΦpX t−p (44)

◦ where Ft−1 is the usual information set we discussed above, that is Ft−1 = {X t−1,X t−2, . . . ,X0}.
Notice that just as in the AR(p), the VAR(p) conditional 1st uncentered moment only depends on
information up toX t−p.

Definition 39. The VMA(q) model:
The vector moving average model of order q, (the VMA(q) model) is defined as:
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X t = Θ1εt−1 + Θ2εt−2 + · · ·+ Θqεt−q + εt, where εt ∼MVN(0,Σε)

where X t is an n× 1 vector, each of the moving average coefficient matrices Θi are n× n, and εt
is an n × 1 random vector distributed multivariate Normal with n × 1 mean vector 0, and n × n
covariance Σε.

◦ First uncentered moment of VMA(q):

E[X t] = E[Θ1εt−1 + Θ2εt−2 + · · ·+ Θqεt−q + εt]

= Θ1E[εt−1] + Θ2E[εt−2] + · · ·+ ΘqE[εt−q] + µε

=

(
q∑
j=1

Θj

)
µε + µε (45a)

⇒ E[X t] =

(
I +

p∑
j=1

Θj

)
µε where µε = 0 (45b)

◦ So this gives us an expression for the unconditional mean of the VMA(q).

◦ The conditional mean is given as:

E[X t|Ft−1] = Θ1εt−1 + Θ2εt−2 + · · ·+ Θqεt−q (46)

◦ Again notice that in the VMA(q), the conditional mean only depends on information up toX t−q.

◦ Second centered moment of VMA(q):
Again, instead of working with E[(X t − E[X t])(X t − E[X t])

′] I will work with V ar(·) which
avoids having to deal with the outer product.

V ar[X t] = V ar[Θ1εt−1 + Θ2εt−2 + · · ·+ Θqεt−q + εt]

= Θ1V ar[εt−1]Θ′1 + Θ2V ar[εt−2]Θ′2 + · · ·+ ΘqV ar[εt−q]Θ
′
q

+ 2

q∑
k=1

q∑
j=k+1

ΘkCovar[εt−kεt−j]Θ
′
j + Σε

=

q∑
j=1

ΘjΣεΘ
′
j + Σε, since Γε(s) = 0 ∀s 6= 0 (47a)

⇒ V ar[X t] =

q∑
j=1

ΘjΣεΘ
′
j + Σε (47b)

where the result follows from the fact that since E[εt] = 0, we have that:

V ar[Θiεt−i] = E[Θiεt−i (Θiεt−i)
′] = ΘiE[εt−iε

′
t−i]Θ

′
i = ΘiΣεΘ

′
i
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◦ The above expression gives the unconditional variance, ΓX(0), of the VMA(q) process.

◦ Of course, just as in the univariate case the conditional variance of the VMA(q) is simply:

V ar[X t|Ft−1] = Σε

since conditional on all the εt−j’s for j = 1, . . . , q the only variation stems from εt.

◦ Lag polynomials

◦ Just as in the univariate case, we can write the VAR(p) and VMA(q) in terms of lag polynomial
operators.

◦ That is, we can write the VAR(p) model as:

Φ(L)X t = εt (48)

where Φ(L) = I −Φ1L−Φ2L
2 − · · · −ΦpL

p.

◦ And we can write the MA(q) model as:

X t = Θ(L)εt (49)

where Θ(L) = I + Θ1L+ Θ2L
2 + · · ·+ ΘqL

q.

◦ The VARIMA(p,q) model

◦ The lag polynomial again gives us an easy way to represent the vector version of the ARIMA(p,q)
model.

Definition 40. The VARIMA(p,d,q) model:
A vector autoregressive, moving average model of orders p and q, applied to the dth order integrated
process (an VARIMA(p,d,q) model) is such that:

Φ(L)∆dX t = Θ(L)εt

where εt ∼ MVN(0,Σε), and Φ(L) is an VAR(p) lag polynomial and Θ(L) is an VMA(q) lag
polynomial.

◦ Invertibility condition for VAR(1)

◦ Recall our earlier example of the invertible univariate AR(1) process: Xtα(L) = Xt(1−α1L) = εt.

� If |α1| < 1 we have Xt = εt/(1− α1L) =
∑∞

j=0 α
j
1εt−j .

� So by “inverting” the lag polynomial α(L) we have effectively created an MA(∞) from the
AR(1)!
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� That is, we say that if |α1| < 1 then the AR(1) model is invertible into an MA(∞).

� Likewise, given a similar condition on β1 we have that the MA(1) is invertible into an AR(∞).

◦ However, one might ask what the analog of this result is in the multivariate case?

� Notice that the inverse AR(1) lag polynomial expression α(L)−1 = 1/(1−α1L) =
∑∞

j=0 α
j
1L

j

only exists, that is converges to a finite value, if |α1| < 1.

� That is, the values of αj1 get smaller and smaller as j →∞.

