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Abstract

This paper considers a vector autoregressive model (VAR) model with stochas-
tic volatility which appeals to the Inverse Wishart distribution. Dramatic changes
in macroeconomic time series volatility pose a challenge to contemporary VAR
forecasting models. Traditionally, the conditional volatility of such models had
been assumed constant over time or allowed for breaks across long time periods.
More recent work, however, has improved forecasts by allowing the conditional
volatility to be completely time variant by specifying the VAR innovation vari-
ance as a distinct discrete time process. For example, Clark (2011) specifies the
elements of the covariance matrix process of the VAR innovations as linear func-
tions of independent nonstationary processes. Unfortunately, there is no empirical
reason to believe that the VAR innovation volatility processes of macroeconomic
growth series are nonstationary, nor that the volatility dynamics of each series are
structured in this way. This suggests that a more robust specification on the volatil-
ity process—one that both easily captures volatility spill-over across time series
and exhibits stationary behaviour—should improve density forecasts, especially
over the long-run forecasting horizon. In this respect, we employ a latent Inverse
Wishart autoregressive stochastic volatility specification on the conditional vari-
ance equation of a Bayesian VAR, with U.S. macroeconomic time series data, in
evaluating Bayesian forecast efficiency against a competing specification by Clark
(2011).
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1 Introduction

Forecasts of macroeconomic time series have become a ubiquitous component of any

policymaker’s toolkit. As such, central banks like the Federal Reserve typically publish

density forecasts for inflation, output, interest rates, or other major indicators. This in-

formation helps both industry and consumers make decisions consistent with economic

fundamentals. However, forecasts themselves are not infallible. In fact, while major ad-

vances have been made in the area of statistical forecasting, there remains much room

for improvement.

This paper resolves some of the relevant issues by proposing a key change in the

volatility process of Vector Autoregressions (VAR) popular among macroeconomists.

Instead of assuming that the time varying VAR innovation covariance structure is driven

by independent nonstationary processes, we employ a stationary multivariate Inverse

Wishart process where the scale matrix is a function of past covariance matrices. Fur-

thermore, we employ four major U.S. macroeconomic data series, that are, the rate

of GDP growth, the inflation rate, the interest rate, and the unemployment rate, re-

spectively.1 A Bayesian approach, employing Markov Chain Monte Carlo methods

(MCMC), is then taken in both estimation and in comparing forecasts between the

benchmark model [Clark (2011)] and our competing Inverse Wishart autoregressive

1Note that the data is taken from the RTDSM database – the same dataset, in fact, as Clark (2011),
our benchmark comparison model (with the exception of the interest rate—see Section 2 on the data set,
below). Moreover, all data is at the aggregate U.S. level. Finally the interest rate employed in our paper
is the 3-month Federal Treasury Bill rate.
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volatility specification [Philipov and Glickman (2006)]. Results suggest that incorporat-

ing the more sophisticated Inverse Wishart autoregressive volatility process can improve

density forecasts in both the short and long-run, with larger improvements as the horizon

increases, despite a small data set and increased parameterization of the model. With

this in mind, the following discussion aims to provide a broader context surrounding the

relevant forecasting issues precipitating this proposed modification to the typical VAR

process volatility specification.

1.1 Background

A fundamental issue facing the production of good forecasts has been that of how to

deal with the changing moments of the conditional forecast distributions. For example,

dramatic changes in U.S. economic volatility have posed a modeling challenge to con-

temporary forecasters, specifically among macroeconomists where Gaussian VAR mod-

els are popular. An analysis of major U.S. economic indicators, such as output growth

over the past 100 years, illustrates that the economy goes through periods of changing

volatility. For example, “The Great Moderation,” which began in the 1980’s, repre-

sented a period of unusually low volatility vis-a-vis both a lengthy prior period of erratic

volatility and the more recent instability we’ve experienced since 2007. In this respect,

both Sims (2001) and Stock (2001), in separate discussions of Cogley and Sargent’s

(2001) paper, criticized the assumption of homoskedastic VAR variances, pointing to

evidence analyzed by Bernanke and Mihov (1998a,1998b), 2 Kim and Nelson (1999),

or McConnell and Perez Quiros (2000). 3 Clark (2011) also finds significant changes in

conditional volatility across time when estimating the latent stochastic volatilities of a

2In the case of monetary policy shocks between 1979 and 1982.
3With respect to the growing stability of output around 1985.
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Bayesian VAR model.

It should not come as a surprise then, that while, traditionally, the volatility of fore-

casting models was assumed constant over time (primarily for the sake of simplicity),

it can be shown that this assumption leads to poor conditional forecasts. For example,

Jore, Mitchell, and Vahey (2010) employ a model averaging approach to U.S. data, with

both equal weights and recursively adapted weights, based on log predictive density

scores across a range of different specifications. Their results show strong support for

a recursive weighting scheme across specifications. More interestingly, however, they

find that during periods of changing macroeconomic volatility, for example when the

U.S. economy transitioned into “The Great Moderation”, the weighting scheme tends

to place more weight on specifications which dynamically account for structural breaks

in volatility. Moreover, they find evidence of poor forecasting given a simple assump-

tion of fixed volatility or equal weights across model specifications. However, it worth

noting that the specifications which do respond to structural change within Jore et al.’s

(2010) framework are limited in that they are restricted to a finite set of possible volatil-

ity states and breaks.

Consequently, it is important to account for changing volatility in any forecasting

specification. Furthermore, if such changes in volatility occurred relatively infrequently

and could be extracted from the data with reasonable statistical significance, then em-

ploying a regime switching specification such as in Jore et al. (2010) might prove suf-

ficient in drawing good forecasts. However, the truth is that, given the complexity of

the economy, changes in volatility probably occur much more frequently and take on

many more values than can be effectively captured by a finite state-space model. For

this reason forecasters have adopted a continuous state-space framework for estimating

the conditional volatility of VAR models as opposed to the finite state regime switch-
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ing type model applied to volatility, as popularized by Hamilton (1989), and employed

by Jore et al (2010). Moreover, the use of the so-called continuous state “Stochastic

Volatility” model has also grown in popularity given its usefulness in modeling a latent

volatility process based on a filtration that includes more than just lagged VAR series

shocks, as for example in the case of a GARCH model or a volatility-in-mean model.4

Both Cogley and Sargent (2005), and Primiceri (2005), allow for time variation in

the conditional covariance matrix across VAR series shocks according to a Stochastic

Volatility law of motion, where the conditional volatility can take on any value in a con-

tinuous positive real set (and covariances can be any real number). Moreover, they also

allow for time variation in the VAR parameters themselves, through another Stochas-

tic Volatility law of motion on their state across time. Clark’s (2011) model, which

represents our benchmark, follows the same structure of the previous two studies, al-

beit without the time varying VAR parameters, which are dropped in favour of tight

Bayesian steady state priors on the deterministic trend parameters (which define the un-

conditional mean of the VAR process) and a rolling sample window which re-estimates

the parameters across time.