� Can we find some kind of analagous result for the VAR(1) model with matrix coefficient Φ1?

◦ It turns out we can, if we consider the diagonalization of the coefficient matrix Φ1.

� That is, we wish to find conditions such that Φ(L)−1 = (I −Φ1L)−1 =
∑∞

j=0 Φj
1L

j converges
to something finite.

� Diagonalizing Φ1 we get Φ1 = PΛP−1.

� But this implies that Φj
1 =

(
PΛP−1

)j
= PΛjP−1.

� Therefore, since Λ contains the eigenvalues of Φ1 along its main diagonal, we have that:

Φj
1 → 0 if.f. Λj → 0 as j →∞

which requires that all of the eigenvalues of Φ1 are less than 1 in absolute value.

◦ Therefore we have that Φ1(L)−1 = (I −Φ1L)−1 =
∑∞

j=0 Φj
1L

j converges to something finite only
if all of the eigenvalues of Φ1 are less than 1 in absolute value.

◦ This is the invertibility condition of the VAR(1) model. Therefore just as in the univariate case:

� If the VAR(1) polynomial is invertible, we can write the VAR(1) as an infinite VMA(∞).

� Moreover, invertibility of the VAR(1) implies stationarity of the VAR(1).

� Invertibility of the VMA(1) lag polynomial means we can write the model as an infinite
VAR(∞).

� Stationarity of the VMA(q) does not necessarily imply invertibility.

� The VARIMA(p,q) can be inverted into an infinite VAR(∞) or VMA(∞) given the correct
invertibility condition.

◦ Estimation of the VAR(p) model

◦ The VAR(p) model includes n(n + 1)/2 + pn2 parameters (where n is the number of variables in
X t). Therefore its estimation is subject to the so called “curse of dimensionality.” That is, the
number of parameters requiring estimation grows very large for even small lag values of p.

� Since the covariance matrix Σε is symmetric, it has n(n + 1)/2 distinct elements that require
estimation.

� Moreover, since each of the p VAR coefficient matrices Φi have n2 elements, together they
account for pn2 parameters that require estimation.
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◦ We can avoid this problem by putting constraints on the p VAR coefficient matrices Φi or the co-
variance matrix Σε. For example we can assume that they are either diagonal or symmetric.

� Of course, this represents a trade-off between estimation and model flexibility and fit.

◦◦ The VAR(p) model can either be estimated by MLE or by applying OLS individually to each of the
n linear equations the VAR(p) represents.

◦ When the innovations εt are multivariate Normal, that is εt ∼ MVN(0,Σε), we have that the
likelihood function is given as:

LLΘ|X(θ|x) =
T∑

t=p+1

ln f(xt|Ft−1, θ) +

p∑
t=1

ln f(xt|θ)

= −(T − p)n
2

ln 2π − T − p
2

ln det (Σε)−
1

2

T∑
t=p+1

εtΣ
−1
ε ε

′
t +

p∑
t=1

ln f(xt|θ) (50a)

where εt = X t −
∑p

j=1 ΦjX t−j and where we can just ignore the
∑p

t=1 ln f(xt|θ) term and treat
X t for t = 1, . . . , p as fixed.

� The alternative being of course to express their densities as unconditional (not depending on
the past) with mean zero but having a complicated expression for the unconditional variance.

� For large T , treating the first p values of X t as fixed makes little difference to the MLE esti-
mates of the VAR(p) parameters.

◦ Impulse response functions (IRF)

◦ The impulse response function (IRF) is a useful way of interpreting how some exogenous “shock”
to a system feeds into it over time.

◦ More specifically, the impulse response function is the “time path” of the stochastic process xt when
we “shock” the process at some time τ so that ετ = γ, where γ is the shock size, but force all other
εt = 0 for t 6= τ .

◦ That is, we wish to know how the process behaves given an initial shock at time τ and where all
other innovations before or afterwards are zero.

◦ The notion of an impulse response function comes from the study of stochastic difference equations,
of which the ARIMA(p,q) model is a special class.

Example: AR(1) impulse response function

◦ It turns out that the easiest way to find the impulse response function, φ(t), of the AR(1) model is to
invert it into a MA(∞).

◦ What we really desire to do is to write out the process only in terms of the stochastic innovations, so
that we can see how the process behaves as we set them all to zero (i.e. εt = 0) except for our one
shock at time τ .
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� That is, consider the AR(1), Xt = α1Xt−1 + εt. Inverting this model implies the MA(∞)
representation Xt =

∑∞
j=0 α

j
1εt−j .

� Given the MA(∞) form it is easy to see that the impulse response function is φ(t) = αt−τ1 ετ ,
where t ≥ τ .

◦ That is, the time path of Xt given a shock at time τ , ετ , is:

1. ετ at time τ .

2. α1ετ at time τ + 1.

3. α2
1ετ at time τ + 2.

4.
...

5. αt1ετ at time τ + t.

◦ Therefore, if the AR(1) model is stationary (i.e. |α1| < 1) we can see that shocks to the system
should die out slowly over time.

Example: VAR(1) impulse response function

◦ As another similar example, consider the VAR(1),X t = Φ1X t−1 +εt. Inverting this model implies
the VMA(∞) representationX t =

∑∞
j=0 Φj

1εt−j .

◦ Given the VMA(∞) form it is easy to see that the impulse response function is φ(t) = Φt−τ
1 ετ ,

where t ≥ τ .

◦ That is, the time path ofX t given a shock at time τ , ετ , is:

1. ετ at time τ .

2. Φ1ετ at time τ + 1.

3. Φ2
1ετ at time τ + 2.

4.
...

5. Φt
1ετ at time τ + t.

◦ Therefore, if the VAR(1) model is stationary (i.e. if all the eigenvalues of Φ1 are less than 1 in
absolute value) we can see that shocks to the system should die out slowly over time.

Example: VMA(q) impulse response function

◦ As a third example, consider the VMA(q),X t = Θ1εt−1 +Θ2εt−2 + · · ·+Θqεt−q +εt. This model
need not be inverted since it is already written in a form that expresses X t as a function of only the
stochastic components.

◦ Given the VMA(q) form we can see that the impulse response function is:

φ(t) =


ετ t = τ

Θt−τετ 1 ≤ (t− τ) ≤ q

0 (t− τ) > q
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◦ That is, the time path ofX t given a shock at time τ , ετ , is:

1. ετ at time τ .

2. Θ1ετ at time τ + 1.

3. Θ2ετ at time τ + 2.

4.
...

5. Θqετ at time τ + q.

6. Zero for all times τ + q + j where j > 0.

◦ Therefore, if the VMA(q) model is stationary (i.e. if all the coefficient matrices, Θi, are finite) we
can see that shocks to the system should die out after exactly q + 1 time periods.

Example: Random walk, I(1), impulse response function

◦ As a final example, consider the AR(1), Xt = α1Xt−1 + εt, but where α1 = 1. Intuitively, trying to
invert this model implies that the MA(∞) representation Xt = εt/(1 − α1L) =

∑∞
j=0 α

j
1εt−j does

not exist since the RHS will grow infinitely large (more formally, we must consider whether the
moments of the RHS exist.)

◦ However, we can still consider the MA(∞) form to see how the impulse response function will
behave. In this special case, φ(t) = αt−τ1 ετ , where t ≥ τ but α1 = 1.

◦ Therefore, the time path of Xt given a shock at time τ , ετ , is now:

1. ετ at time τ .

2. ετ at time τ + 1.

3. ετ at time τ + 2.

4.
...

5. ετ at time τ + t.

◦ Therefore, if the AR(1) model has |α1| = 1 (technically we call this a “unit root”), it is not stationary
and we can see that shocks to the system never die out. That is, they have a permanent effect on
future values of Xt.

◦ Macroeconometrics and the VAR(p) model

◦ Since the early 1980’s, VAR(p) models have become very popular in macroeconometrics.

◦ Some of the reasons include:

� Most macroeconomic time series, such as GDP growth or measures of the inflation rate, typi-
cally exhibit a lot of autocorrelation. That is, they are not white noise like stocks are, and are
therefore highly predictable given an AR(p) model on the levels process.

� Moreover, many macro time series tend to be correlated across series – that is the GDP growth
rate may be correlated with say, the unemployment rate.
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� VAR(p) models are relatively easy to estimate and forecast, and can account for this cross-
correlation.

� The Impulse Response Functions (IRF) for VAR(p)’s can be used to see how a single iso-
lated exogenous “shock” to the economy may feed into the system and affect different macro
variables across time.

◦ Moreover, an econometrician named Sims in 1980 suggested that the VAR(p) model might actually
be useful in informing economic theory.

◦ That is:

� Avoid starting with structural forms like those from the Keyesian model we discussed during
the 1st class.

� Start instead with a VAR(p). Throw in any macro variables you feel may be related.

� Use the VAR(p) reduced form to derive a structural form as follows in the next section.

� This way you let the data decide which variables are related instead of starting with theory.

� You also avoid having to make the distinction between which variables are exogenous and
those that are endogenous since the VAR(p) structural form assumes that all variables are
endogenous.

◦ Recovering the structural form of a VAR(p)

◦ Take for example the following VAR(1) model:x1,t

x2,t

 =

 0.2 0.3

−0.6 1.1


x1,t−1

x2,t−1

+

ε1,t
ε2,t

 (51a)

where εt ∼MVN(0,Σε) (51b)

and suppose that Σε =

 1 1/2

1/2 5/4

.

◦ If Σε has a Cholesky decomposition, it can be rewritten as Σ1/2
ε IΣ1/2′

ε .