Villani (2009) showed that imposing Bayesian steady state prior distributions al-

low us to incorporate prior beliefs about macroeconomic variable steady states into our

model. Furthermore, our belief is that employing this information probably reduces the

need for time varying VAR parameters since much of the time variation in the autore-

gressive parameters (which is not due to a lack of time variation in the shock covariance,

as was the case with Cogley and Sargent (2001)), may in fact be due to a lack of a well

defined trend (see Cogley and Sargent (2005), where they model their VAR intercepts5

4See also Sartore and Billio (2005) for a useful survey of Stochastic Volatility.
5Noting of course that given their formulation, the VAR long-run mean µt is both time varying,

stochastic, and a function of the VAR intercepts, αt, as µt = (I− Φt)
−1
αt.
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as stochastic random walks). Moreover, given the quarterly nature of most macroeco-

nomic time series, small sample sizes are usually the norm. In this situation a tight prior

also plays the role of constraining VAR parameters to aid in the identification of trends

that might not otherwise be readily apparent.6 In this respect, Villani (2009) demon-

strates that informative priors for trends can greatly improve point forecasts, especially

over the longer term horizon where correct specification of the trend of the series is

important—see Clements and Hendry (1998). All of this of course assumes that our

prior beliefs on the nature of the time series trends are the right ones. In fact, whether

or not the trends in macroeconomic data are better modeled as stochastic (i.e. unit roots

with drift) or deterministic is still an open question of debate.

However, most of these studies adopt certain features which could still be improved

upon. For example, many of these studies construct the VAR innovation covariance

dynamics as driven by independent nonstationary processes. Often, some form of fixed

relationship is imposed between the elements of the VAR innovation covariance ma-

trix and the independent processes driving them. This is done in order to reduce the

parameterization of the model, but it may limit the richness of the covariance matrix

dynamics.

The empirical rationale for this choice of specification is not entirely clear since

an analysis of many macroeconomic time series suggest stationary volatility dynam-

ics. Moreover, without explicitly parameterizing time varying covariances matrices, it

is extremely difficult to interpret any volatility spill-over effects, as have been shown to

be prevalent among financial time series from U.S. markets (see for example, Diebold

and Yilmaz, (2008)). Furthermore, studies such as Cogley and Sargent (2005) seem to

provide little explicit justification for the choice of a nonstationary process driving VAR

6In Clark (2011) for example, his rolling sample window is only of size T = 80.
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innovation volatility, other than a brief comment that “the random walk specification is

designed for permanent shifts in the innovation variance, such as those emphasized in

the literature on the growing stability of the U.S. economy.” Ultimately, if the assump-

tion of nonstationarity is misspecified and there does in fact exist volatility spill-over

across macroeconomic time series, then these existing specifications leave something to

be desired.

Given this, the multivariate volatility process can be constructed to directly model

the time varying covariance matrices without simply extending, in an ad hoc way, the

traditional univariate specification to the multivariate case. Moreover, any autoregres-

sive persistence in volatility can be captured and a finite unconditional mean can be

specified. Philipov and Glickman (2006) [see also Chib, Omori, and Asai (2009)] apply

such an autoregressive Inverse Wishart process to analyze the conditional volatility of

financial data and find that it improves volatility forecasts over simpler formulations,

where a number of Bayesian and frequentist measures are applied to compare forecast

accuracy given a variety of competing specifications. It is worth noting, however, that

there exist problems with the Philipov and Glickman (2006) implementation of the In-

verse Wishart autoregressive volatility process as it stands—see Rinnergschwentner et

al (2011) for more details and quite a few corrections. Therefore, in light of Phillipov

and Glickman’s idea of Inverse Wishart covariance modeling, we propose a modified

version of their process which we feel serves the purpose of multivariate forecasting

better than Clark (2011)—see Section 3 below for more details, including differences

between our model and that of Philipov and Glickman (2006).

The rest of the paper is organized as follows. Section 2 discusses the data and the

methodology used to adjust the data for trends. Section 3 discusses both the benchmark

model based on Clark (2011) and the proposed Inverse Wishart process modification
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based on Philipov and Glickman (2006). Section 4 then details the trend specification

and the conjugate priors we impose within the Bayesian framework. Section 5 then

discussion estimation of the model parameters by Gibbs sampler method. Section 6

discusses the method whereby we generate forecast densities for both the VAR levels

and covariance matrices across various horizons. Section 7 details the results of both

the estimation process and the forecast comparisons based on Bayesian analysis of the

predictive likelihoods. Finally, Section 8 summarizes and concludes.

2 Data

We consider four macroeconomic time series generated from aggregate U.S. data, that

are

1. the real output growth,

2. a measure of the inflation rate,

3. the unemployment rate,

4. and an interest rate.

The data source is the same as in Clark (2011): the so-called “real-time” 7 data from

the Federal Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomics

(or “RTDSM”). The total sample size is quite small: only T = 252 data points extend-

ing from the 2nd quarter of 1948 (hereon denoted as 1948:Q2) until the 1st quarter of

2011. Output from the RTDSM database is quarterly real data and measured as either

7That is data that is regenerated annually to conform to new changes in the way we measure macroe-
conomic indicators, or to take into account flaws in some previous set, observed ex-post. Each new issue
is deemed a “vintage.”
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Gross Domestic Product (GDP) or Gross National Product (GNP) depending on the data

vintage.8 Inflation from the RTDSM is also measured quarterly and as either a GDP or

GNP deflator or a price index, depending on the vintage. We measure growth and in-

flation rates as annualized log changes.9 The unemployment rate, however, is available

on a monthly basis so we simply average across each quarter in matching the quarterly

nature of output and inflation. Moreover, it should be noted that the unemployment rate

tends to differ much less dramatically across vintages. Finally, while Clark (2011) em-

ploys the federal funds interest rate series, Primiceri (2005) recommends the nominal

annualized yield on 3-month Federal Treasury Bills, since this series goes back much

further. We therefore adopt the latter series, and again, average across quarters since

the data is monthly.10 Finally, output, inflation, and the unemployment rate are already

seasonally adjusted by their source providers.

Clark and McCracken (2008,2010) also provide evidence that point forecasts of

GDP growth, inflation, and interest rates are improved by specifying the latter two series

as deviations from some form of deterministic trend simulating inflation expectations.

Given this result Clark (2011) adopts the Blue Chip Consensus forecast produced from

survey data and published by Aspen Publishers Ltd., as a form of long-term inflations

expectations. Unfortunately, as Clark mentions in his online appendix, the data for this

Blue Chip forecast of inflation expectations only extends back to the fourth quarter of

8The RTDSM generates entirely new time series each quarter (deemed “vintages”) based on updated
chain weighting techniques or other improvements. Thus newer vintages represent larger samples than
older ones which were generated at previous dates.

9Since log differences are already continuously compounded, we simply multiply each quarterly value
by 4.

10The 3-month Federal Treasury bill rate series employed is a combination of two
very similar series joined together at June 2000, since the first vintage was discontinued.
“H15/discontinued/H1.RIFSGFPIM03 N.M” is the unique ID for the discontinued series and
“H15/H15/RIFLGFCM03 N.M” is the newer series. Both series are available at the Federal Re-
serve website: http://www.federalreserve.gov/releases/h15/data.htm.
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1979 (i.e. 1979:Q4). Therefore, Clark appends an exponentially smoothed trend from

his inflation series to be beginning of the Blue Chip series in extending it back to 1964.

Clark mentions that despite his attempts at keeping the data “as real time as possible”

by employing every quarterly vintage of inflation data, in the end a trend based on

his most recent vintage (2008:Q4) deviates little from the others. Moreover, as Clark

notes, Kozicki and Tinsley (2001a,2001b) and Clark and McCracken (2008), both sug-

gest that exponentially smoothed trends of the inflation rate match up reasonably well

with survey-based measures of long-run expectations in the data since the early 1980’s.