◦ Therefore, pre-multiply equation (51a) by Σ−1/2
ε so that we have:

Σ−1/2
ε

x1,t

x2,t

 =Σ−1/2
ε

 0.2 0.3

−0.6 1.1


x1,t−1

x2,t−1

+ Σ−1/2
ε

ε1,t
ε2,t

 (52a)

So now we have that:
E[Σ−1/2

ε εtε
′
tΣ
−1/2′

ε ] = I (53)

That is, we have reduced the covariance of the innovation to identity, so that ε∗t ∼ MVN(0, I)
where ε∗t = Σ−1/2

ε εt.
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◦ Finally, we can now derive a direct structural relationship between x1,t and x2,t since we have from
equation (52a) that: 1 0

−1/2 1


x1,t

x2,t

 =

 1 0

−1/2 1


 0.2 0.3

−0.6 1.1


x1,t−1

x2,t−1

+ ε∗t (54a)

So that from the second equation in the above system, (54a), we have:

x2,t =
1

2
x1,t − 0.7x1,t−1 + 0.95x2,t−1 + ε∗2,t (55a)

which gives us a structural relation between the endogenous variables x2,t and x1,t, where x2,t is
dependent on x1,t.

◦ If we want to find the structural expression for x1,t dependent on x2,t, we just start again from the
beginning but where we switch the order of the equations so that the second equation becomes the
first.

◦ That is, repeat all the steps above but starting with:x2,t

x1,t

 =

1.1 −0.6

0.3 0.2


x2,t−1

x1,t−1

+

ε2,t
ε1,t

 (56a)

where εt ∼MVN(0,Σε), (56b)

and Σε =

5/4 1/2

1/2 1

.

◦ Co-integration

◦ The problem of trends in the data has always posed significant challenges to econometrics practi-
tioners.

◦ Since trends in the data make the series non-stationary (recall our brief discuss above when we
talked about the identification stage of the Box-Jenkins approach), we cannot apply all the models
we have learned about in this course since they rely on the assumption that the series are in fact
stationary.

◦ For review let’s briefly discuss the topic of trending data again.

◦ Trends (repeated again from ARIMA section):

� The question of whether or not a trend exists and of what kind is complex. Generally we divide
trends into two types: deterministic trends and stochastic trends.

61



� Generally, if a trend exists then the DGP is non-stationary and direct application of ARIMA
models can have misleading results since their theory assumes the series is stationary.

� A deterministic trend in an AR(1), for example, can be represented as some function of time:
Xt = γt+α1Xt−1 + εt. These types of trends can be removed by fitting Xt = βt+ut by OLS
and then using the residuals, ut, as the new time-series in an AR(1).

� An example of a stochastic trend is the unit root process: Xt = Xt−1 + εt (that is, an AR(1)
with α1 = 1).

∗ You may recognize this as the random walk we talked about earlier (hint: recursively
substitute back to ε0).
∗ Recall, if we first difference the I(1) random walk, then we get a stationary I(0) process.

� We must be very careful in choosing which trend type to use! Statistical tests have been
developed to try and determine if a trend is deterministic or stochastic, for example the Dickey-
Fuller unit root test.

◦ Consider the following plots:

Figure 16: Trendline challenge
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◦ Can you tell which of the two series, Xt and Yt, follow either a deterministic trend or a stochastic
trend?

◦ That is, the above plots were generated from either:

� Random walk (stochastic trend):

Zt = Zt−1 + εt, or equivalently, Zt =
∑t

j=0 εt−j

� An AR(1) with time trend (deterministic trend):

Zt = γt+ α1Zt−1 + εt

◦ If we have a deterministic trend, we can just subtract γt from the series and the process is then
stationary. Since it is deterministic, we know exactly how to forecast it as well.

◦ However, if the trend is stochastic it is not clear that the particular path chosen by the series wasn’t
just “accidental.” After all the trend is completely random so who can really say in which direction
it will decide to move next?

◦ Either way, while we will skirt around most of these thorny issues in this class, it is important to note
that historically it was suggested that we should take differences of processes that follow stochastic
trends.

◦ That is, since a stochastic trend, Zt, is I(1) we should difference it once, ∆Zt, to make it stationary,
or I(0), before applying the models we have talked about.

◦ Of course, a differenced series itself is not exactly the same as the original series, so this solution is
somewhat unsatisfying.

◦ Generally then, we wish to avoid differencing if possible, or if we are going to difference, we wish
to “retain” some of the original information stored in the series prior to differencing.

◦ The modern time-series literature has thus generated some new approaches, a couple of which turned
out to be interrelated:

1. The notion of co-integration and the VECM (vector error correction model) representation
made famous by Clive Granger in (1981).

2. The “Unobserved Components” methodology popularized by A.C. Harvey in the 1980’s.

◦ We will discuss the 1st of these approaches in this class.

◦ The second one is more general and relies on decomposing the time series into a number of “com-
ponents” that we do not directly see.

� For example, we can decomposeXt asXt = µt+Yt+εt where µt is a random walk, stochastic
trend, and Yt is say, an ARMA(p,q) process. Therefore, Xt, is I(1).

� However, instead of taking differences, we actually estimate the entire stochastic trend along
with the parameters of the ARMA(p,q) model.

63



� Of course, all we observe is the data for Xt, so in order to seperate what part is the stochastic
trend and what part is the ARMA(p,q) component, we need something called a state-space
representation and the notion of “signal extraction.”

� These methods are highly computationally intensive and it is no surprise that their arrival
coincided with the development of the modern computer.

◦ I(1) variables may be co-integrated

◦ Now, say that we have a few variables and we believe that they all follow stochastic trends. That is,
we have a vector of variablesX t where each of the component variables, x1,t, x2,t, . . . are all I(1).

◦ Consider the following plot:

Figure 17: Co-integrated series

◦ Notice how all the series except the yellow one tend to move “together” across time?

� This is what we mean by co-integrated series.

� All of the lines except the yellow one are I(1) processes (they are the components of X t,
x1,t, x2,t, . . . ).

� Therefore, they all represent stochastic trends with no particular known direction or pattern.

◦ However, the yellow line represents an I(0) process. Therefore, it is stationary.

� How was the yellow series generated?
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� It turns out that the yellow I(0) series is a linear combination of the other four, I(1), series.

� That is, I have somehow managed to construct some linear combination of I(1) series that is
itself I(0)!

Definition 41. Co-integrated series:
Given some vector of n distinct I(1) series, X t, if there exists a vector c where Zt = c′X t is itself
I(0), we say that the vector c represents a co-integrating relation between the elements ofX t.

◦ Given this result, the rest of the course will devoted to:

1. Identification of the co-integrating relations given some multivariate I(1) series,X t.

2. Making use of these co-integrating relations in a formal model. The result will be the VECM
(vector error correction) model.

3. Estimating both the co-integrating relations and the parameters of the VECM model given a
sample data set of size T.

◦ Identification of the co-integrating relations

◦ Despite how “intuitive” the concept seems, the mathematics of co-integration can be quite daunting
so I will try to go through the process step by step.

� You should make sure you understand where all the results are coming from before moving
onto the next!

◦ First, let us start with a typical VAR(1) model which we covered in the last section. Moreover, to
simplify things we will assume thatX t is 2× 1 – that is,X t is a bivariate process.

◦ That is, we have the model:

X t = Φ1X t−1 + εt, where εt ∼MVN(0,Σε), (57)

and all of the elements ofX t are I(1).

◦ Using the diagonalization of a matrix theorem again, we can write (57) as:

X t = PΛP−1X t−1 + εt

⇒ P−1X t = ΛP−1X t−1 + P−1εt

⇒ Zt = ΛZt−1 + ε∗t (58a)

where Zt = P−1X t and ε∗t = P−1εt. Recall that P has the eigenvectors of Φ1 as its columns and
Λ is a diagonal matrix with the eigenvalues of Φ1 along its main diagonal.

◦ Writing out (58a) in more detail we have:

Zt = ΛZt−1 + ε∗t

⇒

z1,t

z2,t

 =

λ1 0

0 λ2


z1,t−1

z2,t−1

+

ε∗1,t
ε∗2,t

 (59a)
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◦ We now have three cases:

1. If both eigenvalues are less than one in absolute value, that is |λ1| < 1 and |λ2| < 1, then
we have that there exist no co-integrating relations since both z1,t and z2,t represent stationary
AR(1) processes (i.e. I(0) processes).

� Of course, this case is ruled out by the fact that all the elements ofX t are I(1). That is, at
least one eigenvalue must be equal to 1.

2. If both of the eigenvalues are equal to 1 in absolute value, that is |λ1| = 1 and |λ2| = 1, then
we again have there exist no co-integrating relations since both z1,t and z2,t represent unit-root
AR(1) processes (i.e. I(1) processes).

� This case implies that both x1,t and x2,t each follow their own individual stochastic trends;
that is they don’t “move together.”

3. Finally we have the case where one eigenvalue is less than one in absolute value, while the
other is equal to 1. That is we have for example, |λ1| = 1 and |λ2| < 1. This case implies that
there exists exactly one co-integrating relation between the elements ofX t.

◦ Aside: Note that in all the above cases I’ve spoken of the “absolute value” of the eigenvalues. More
generally what I really mean here is the modulus of the eigenvalues since they can quite often by
complex valued! The modulus is like the analog of absolute value in the complex plane.

◦ How do we know that the 3rd case above is true? Well look again at the expression above in (59a).

� Notice that what we have really done here is create a linear combination ofX t that is I(0).

� Where have we done this? Look again at the second equation:

z2,t = λ2z2,t−1 + ε∗2,t

Clearly z2,t is I(0), since |λ2| < 1.

� But we know that z2,t =

[
p∗21 p∗22

]
X t where

[
p∗21 p∗22

]
is the second row of P−1.