Given both of these facts, we will simply employ an exponentially smoothed trend of

the inflation rate through the most recent vintage currently available (2011:Q4) in gen-

erating a long-term inflation expectations series, skipping the Blue Chip survey data

entirely and ignoring the previous vintages of inflation data.11

Finally, the unemployment rate series is also detrended by an exponential smoother

(in the same way the inflation rate was detrended in order to generate the long-run

inflation expectations [see footnote 11]).

Therefore, to summarize:

1. GDP growth is not detrended (but will be centered on a long-run constant mean

of 3.0% through the prior distribution).

2. The inflation rate is detrended by its exponentially smoothed trend (with a smooth-

ing parameter of α = 0.05).

3. The interest rate (3-month Treasury bill) is detrended around the same trend as in-

11The exponential smoother employed is as follows: y∗t = y∗t−1 +α(yt − y∗t−1), where yt is the actual
data series and y∗t is the exponentially smoothed trend. α is a parameter which can be adjusted depending
on how “tight” we want the trend to follow the data series. For the inflation rate trend used as long-term
inflation expectations, Clark suggests a value of α = 0.05.
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flation (which is supposed to simulate long-term inflation expectations), although

we force a long-run constant mean of 2.5% above trend through the prior on the

unconditional mean.

4. The unemployment rate is detrended by its exponentially smoothed values lagged

one period, with a smoothing parameter of α = 0.02.

See the model and estimation Sections 3 and 5 respectively, for more details as to

how these trends are implemented into the model.

3 Model specifications

The benchmark model is the Bayesian VAR, steady-state prior, Stochastic Volatility

specification (BVAR-SSP-SV) as outlined in Clark (2011). This model employs a

Bayesian V AR(J) formulation for the detrended series, where the covariance matrix

of the VAR innovations is driven by linear functions of separate univariate, indepen-

dent, geometric Brownian motions.
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3.1 Benchmark model

We refer to this benchmark model from Clark (2011) as the Clark specification:

vt = Π (L) (yt −Ψdt) , (1a)

where Π (L) = Ip −
J∑
j=1

ΠjL
j and L is the lag operator, (1b)

vt = B−1Λ0.5
t εt where εt ∼MVNp (0, Ip) , (1c)

Λt = diag(λ1,t, λ2,t, . . . , λp,t), (1d)

ln (λi,t) = ln (λi,t−1) + ξi,t, ∀i = 1, . . . , p, (1e)

and ξi,t ∼ i.i.d. N(0, ϕi), ∀i = 1, . . . , p. (1f)

The first equation, (1a), is a vector autoregressive model applied to the macroeco-

nomic series, adjusted for trends. The trends have to be estimated by means of the Ψ

matrix. More precisely, we introduce the state variables dt as in Villani (2009). The

state variables can be chosen in a number of ways.12 The yt admits a time varying un-

conditional mean, µt = Ψdt, where Ψ is a p × q matrix and dt is a q × 1 vector of

deterministic trends.

Π(L) is the matrix lag-polynomial and vt denotes the innovations of the process

(yt). The second equation, (1c), highlights the form of the stochastic volatility of the

12For example, if dt = 1,∀t, i.e. takes on a single constant value for all time periods, then Ψ is
a vector of regression constants, the values of which determine the time invariant long-run means of
the autoregressive levels processes, yt. However, if for example, dt = t, then the elements of the
vector Ψ represent the slope coefficients of a linear time-trend relationship shared by each of the yt

series. Furthermore, if dt = [t, f(t)] for example, where f(t) is perhaps some nonlinear function of t,
then Ψ is now a matrix of “factor loadings,” the elements of which reflect how the time varying long-
run means of each process are expressed as a linear combination of both the linear and nonlinear time
trend, simultaneously. This approach to modeling the unconditional levels first-order moment allows for
greater flexibility. For example, we could incorporate a pre-exponentially smoothed trend as one possible
nonlinear function of time f(t) as above. See Section 4 for more details.
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innovations. The stochastic volatility is V ar[vt|Λt] = B−1ΛtB
−1′ = Γt, and condi-

tionally standardized innovations (εt) are i.i.d. Gaussian, for any volatility history. Thus

these standardized innovations are independent of the volatility process Γt.

The dynamic of the volatility process is very constrained, since the serial depen-

dence arises only through the diagonal matrix Λt, not by means of B, which is un-

changing across time. Finally, the natural logarithms of the diagonal elements of the Λt

matrix are assumed to follow independent Gaussian random walks.

A few points of discussion are worth mentioning. First, if λi,t = λi,t−1 for all t,

then the underlying processes, λi,t, that drive the volatility of vt cannot be identified

independently of the B matrix. Moreover, the choice of B being constrained to be

lower-triangular solves the identification problem of identifying the elements of Λt from

those of B−1.

Note that the Clark specification is not invariant to permutations in the asset order

within the VAR. Indeed, without loss of generality, let us consider the bivariate case.

The variance of the innovation vt is

E[vtvt
′
] = E[B−1Λt

0.5εtεt
′
Λt

0.5(B−1)
′
] = B−1Λt(B

−1)
′
= Γt (2a)

=

b11 0

b21 b22


λ1,t 0

0 λ2,t


b11 b21

0 b22

 (2b)

=

(b11)2λ1,t b11b21λ1,t

b11b21λ1,t (b21)2λ1,t + (b22)2λ2,t

 , (2c)

where bij , i, j = 1, 2 denote the elements of the B−1 matrix.

Therefore, the variance of the innovation of the first series and the covariance be-

tween the two innovations depend only on the process λ1,t. However, the variance of
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the second series depends on both processes λ1,t and λ2,t. Therefore, shocks to the pro-

cesses ξi,t have asymmetric effects on the variances of the innovations v1,t and v2,t. This

asymmetry is chosen arbitrarily by our order of assignment of the series to the VAR.

In theClark specification, the volatility and covolatility processes are nonstationary.

By the properties of the Gaussian random walk, we get

ln(λi,t)| ln(λi,0) ∼ N [ln(λi,0), tϕi]. (3)

We deduce that

E[λi,t|λi,0] = λi,0 exp

(
tϕi
2

)
. (4)

On average we get an exponential rate of explosion of the diagonal elements of the

matrix Λt. If ϕi > ϕj , say, the volatility of series i becomes, asymptotically, infinitely

larger than the volatility of series j. And so as t → ∞ we have that, conditional

on past information, the process λi,t is divergent (i.e. explosive). This result implies

that forecasts of the VAR innovation covariance matrices will have explosive elements,

which is not a suitable property of Clark’s model.

However, all is not lost; a similar type of argument shows that if we respecify the

λi,t process as

ln(λi,t) = zi,t = α + βzi,t−1 + ξi,t, (5)

then for |β| < 1 the process λi,t is now convergent with unconditional mean

E[λi,t] = exp{ α

1− β
+

ϕi
2(1− β2)

}. (6)
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3.2 Alternative volatility process specification

As an alternative to the Clark specification, we propose respecifying the volatility pro-

cess to more easily account for spill-over effects in covariance across time, through the

use of a multivariate Inverse Wishart specification.

While in the Clark specification the nonstationary λi,t processes drive the covariance

dynamics, Γt, through the lower-triangular B matrix, the Inverse Wishart model speci-

fies the dynamics of the latent covariance matrices directly. Fundamentally, the Inverse

Wishart process implies stationary covariance matrix dynamics. Therefore, the Inverse

Wishart process also allows us to formulate the covariance matrix process as autore-

gressive with a finite unconditional mean that exists under certain conditions defined

below.