� Therefore, the second row of P−1,
[
p∗21 p∗22

]
, represents the co-integrating relation.

◦ The VECM(1) representation

◦ Now, let’s make use of the co-integrating relation
[
p∗21 p∗22

]
in a formal model.

◦ First, let’s start again from the VAR(1) form:

X t = Φ1X t−1 + εt, where εt ∼MVN(0,Σε), (57)

where all of the elements ofX t are I(1).

◦ SubtractingX t−1 from both sides we get:

∆X t = ΠX t−1 + εt, (60)

where Π = Φ1 − I . This is called the VECM representation.
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◦ What we are eventually going to show is that Π embodies the co-integrating relation (not obvious
yet).

� Therefore, even thoughX t is I(1), ∆X t is sort of “nudged” up or down according to the infor-
mation stored in the co-integrating relation and towards the “long-run equilibrium” relationship
it represents.

� That is, instead of simply differencing X t to make it I(0) we are going to incorporate the
co-integrating relation information directly.

◦ So, how is this done? First, again using the diagonalization of a matrix theorem on (68) we get:

∆X t = PΛ∗P−1X t−1 + εt, (61a)

= P

(λ1 − 1) 0

0 (λ2 − 1)

P−1X t−1 + εt (61b)

◦ Note that the eigenvalues of Π = Φ1 − I are equal to λi − 1 (where λi is an eigenvalue of Φ1 as
before) but the eigenvectors of both Φ1 and Π are the same.8

◦ Notice that from our earlier example that if |λ1| = 1, we have:

∆X t = P

0 0

0 (λ2 − 1)

P−1X t−1 + εt (63)

and so Π is a rank 1 matrix. That is, its columns are linearly dependent.

8Proof is as follows.

Φ1c = λc (62a)
⇔ Φ1c− c = λc− c (62b)
⇔ (Φ1 − I)c = (λ− 1)c (62c)

⇔ Πc = (λ− 1)c (62d)
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◦ This fact implies that we can now write Π in the following manner:

Π = P

0 0

0 (λ2 − 1)

P−1

=

p11 p12

p21 p22


0 0

0 (λ2 − 1)


p∗11 p∗12

p∗21 p∗22

 (64a)

=

0 p12(λ2 − 1)

0 p22(λ2 − 1)


p∗11 p∗12

p∗21 p∗22

 (64b)

=

p12(λ2 − 1)

p22(λ2 − 1)

[p∗21 p∗22

]
(64c)

= αβ′ (64d)

whereα =

p12(λ2 − 1)

p22(λ2 − 1)

 is called the “factor loadings” vector and
[
p∗21 p∗22

]
is the co-integration

relation vector, as we discussed earlier.

◦ Therefore, in the bivariate VECM model if |λ1| = 1 and |λ2| < 1 so that Π is a rank 1 matrix, we
can write the VECM model in (68) as:

∆X t = αβ′X t−1 + εt, (65)

◦ But recall that since β is the co-integrating relation, then β′X t = z2,t, the I(0) linear combination,
so we have:

∆X t = αβ′X t−1 + εt

=

p12(λ2 − 1)

p22(λ2 − 1)

 z2,t−1 + εt, (66a)

and so the differenced elements of ∆X t can each be seen to be functions of the I(0) process z2,t−1

but where they are each differently “nudged” by the loading factors in α.

That is, the loading factors affect the “speed” of adjustment towards the long-run equilibrium sug-
gested by z2,t.

◦ Moreover, in writing out z2,t explicitly we can see how it represents the “equilibrium error” between
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the two I(1) series, x1,t and x2,t.

z2,t = β′X t

=

[
p∗21 p∗22

]x1,t

x2,t


= p∗21x1,t + p∗22x2,t

⇒ p∗21x1,t = −p∗22x2,t + z2,t (67a)

where z2,t is like a stationary residual. That is, the individual I(1) series, x1,t and x2,t, never wander
“too far” from their long-run equilibrium relation defined in β.

◦ The VECM(p) representation

◦ Throughout the entire earlier exposition we had assumed an underlying VAR(1) model.

◦ What if we want to work with a VAR(p) model instead? What is the VECM(p) representation?

◦ Take the VAR(p) model:

X t = Φ1X t−1 + Φ2X t−2 + · · ·+ ΦpX t−p + εt, where εt ∼MVN(0,Σε), (68)

where all of the elements ofX t are I(1).

◦ This can be rewritten in VECM(p) model form as:

∆X t = ΠX t−1+Γ1∆X t−1+Γ2∆X t−2+· · ·+Γp−1∆X t−(p−1)+εt, where εt ∼MVN(0,Σε),
(69)

where all of the elements of ∆X t are I(0).

Moreover, we have that Π = −(I −
∑p

j=1 Φj) and Γj = −
∑p

i=j+1 Φi.