The Inverse Wishart Stochastic Volatility (IWSV ) model, is given as follows:

vt = Π (L) (yt −Ψdt) , (1a)

vt|Σt,yt
∼MVNp(0,Σt), (7a)

Σt|Σt−1,yt
∼ IWp(ν,St−1), (7b)

where St−1 =

(
CC

′
+

K∑
k=1

AkΣt−kA
′

k

)
(ν − p− 1) , (7c)

where y
t
, for instance, denotes the set of current and lagged values of yt, and IWp(ν,S),

denotes the Inverse Wishart distribution with dimension p, degree of freedom (i.e. shape

parameter) ν, and scale matrix S.13 The specification of the scale matrix in (7c) is the

same as in the multivariate ARCH models considered in Engle and Kroner (1995). In

particular, the p × p matrices, C and Ak, k = 1, . . . , K, are identified if C is lower

13A stochastic, symmetric, positive-definite matrix Σ follows the Inverse Wishart distribution: Σ ∼
IWp(ν,S), if and only if Σ−1 follows the Wishart distribution: Σ−1 ∼Wp(ν,S

−1).
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triangular with strictly positive elements and if the top left element of each Ak are

strictly positive.

The Inverse Wishart distribution is a continuous distribution for stochastic, symmet-

ric, positive-definite matrices [see e.g. Press (1982)]. The joint density function of the

Inverse Wishart distribution has the simple analytic expression given as:

f(Σ; ν,S) =
|det(S)|ν/2|det(Σ)|− ν+p+1

2

2
vp
2 Γp(ν/2)

exp [−1

2
Tr
(
SΣ−1

)
], (8)

where Tr(·) denotes the trace operator and Γp(·), the multivariate Gamma function.

The dynamics of the stochastic volatility matrix given in (7c) do not involve lagged

values of the series variable (yt). Thus, the stochastic volatility is exogenous and the

IWSV specification assumes no leverage effects.

From the properties of the Inverse Wishart distribution, we deduce the first and

second-order conditional moments of the volatilities [Press (1982)]:

E[Σt|Σt−1] =
St−1

ν − p− 1
= CC

′
+

K∑
k=1

AkΣt−kA
′

k, (9a)

V ar[σij,t|Σt−1] =
(ν − p+ 1) s2ij,t−1 + (ν − p− 1) sii,t−1sjj,t−1

(ν − p)(ν − p− 1)2(ν − p− 3)
, (9b)

and Cov[σij,t, σkl,t|Σt−1] =
2sij,tskl,t + (ν − p− 1) (sik,tsjl,t + sil,tskj,t)

(ν − p) (ν − p− 1)2 (ν − p− 3)
, (9c)

where σij is the ijth element of Σt and sij,t−1 is the ijth element of St−1.

This specification is similar to that in Philipov and Glickman (2006) although we

modify it slightly. For one, we add the constant matrix CC
′ to the scale matrix ex-

pression (7c) in order to allow for a non-zero unconditional mean of the volatility pro-

cess. Secondly, we add a number of lags K instead of just one. Finally, Philipov and
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Glickman (2006) employ an extra parameter, d, to allow for a geometric autoregressive

recursion of varying rates, as opposed to the fixed arithmitic average employed here.

For instance, they consider the similar model with autoregressive lag order set to 1, but

allow for the lagged effect to be taken account by means of a Σt−1
d matrix:14

St−1 = νA−1/2
′
Σt−1

dA−1/2 (10)

Note, the purpose here is not to improve on the Philipov and Glickman model, but

rather to suggest something similar as a useful alternative to Clark (2011) in terms of

forecasting.

At this point we present weak stationarity conditions of the IWSV volatility pro-

cess.

Proposition 3.1. Existence of the unconditional mean of the IWSV process

The unconditional mean of the IWSV process exists if and only if all the

eigenvalues of the matrix Υ =
∑K

k=1 Ξk are less than 1 in modulus. In this

case the unconditional mean is given by:

E [σt] =(Ig −Υ)−1c, (11)

where g = p(p+1)
2

, c = vech
(
CC

′)
, σt = vech (Σt) , and Ξi =

L (Ai ⊗Ai) D. The existence of the unconditional mean is a necessary

condition for (weak) stationarity.

14Note that in Philipov and Glickman (2006) the use of notation is different. For example, they have
that Σt

−1|ν,St−1 ∼ Wp(ν,St−1), where St−1 = 1
νA1/2

(
Σt−1

−1)d A1/2′ . Therefore, this implies
that Σt|ν,S−1t−1 ∼ IWp(ν,S

−1
t−1) and so depends on the inverse scale matrix instead of the scale matrix.

Therefore our scale matix is the inverse of theirs.
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Note that in this case L and D are the elimination and duplication matrices respectively

so that vec (X) = Dvech(X) and vech (X) =Lvec(X).15

Proof of Proposition 3.1

From equation (9a) we have:

Σt = CC
′
+

K∑
k=1

AkΣt−kAk
′
+ Zt, (12)

where Zt is a mean zero matrix of weak white noises.

First, by recursive substitution of Σt−i, i = 1, . . . we can show that the right hand

side of (12) converges in expectation. Next, taking unconditional expectation Σ̂ =

E[Σt] we have:

Σ̂ = CC
′
+

K∑
k=1

AkΣ̂Ak
′
. (13)

Vectorizing above we have:

vec(Σ̂) = vec(CC
′
) +

K∑
k=1

vec(AkΣ̂Ak
′
) (14a)

= vec(CC
′
) +

K∑
k=1

(
Ak ⊗Ak

′
)
vec(Σ̂) (14b)

⇒ Lvec(Σ̂) = Lvec(CC
′
) +

K∑
k=1

L
(
Ak ⊗Ak

′
)

Dvech(Σ̂) (14c)

⇒ vech(Σ̂) = vech(CC
′
) +

K∑
k=1

Ξkvech(Σ̂). (14d)

15The duplication matrix is the unique n2 × n(n + 1)/2 matrix, D, which, for any n × n symmetric
matrix X, transforms vech(X) into vec(X), where vec(·) is the vectorization operator which maps from
the n × n dimensional space to the n2 × 1 dimensional space and vech(·) is the operator that omits the
lower (resp. upper) triangle of the symmetric matrix X so that it maps from the n× n dimensional space
into the n(n+ 1)/2× 1 dimensional space. The elimination matrix performs the inverse operation: it is
the unique n(n + 1)/2 × n2 matrix, L, which, for any n × n symmetric matrix X, transforms vec(X)
into vech(X). See Magnus and Neudecker (1980) for more details.
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And so Proposition 3.1 follows.

The condition in Proposition 3.1 is a necessary condition for stationarity, but not a

sufficient condition. In a Bayesian approach, we are interested in the whole distribution,

not in the mean only. Thus strict stationarity, that is concerning the entire distribution,

has to be considered, not only weak stationarity. Unfortunately, necessary and sufficient

conditions for the strict stationarity of the autoregressive Inverse Wishart process have

not yet been derived in the literature.16

3.3 Comments

The advantages of such a change to the specification of the volatility process defined by

the IWSV model are as follows:

1. The direct specification of the dynamics of the latent stochastic volatility process,

Σt, precludes the need to specify a B matrix.

2. These autoregressive dynamics between volatility series are more easily inter-

preted as volatility spill-over effects, since we no longer need to disentangle the

convoluted relationships implied by the B matrix and the independent volatility

driving processes, λi,t.

3. The model is now invariant to permutation of the order of the observed series.

4. As was shown, it is easy to derive conditions ensuring the existence of the uncon-

ditional mean of the processes (Σt) and (yt). However, this condition is a weak

one and the condition of strong stationarity remains to be shown.
16Whereas they have been derived for the analogue Wishart autoregressive process (WAR) [see

Gourieroux et al. (2009)].
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5. The assumption of stationary volatility dynamics resolves a problem with fore-

casts, since assuming nonstationary volatility would make our forecast density

prediction intervals “blow up” as the horizon increases.

In both the Clark and IWSV specifications, the volatility processes are coupled

to the vector autoregressive process, with trends, for the observed variables yt. Both

specifications have a state-space representation with the V AR(J) as observation equa-

tion and the IWSV or Clark as the state equation, the covariance being the “state” of

the model. In control engineering, a state-space representation is a mathematical model

of a physical system as a set of input, output and state variables related by first-order

differential equations. However, in this case the model is not a linear state-space repre-

sentation [see the system in (7)]. Therefore, the standard Kalman Filter algorithm for

extracting the state from the noise will not be optimal.

Note that our Inverse Wishart model can be inverted to show the precision matrix as

Wishart distributed (omitting the CC
′ constant matrix for simplicity) as

Σt
−1|Σt−1 ∼ Wp(ν,

(
K∑
k=1

AkΣtAk
′

)−1
), (15)

or after a change of notation Ωt = Σt
−1 as

Ωt|Ωt−1 ∼ Wp(ν,

(
K∑
k=1

AkΩt
−1Ak

′

)−1
). (16)

However, an autoregressive Wishart matrix process, Ωt, say, is usually written as

[Gourieroux et al. (2009)]

Ωt|Ωt−1 ∼ Wp(ν,

(
K∑
k=1

AkΩtAk
′

)
). (17)
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And so, the only difference between the two models is the specification of the scale ma-

trix: as an arithmetic average in the case of the standard Wishart autoregressive process,

or as a harmonic average in our case. Therefore, when the lag order of the autoregres-

sion K > 1, we have an asymmetry between the behaviour of the precision matrix and

covariance matrix processes. Of course, this issue does not affect Philipov and Glick-

man (2006) since their autoregression is only of order 1.

Since we have that

E

[
1

x

]
≥ 1

E[x]
⇔
(
E

[
1

x

])−1
≤ E[x], (18)

we can expect that the harmonic average is smaller than an arithmetic average (even in

the case of matrices, but we omit the proof). It is possible that this inequality maybe

useful in deriving sufficient conditions for strict stationary for the IWSV autoregressive

model.

As an aside, Fox and West (2011) also propose a novel class of stationary covariance

matrix processes which exploit properties of Inverse Wishart partitioned matrix theory.

Specifically, by augmenting the parameter state-space they show that we can easily ob-

tain representations for the terms in a factorization of the joint density of covariance

matrices across time, f(ΣT , . . . ,Σ0) =
∏T

t=1 f(Σt,Σt−1)
∏T

t=2 f(Σt−1). This expres-

sion defines a stationary first-order Markov process on the covariance matrices across

time, with the marginal distribution given as Σt ∼ IWq(ν + 2, νS), and given the fol-

lowing augmented matrix

 Σt φ
′
t

φt Σt−1

 ∼ IW2q

ν + 2, ν

 S SF
′

FS S


 , (19)
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where φt = ΥtΣt−1, we have that by Inverse Wishart partitioned matrix theory the

covariance process can be written as an AR(1) process Σt = Ψt + ΥtΣt−1Υ
′
t, with Υt

representing a random coefficient matrix and Ψt representing an innovation (note both

Υt and Ψt are latent variables). Under this framework the conditional density Σt|Σt−1

is not of an analytical form but can nonetheless be explored theoretically. See Fox and

West (2011) for more details.

4 Priors

The Bayesian estimation framework employed requires of us to specify certain prior be-

liefs upon the parameter set and this is done through the specification of prior densities.

In most cases the prior densities are chosen to be conditionally conjugate—that is, they

are chosen of a known family such that the conditional posterior density, i.e. the density

of a particular parameter, conditional on both the other parameters and the data, works

out to be of the same family as the prior. This facilitates estimation greatly since the

need for arbitrarily choosing a suitable proposal density, as in a Metropolis-Hastings

algorithm (MH), is avoided completely—in fact, in this case the proposal is always ac-

cepted and the MH algorithm is just a special case of the Gibbs sampler [Greenberg

(2008), pg.101]. The following Sections outline the specific families the prior densities

take, as well as chosen values for hyperparameters.

Clark and IWSV specifications share the same dynamic model for the observed

macroeconomic time series, yt, given the volatility path, with parameters

θ1 = {Ψ,Π1, . . . ,ΠJ}, but different dynamics for the volatility process, with parame-

ters θ2 = {B,Φ} for the Clark model17 and θ2 = {C, ν,A1, . . . ,AK} for the IWSV

17Where Φ is the diagonal matrix with the variances of the λi,t volatility driving process shocks, ϕi,
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model. We assume that parameters θ1 and θ2 are independent under the prior distribu-

tions. We describe below in greater detail the priors for both θ1 and θ2.

4.1 VAR(J) priors

i) Prior on Π

The prior for the VAR coefficients Πj, follow a modified Minnesota specification

(see Litterman (1986)). In this case we assume that the prior for the joint density of

Π
′
= [Π1,Π2, . . . ,ΠJ] is Normal, Π ∼ N [µΠ,ΞΠ], where the autoregressive order J

is assumed known. Moreover, the prior mean of the joint density of the elements of Π

assumes that the VAR follows an AR(1) process, i.e. means of the prior density for all

the elements of autoregressive matrices beyond lag 1 are set to 0. Since GDP growth

displays more autoregressive decay in levels, we set its first-order autoregressive prior

mean to 0.25 and set the others to 0.8. Cross equation prior means, that is, the means

for the prior density of the off-diagonal elements of Πik,1 for i 6= k, are also set to 0.

Let us now explain how the variances and covariances of the prior are chosen. Min-

nesota “own equation” variances, that are, the variances of the prior density for the

main diagonal elements of Πj, shrink as a harmonic series for each additional lag (i.e.

ωii,j = 0.2
j

for j = 1, . . . J) . Also, “cross equation” variances are typically set to

ωik,j = 0.5(0.2
j
× σ∗i

σ∗k
), where σ∗i is the estimated standard error of the residuals from a

univariate autoregression on the ith macroeconomic series with six lags, pre-fit to the

data in advance. For simplicity, however, we will employ ωik,j = 0.5(0.2
j

) instead, that

is, the variance of the prior density for the i, kth element of Πj.

along its main diagonal.
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ii) Prior on Ψ

Priors on the deterministic parameters of Ψ defining the trend are extremely impor-

tant given the modest sample size employed and are chosen as to influence the series’

trends toward certain reasonable values. In the case where the trend is assumed con-

stant: dt = 1, and Ψ is a vector. This dramatically reduces the number of parameters

that need to be estimated as the number of series increases. However, it places a prior

constraint on the model by assuming that the selected constant trend chosen is correct.

On the other hand, if we allow the trends to enter individually through the dt term where

dt=[1, f(t− 1), g(t)]
′ , and f(t) and g(t) are exponentially smoothed trends for the un-

employment rate and inflation growth respectively, then Ψ becomes a p×3 matrix from

which we can statistically evaluate whether the relevant diagonal elements are indeed

equal to 1 (which would imply the trends are in fact correct).