◦ Notice that the VECM(p) actually only includes p− 1 lagged ∆X t−i terms, not p lags.

◦ Proof of expression (69)

1. Start with expression (68). It can be written as Φ(L)X t = εt, where Φ(L) = I−
∑p

j=1 ΦjL
j .

2. We can rewrite Φ(L) as Φ(L) = Φ(1)L+Φ(L)−Φ(1)L so let Φ(L)−Φ(1)L = (1−L)Γ(L),
where Γ(L) = I −

∑p−1
j=1 ΓjL

j

3. Therefore, we have that
Φ(L)−Φ(1)L

1− L
= Γ(L) = I −

p−1∑
j=1

ΓjL
j .

4. However, Φ(L)−Φ(1)L = I−
∑p

j=1 ΦjL
j−(I−

∑p
j=1 Φj)L = (I−L)+

∑p
j=2 Φj(L−Lj).
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5. Therefore from above,
Φ(L)−Φ(1)L

1− L
= I +

p∑
j=2

Φj
(L− Lj)

1− L
.

6. But
(L− Lj)

1− L
= L

j−2∑
i=0

Li.

7. Thus we have that Γ(L) = I −
p−1∑
j=1

ΓjL
j = I +

p∑
j=2

Φj
(L− Lj)

1− L
= I +

p∑
j=2

ΦjL

j−2∑
i=0

Li.

8. Gathering terms on the RHS by L, L2, . . . , up to Lp we have that Γj = −
∑p

j=i+1 Φi, for
j = 1, . . . , (p − 1) which gives us an expression for each of the Γj coefficient matrices in
terms of the VAR(p) coefficient matrices.

9. Next, go back to (2) above, which implies that Φ(L)X t = (Φ(1)L + Φ(L) − Φ(1)L)X t =
(Φ(1)L+ (1− L)Γ(L))X t = εt.

10. The above expression implies that Φ(1)X t−1 + Γ(L)∆X t = εt.

11. Finally we therefore have ∆X t = −Φ(1)X t−1+
∑p−1

j=1 Γj∆X t−j+εt which proves the result.

◦ Estimating the VECM(p) model

◦ Suppose that we have a VECM(p) model but where the vector X t is not bivariate. That is, suppose
thatX t is n× 1 so there are n individual I(1) variables included in it.

◦ All the theory above still applies. In determining the number of co-integration relations in this case,
let’s take a look back at the three cases again and consider the eigenvalues of the Π matrix.

◦ Recall from our earlier bivariate example VAR(1) example that if |λ1| = 1 but |λ2| < 1, we have:

∆X t = P

0 0

0 (λ2 − 1)

P−1X t−1 + εt (63)

and so Π was a rank 1 matrix since one of the eigenvalues of the Π matrix was now 0, and this
situation implied there existed exactly one co-integrating relation.

◦ We can easily generalize this type of analysis to the VAR(p) (i.e. VECM(p)) case with n dimensional
X t as:

∆X t = ΠX t−1 +

p−1∑
j=1

Γj∆X t−j + εt (70)

⇒ ∆X t = P



γ1 0 0 . . .

0 γ2 0 . . .

0 0
. . . 0

...
... 0 γn


P−1X t−1 +

p−1∑
j=1

Γj∆X t−j + εt (71a)
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where the γi’s are the eigenvalues of the Π matrix.

◦ Be careful! The eigenvalues of Π are not in general the sum of the eigenvalues of the matrices in
−Φ(1) = −(I −

∑p
j=1 Φj); that is we do not generally have γi =

∑p
j=1 λj,i − 1. 9

◦ Nevertheless, we can still make use of the same type of analysis since for each element that is zero
along the main diagonal, the matrix Π loses column rank. This suggests that a reasonable test of
how many co-integrating relations exist is to test for the column rank of the Π matrix.

◦ Therefore we can be more formal. Specifically, we say that there are again three cases, analogous to
the VAR(1) discussion above:

1. γi = 0 for all i = 1, . . . , n. In this case we have Rank(Π) = 0 (i.e. Π = 0) and there exist no
co-integrating relations. In other words,X t is driven by n different stochastic trends that each
move indepedently of each other.

2. γi 6= 0 for all i = 1, . . . , n. In this case we have that Rank(Π) = n and there are no stochastic
trends, so there can be no co-integrating relations between them.

3. γi = 0 in n − r cases, and γi 6= 0 for r < n cases. We now have that Rank(Π) = r which
implies there exist r co-integrating relations, and n− r stochastic trends.

◦ It is the third case that is most interesting.

� It suggests that r linearly independent co-integrating relations exist and that we can construct
r many I(0) series by multiplying each co-integrating relation byX t.

� That is, we have that there exist r vectors, ci for i = 1, . . . , n − r, where each zi,t = ciX t is
I(0).

◦ The co-integrating relations in this case are therefore just the respective rows of the P−1 matrix.