In either case we assume that the prior for the joint density of the elements of Ψ

is Normal, Ψ ∼ N [µΨ,ΞΨ]. Moreover, we assume that the priors for Ψ and Π are

independent. GDP growth is influenced to have a constant trend around 3.0% through

its prior mean, while inflation and unemployment are influenced to center around their

trends, g(t) and f(t − 1) which are exponentially smoothed values of inflation growth

and the unemployment rate respectively (see Section 2). Finally, the interest rate is cen-

tered around the same trend as inflation; however, we also add to this the constant trend

of 2.5% to reflect the real long-run rate. More precisely, for the macroeconomic series

taken in order as: GDP growth, the inflation rate, the interest rate, and unemployment
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rate, the prior mean of Ψ will take the form



3.0

0

2.5

0


(20)

when the trends are constant, and



3.0 0 0

0 0 1

2.5 0 1

0 1 0


. (21)

when the trends are driven by the 3-dimensional dt.

The prior variances of Ψ are set as follows: GDP growth, 0.2 (0.3); inflation, 0.2

(0.3); the interest rate, 0.6 (0.75); and unemployment, 0.2 (0.3)—where these values

have been adopted directly from Clark (2011). The first values, not in parenthesis, rep-

resent those employed in the recursive estimation scheme and are tighter since the grad-

ually increasing sample size tends to limit the influence of the prior. Prior covariances

for the elements of Ψ are set to zero.

4.2 Volatility model priors

i) Clark model

For the Clark (2011) model, priors on the volatility components of the model are as

follows. The prior density for the elements of B is multivariate Normal and the prior
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for each of the ϕi, i = 1, . . . , p is Inverse Gamma, and under the prior, the elements of

B and the ϕi, i = 1, . . . , p, are independent. Finally, we borrow numerical values of the

hyperparameters directly from Clark’s paper [ Clark (2011) pg.331].

ii) IWSV model

For the Inverse Wishart autoregressive specification, we employ independent mul-

tivariate Normal priors on both Ak, ∀k and C, and independently, a Gamma prior on

(ν − p). The Gamma prior is set with hyperparameters α = 30, β = 2 (shape and rate)

as to represent ignorance of its value while the multivariate Normal priors for the C and

Ak’s are set somewhat loosely to let the data speak. In this respect, prior means for the

main diagonal of C are 0.3 and the main diagonal of A1 is set to 0.9 (both prior densi-

ties for the off-diagonals elements have zero means, and the means of all other elements

of the Ak, k = 1, . . . , K matrices are set to 0). Variances are set equal to 0.002 (i.e.

standard deviation of about 0.045), and all covariances are set to zero.

5 Model estimation

Both Clark and IWSV model specifications are estimated within the Bayesian frame-

work using Markov Chain Monte-Carlo (MCMC) techniques, particularly the Gibbs

sampler.

i) Gibbs sampler

Indeed, by selecting prior distributions in conjugate families, we can derive closed

form expressions of conditional posterior distributions. For expository purposes, let us

consider a case in which the set of parameters can be divided into two subsets, θ1 and

θ2, such that we know the expression of conditional posterior distributions p(θ1|θ2, y)

and p(θ2|θ1, y). Let us also assume that it is easy to draw in these conditional posterior
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distributions. In general, it is not possible to obtain the closed form expression for the

joint posterior distribution p(θ1, θ2|y).

The Gibbs sampler is a method to derive numerically a good approximation of the

joint posterior, while also allowing us to draw in this posterior. The idea is to consider

the Markov process θ(m), defined recursively by:

1. θ(m)
1 is drawn in p(θ1|θ(m−1)2 , y),

2. θ(m)
2 is drawn in p(θ2|θ(m)

1 , y).

For large m ≥ M , the values θ(m) will approximately follow the invariant distribution

of the Markov process θ(m), that is, the joint posterior. In particular, θ(m), for large m,

is a drawing in p(θ1, θ2|y).

This approach is easily extended when the set of parameters is divided into more

than two subsets [see below the sequence used for both the Clark and IWSV specifi-

cations].

ii) Augmented parameters

In a Bayesian framework there is little difference between parameter θ and latent

volatilities Σt, t = 1, . . . , T . They are both unobserved and stochastic. Therefore, the

Gibbs sampler can be applied jointly to θ and ΣT = {Σ1, . . . ,ΣT} to reconstitute the

joint density p(θ,ΣT|yT). This joint density has two components, that are p(θ|yT),

which is the posterior distribution of the parameter, and p(ΣT|θ,yT), which is the fil-

tering distribution of the sequence of latent volatilities.

iii) Gibbs sampler steps - Clark (2011)

Specifically, given the parameters described in the Section 3.1 above, we have the

following Gibbs sampling steps for the Clark (2011) benchmark model, where the

volatility driving process ΛT is introduced as an augmented parameter to be estimated.
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All conditional posteriors below are conditional on the data, yT, left unstated below for

ease of exposition.

1. Draw the autoregressive coefficients Π
′
= [Π1,Π2, . . . ,ΠJ] of the VAR, condi-

tional on Ψ, ΛT, B, and Φ=diag(ϕ1, ϕ2, . . . , ϕp), given a conditionally conju-

gate multivariate Normal prior, Π ∼ N(µΠ,ΞΠ).

2. Draw the trend coefficients Ψ of the VAR, conditional on Π, ΛT, B, and

Φ=diag(ϕ1, ϕ2, . . . , ϕp), given a conditionally conjugate multivariate Normal

prior, Ψ ∼ N(µΨ,ΞΨ).

3. Draw the elements of B (lower triangular with ones in the diagonal) conditional

on Π, Ψ, ΛT, and Φ=diag(ϕ1, ϕ2, . . . , ϕp), given Normal, independent, priors

on each of the elements of the B matrix.

4. Draw the elements of the volatility driving process Λt for each time t = 1, . . . , T

in sequence, each conditional on Λ\t,Π, Ψ, B, and Φ=diag(ϕ1, ϕ2, . . . , ϕp),

where the notation \t denotes the set of all matrices except that at time t. A

Metropolis-Hastings-within-Gibbs step is required here since the posterior dis-

tribution is of an unknown family.

5. Draw the diagonal elements of Φ conditional on Π,, Ψ, B, and ΛT. We as-

sume conditionally conjugate, independent Inverse-Gamma priors on each ϕi ∼

IG(γ
2
, δ
2
).

iv) Gibbs sampler steps - IWSV model

Similarly, we have the following Gibbs sampling steps for the IWSV specification,

where the covariance matrices Σt are introduced as augmented variables. Again, all

conditional posteriors below are implicitly conditional on the data, yT.
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1. Draw the slope coefficients Π
′

= [Π1,Π2, . . . ,ΠJ] of the VAR, conditional on

Ψ, ΣT, Ak, ∀k, C, and ν, given multivariate Normal prior, Π ∼ N(µΠ,ΞΠ).

2. Draw the steady state coefficients Ψ of the VAR, conditional on Π, ΣT, Ak, ∀k,

C, and ν, given multivariate Normal prior, Ψ ∼ N(µΨ,ΞΨ).

3. Draw the parameters Ak, ∀k,C, and ν jointly, conditional on Π, Ψ, and ΣT.

Multivariate Normal priors are imposed on the Ak matrices, and the C matrix. A

Gamma prior is imposed on the degree of freedom, ν. A Metropolis-Hastings-

within-Gibbs step is required here since the posterior distribution is of an un-

known family.