� That is, suppose that we have that γi 6= 0 for i = 1, 5 and 7. Therefore rows 1, 5, and 7 of the
P−1 matrix are the co-integrating relations.

� Since Rank(Π) = r we can factorize Π as follows:

Π = αβ′

where nowα and β are both n×r matrices. β includes all the relevant co-integrating relations
as its columns, and α contains the loading factors.

◦ Estimation of the VECM(p)

◦ Estimation of the VECM(p) in principle can be done by maximum likelihood (or OLS) in the same
as we discussed for the VAR(p) model.

◦ Again, recall that the VECM(p) model has the form:

∆X t = ΠX t−1+Γ1∆X t−1+Γ2∆X t−2+· · ·+Γp−1∆X t−(p−1)+εt, where εt ∼MVN(0,Σε),
(69)

9The only time this holds is the special case where all of the coefficient matrices in−Φ(1) have the same exact eigenvectors
since we have that for any i and j, (Φi +Φj)c = Φic+Φjc = λic+ λjc = (λi + λj)c in this case.
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where all of the elements of ∆X t are I(0).

Moreover, we have that Π = −(I −
∑p

j=1 Φj) and Γj = −
∑p

i=j+1 Φi.

◦ However, in this case Π may of course be of reduced rank if there exist co-integrating relations.

� If this is the case, we wish to not only estimate the Γj’s and Σε of the model, but we wish to
seperately identify both the α and β in Π = αβ′.

◦ A method of dealing with this type of situation is called reduced rank regressions.

◦ The following Johansen method for estimating both the rank of Π and the co-integrating relations
β is based on the reduced rank regressions method.

◦ Johansen method

◦ The Johansen method is as follows, given a VECM(p) model:

1. Estimate the corresponding VAR(p) in first differences. That is, estimate:

∆X t = A1∆X t−1 +A2∆X t−2 + · · ·+Ap−1∆X t−(p−1) + et (72)

to obtain residuals et.

2. Next, regressionX t−1 on the lagged differences. That is, estimate:

X t−1 = C1∆X t−1 +C2∆X t−2 + · · ·+Cp−1∆X t−(p−1) + ut (73)

to obtain residuals ut.

3. Compute the squares of the so called canonical correlations betweeb ut and et.

� We will denote the squares of the canonical correlations by δi.
� It turns out that the δi’s can be obtained as the solution to what is called the generalized

eigenvalue problem.10

� That is, the δi’s are the solutions that solve:
det(SueS

−1
ee Seu − δSuu) = 0

where Seu = 1
T

∑T
t=1 etu

′
t.

� Therefore, the δi’s are the eigenvalues of the generalized eigenvalue problem where Seu =
1
T

∑T
t=1 etu

′
t.

∗ Notice that Seu is the sample covariance matrix between the residuals et and ut.
∗ It turns out that the eigenvalues δi are also the eigenvalues of Π.

4. The eigenvectors, ci associated with each eigenvalue of the generalized problem above, are
therefore co-integrating relations (conditional on us determining the rank of Π.)

5. Determining the rank of Π:

10The generalized eigenvalue problem is just a more general version ofAc = λc. Rather we now haveAc = λBc.
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� Since the rank of Π is determined by the number of non-zero eigenvalues, δi, we can
test the rank by means of the trace and maximum eigenvalue statistics which are given as
follows:

ftrace(r) = −T
n∑

i=r+1

ln (1− δ̂i) (74a)

fmax(r, r + 1) = −T ln (1− ˆδr+1) (74b)

where the eigenvalues are ordered such that 1 ≥ δn ≥ δn−1 ≥ · · · ≥ δ1 ≥ 0.
∗ Notice that as these statistics get larger, the less likely it is that the eigenvalues δi are

all equal to zero.
∗ More specially, we have that the trace statistic tests the null hypothesis that the number

of distinct co-integrating relations is less than or equal to r against a general alterna-
tive. Clearly, if all δi’s are zero we have that the trace statistic should be zero.
∗ The maximum eigenvalue statistic tests the null that the number of co-integrating

relations is r versus the alternative that it is r + 1.
� Critical values for these test statistics follow non-standard distributions. You can use the

“urca” package in R to do these tests. The routines therein include the critical values in
their output.
� Therefore, in testing for the number of co-integrating relations, you should start with the

null hypothesis that H0 : r = 0. If you are able to reject this, then try H0 : r = 1, etc,
until you can no longer reject.
� Once you have established the number of co-integrating relations, r, you obtain the co-

integrating relations as the eigenvectors, ci, from the previous step, each associated with
the δ1, δ2, . . . , δr you have selected.

6. Finally, once you have the eigenvectors decided upon, you can restimate the VECM(p) by OLS
or MLE given the following expression:

∆X t = αzt−1 + Γ1∆X t−1 + Γ2∆X t−2 + · · ·+ Γp−1∆X t−(p−1) + εt (75)

where zt−1 = β̂
′
X t−1. Since you now “know” β, the model is identified.
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