4. Finally, draw Σt conditional on Σ\t,Ak, ∀k,C, ν, Π, and Ψ, ∀t in sequence.

A Metropolis-Hastings-within-Gibbs step is required here since the posterior

distribution is of an unknown family.

The steps above are derived in greater detail within Appendix 11.

Under the IWSV process, the direct estimation of the latent stochastic volatility

covariance matrix process increases the number of latent parameters from Tp to Tp(p+

1)/2, raising quickly the curse of dimensionality as an issue as p increases. Moreover,

the number of regular parameters goes from p(p−1)
2

+ p to p(p+1)
2

+Kp2 + 1, although in

this latter case many possible reparameterizations are possible to reduce the number of

regular parameters the IWSV must estimate.

Moreover, since conditionally conjugate priors are unknown at this point for the

conditional posterior densities of the IWSV regular parameters, a Metropolis-Hastings

random walk sampler is employed. This additional Metropolis-Within-Gibbs step re-

quires some extra work to obtain reasonable draws.
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Finally, the estimation methods employed for both specifications suffer from the fact

that they draw the latent stochastic volatility covariance matrices sequentially across

time rather than jointly. Clearly, if the volatilities Σt are significantly correlated across

time, joint sampling would prove superior. This is since the conditional posterior den-

sity may suffer from low variance, leading to draws which may fail to traverse the full

parameter support in a reasonable amount of time. See Greenburg (2008) pg.94 for a

simple example illustrating the problem.

6 Forecasts

6.1 Point and interval forecasts

Given the Bayesian model estimation framework employed, forecasts can be easily ob-

tained with little extra computational overhead. Moreover, the Bayesian framework

provides an intuitive way of comparing forecast accuracy.

Generally, the desired predictive density of some forecasted value yf given data set

y is

p (yf | y) =

∫
p (yf | θ, y) π (θ | y) dθ (22)

where p(yf |θ, y) is the predictive distribution given parameter θ and data y, and π(θ|y)

is the posterior distribution of θ. When the value yf represents the true outcome of the

data series known ex post, given the particular model formulation estimated ex ante,

the left hand side is known as the predictive likelihood of the given outcome value yf

[Geweke and Amisano (2010)].

In our specification, formula (22) can be applied to forecast a future path yT+1, . . . ,yT+h
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at date T . Moreover, we can introduce explicitly the stochastic volatility. We get:

p(yT+1, . . . ,yT+H|yT) =

∫
. . .

∫
p(yT+1, . . . ,yT+H,ΣT+1, . . . ,ΣT+H, θ,ΣT|yT)·

dθdΣT

H∏
h=1

dΣT+h (23)

where again, yT = {yT, . . . ,y0}. By factorizing the joint density within the integral in

(23), we get

p(yT+1, . . . ,yT+H|yT) =

∫
. . .

∫
p(yT+1, . . . ,yT+H|ΣT+H,yT, θ)

· p(ΣT+1, . . . ,ΣT+H|ΣT,yT, θ)p(ΣT, θ|yT)dθdΣT

H∏
h=1

dΣT+h. (24)

We already possess draws from p(ΣT, θ|yT) = p(ΣT|θ,yT)p(θ|yT) by using the

Gibbs sampler with augmented parameter. Therefore, each time we draw an mth value

from the Gibbs sampler for θ(m) and ΣT
(m), we can simultaneously draw sequences

{yT
(m), . . . ,yT+H

(m)} and {ΣT
(m), . . . ,ΣT+H

(m)} given the parameterization of the

model and its implied conditional normality.

To summarize, we have the following steps:

1. Obtain a draw for θ(m) and ΣT
(m) from the Gibbs sampler.

2. Conditioning on these values and the data, draw a covariance matrix ΣT+1
(m)

using the chosen volatility specification, either Clark, or IWSV .

3. Draw yT+1
(m) from the V AR(J) Gaussian level process.

4. Repeat again from step (1), drawing the next horizon, until we finish drawing for

horizon T +H .
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These steps above provide a draw from the joint conditional density

p(yT+1, . . . ,yT+H,ΣT+1, . . . ,ΣT+H, θ,ΣT|yT). (25)

These steps are repeated providing a sequence of draws for m sufficiently large, M0 +

M > m ≥M0, say, with M0 and M large.

The sequence of draws can be used for approximating the joint predictive distribu-

tion, p(yT+1, . . . ,yT+H|yT+1), or some of its moments. Let us focus on the point and

interval forecasts.

For the purposes of forecasting, we wish to consider both the conditional mean and

quantiles of the predictive density

p(yT+1, . . . ,yT+H|yT) = p(yT+H|yT+H−1) . . . p(yT+1|yT). (26)

i) Point forecasts

For the short-term horizon a consistent estimator of the mean of E[yT+1|yT] is its

sample counterpart
1

M

M0+M∑
m=M0

yT+1
(m), (27)

computed on the final iteration of the Gibbs sampler.

Moreover, by the Law of Iterated Expectations, we have:

E[yT+1|yT] = E[E[yT+1|ΣT,yT, θ]|yT]. (28)
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Therefore, another consistent estimator of E[yT+1|yT] is

1

M

M0+M∑
m=M0

E[yT+1|ΣT
(m),yT, θ

(m)], (29)

as long as the conditional expectation E[yT+1|ΣT,yT, θ] has an analytical form.

Moreover, again by the Iterated Law of Expectations, the results above can be gen-

eralized to any horizon h = 1, 2, . . . ., H since:

E[E[E[yT+h|yT+h−1, . . . ,yT+1,yT]|yT+h−2, . . . ,yT+1,yT] . . . ] = E[yT+h|yT].

(30)

ii) Interval forecasts

Interval forecasts at horizon h can be derived by estimating the quantiles of the pre-

dictive density p(yT+h|yT). Let us look for a prediction interval with lower bound a

α-quantile and upper bound the (1− α)-quantile. This forecast interval can be approx-

imated as follows:

1. Rank in increasing order the yT+h
(m), m = M0 + 1, . . . ,M .

2. The approximated confidence interval admits as lower bound the yT+h
(m) at rank

αM and an upper bound as the yT+h
(m) at rank (1− α)M .

6.2 Forecast comparison

i) Sample windows

The focus of this paper is to compare forecast performance. Forecast comparisons

are made by employing a limited subsample of the data for estimation purposes, thus

leaving some latter part of the data available as the “true” outcome of the macroeco-
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nomic series. Furthermore, we do not simply estimate the parameters of the model once,

rather we estimate the parameters a number of times in sequence, n = 1, . . . , N , which

we call “sample windows,” each sample window focusing on a different subsample of

the entire data set.

As in Clark (2011) we employ both “recursive” and “rolling” schemes for these

sample windows. Under each scheme, sample windows are iterated upon: first, a sub-

sample of the entire data set is isolated; we then use this subsample to estimate the

model parameters, forecasts are then generated, and comparisons are made according to

the chosen metrics discussed in this section. Both schemes employ the same subsample

of the data for the first sample window. However, the two schemes differ in how they

deal with later sample windows after the first. Under the recursive scheme, for each

subsequent sample window, one future data point is appended to the end of the subsam-

ple, and so the subsample grows larger as the sequence of sample windows progress.

Under the rolling scheme, the size of the subsample is fixed, and so the subsample shifts

forward in time by one data point for each iteration.

The following Figures 1 and Figures 2 illustrate both the recursive and rolling win-

dow schemes where we have arbitrarily chosen a subsample size of 130 data points for

the initial sample window. Notice how the time index of the last value in the subsam-

ple, T , changes across the iterations of sample windows, n = 1, . . . , N , and so we can

denote them T (n) to show that they depend on the value of n.

ii) Comparing point forecasts

In comparing point forecasts we can employ the mean squared error (MSE) esti-

mator for any forecast horizon h = 1, . . . , H . Forecast errors can be computed where

y∗T+h is the “true” out-of-sample data point at forecast horizon h and the point forecast

E[yT+h|yT] is estimated as described above.
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The mean squared error estimator is given as

MSEh,N =
1

N

N∑
n=1

uT(n)+huT(n)+h
′

(31)

where the expected forecast errorE[yT(n)+h|yT(n)]−y∗T(n)+h is computed for each iter-

ation, n, and where T (n) denotes the end of sample data point. In the case of the rolling

window scheme, the set yT(n) denotes only those data points in the rolling window and

not the entire set of data starting from y1.

The off-diagonals of MSEh,N represent the squared forecast errors across macro

series at horizon h, and the main diagonal elements are the squared forecast errors for

each individual series themselves.

iii) Model fit

The standard Bayesian tool for measuring the overall forecast performance is the

predictive likelihood described above in (22) [Geweke and Amisano (2010)]. The finite

sample approximation, within the context of our model, is given as:

p̂(y∗T(n)+h, . . . ,y
∗
T(n)+1|yT(n)) =

1

M

M0+M∑
m=M0

p
(
y∗T(n)+h, . . . ,y

∗
T(n)+1|ΣT(n)

(m),yT(n), θ
(m)
)

≈ E
[
p
(
y∗T(n)+h, . . . ,y

∗
T(n)+1|ΣT(n),yT(n), θ

)
|yT(n)

]
= p(y∗T(n)+h, . . . ,y

∗
T(n)+1|yT(n)),

(32)

by LLN, where y∗T(n)+h is the true out of sample data point at horizon h. This estimator

gives us an idea of how well the model and parameter estimates “fit” the true out-of-

sample data. That is, given that
{

y∗T(n)+h, . . . ,y
∗
T(n)+1

}
are the actual values observed

ex-post, what is the probability of their occurrence under our model and ex-ante esti-

mated parameters, given the subsample window at iteration n. If one model is more
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congruent with the actual future outcomes than another, its predictive likelihood should

be greater.

When the entire sample data set is known ex-post, we can interpret the sequence of

one-step ahead predictive densities as the marginal likelihood:

p
(
yT

)
=

T ∗−1∏
t=1

p
(
y∗t+1|yt

)
. (33)

However, we would like to generalize (33) to account for our iterative sample window

schemes discussed above. Instead of assuming that the entire data set is known, rather

we will assume that under each sample window, n, only the data yT(n) is known ex-ante

when we estimate the model parameters that define p̂n(·). Then, keeping in mind the

ex-post predictive likelihood as in (32), we can take the product across the N sample

windows to obtain a measure of ex-post fit at the first horizon h = 1:

N∏
n=1

p̂n

(
y∗T(n)+1|yT(n)

)
. (34)

Under the recursive window scheme, the expression (34) is the analog to (33), but where

we take the product across only a subset of the data, t = T (1), . . . , T (N), and where

we employ the changing estimated predictive distribution p̂n(·).

However, under the rolling sample window scheme, it is not clear how to interpret

(34). Moreover, taking the product across sample windows under changing densities and

window schemes forces us to reinterpret (34) not as a density, but purely as a product of

forecast metrics. Therefore, taking logs we can transform the product (34) into a sum

and interpret this metric as an average across dependent forecast attempts. Moreover,

we can also consider robustness of the forecast attempts via sample moments such as
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the variance across sample window forecasts. For example, we have the mean of the

log-predictive likelihoods as:

MLPLh=1,N =
1

N

N∑
n=1

ln
{
p̂n

(
y∗T(n)+1|yT(n)

)}
, (35)

where each term in the sum will hereon be denoted as LPLh=1,n, and the variance is

given as,

V LPLh=1,N =
1

N

N∑
n=1

(
ln
{
p̂n

(
y∗T(n)+1|yT(n)

)}
−MLPLh=1,N

)2
. (36)

Finally, we generalize the above two sample moments to any horizon by replacing the

predictive likelihoods with the ex-post one-step ahead predictive distribution at horizon

h:

p̂n

(
y∗T(n)+h|y∗T(n)+(h−1), . . . ,y

∗
T(n)+1,yT(n)

)
. (37)

That is, the last term in the factorization of the joint predictive likelihood given in (32).

We can compare the Clark and IWSV specifications by looking at how these sam-

ple moments differ across forecast horizons. For example, we could compare the differ-

ence between the two model’sMLPLh,N ’s across horizons h = 1, . . . , H as a means of

comparing the “term structure” of competing forecast performance across the horizons.

Furthermore, this difference can be “decomposed” into a sum of N log-ratios which

can be compared across sample windows n = 1, . . . , N to suggest at which sample

window, n, either model did better, or worse, at forecasting given some fixed horizon

h. This difference, given, say, models A ≡ IWSV and B ≡ Clark is defined, for
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example given h = 1, as

N
(
MLPLAh=1,N −MLPLBh=1,N

)
=

N∑
n=1

ln
{

ˆpA,n

(
y∗T(n)+1|yT(n)

)}
−

N∑
n=1

ln
{

ˆpB,n

(
y∗T(n)+1|yT(n)

)}

=
N∑
n=1

ln

 ˆpA,n

(
y∗T(n)+1|yT(n)

)
ˆpB,n

(
y∗T(n)+1|yT(n)

)
 . (38)

after post multiplication by N . In fact, each log-ratio term in the sum can be interpreted

as the ex-post predictive Bayes factor in favour of model A over model B, at sample

window n.

Bayes factors are the standard Bayesian method of model comparison. The predic-

tive likelihood method represents an inherently Bayesian approach to forecast compari-

son and as such we do not require p-values, since we obtain the finite sample distribution

directly. For more details on Bayesian versus frequentist approaches to forecast gener-

ation and analysis see Geweke and Amisano (2010).

7 Applications

This section will now discuss applications. The first subsection will evaluate the im-

plementation of the Bayesian estimation methodology via simulated data. The second

subsection applies the Clark and IWSV VAR volatility specifications to the macroe-

conomic data set. Specifically, we will endeavour to compare the two models along a

number of dimensions, including: point and interval forecast accuracy, posterior trend

estimation, VAR rate of decay, volatility process behaviour, and estimation of the other

model parameters.
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7.1 Monte-Carlo Analysis

We first perform a Monte-Carlo analysis to provide some insight on the implementa-

tion of the Bayesian methodology. We first generate an artificial data set, following a

IWSV model. This dataset is used within a rolling sample window scheme to iterate a

sequence of estimations of both the Clark and IWSV specifications. The experiment

will provide information on the convergence and accuracy of the IWSV based esti-

mation of the parameters. It will also be used to detect the misspecification of Clark’s

model. Moreover, we will compare forecasts from the misspecified model according to

the metrics discussed in Section 6.2.

i) The Data Generating Process

We simulate 370 data points according to the IWSV model. The selected orders

are 3 for the VAR component, and 3 for the Inverse Wishart component. The parameter
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values are:

C = 0.3Ip, (39a)

A1 =



0.5 0 0 0

0 0.75 0 0

0 0 0.85 0

0 0 0 0.98


, A2 = A3 = 0, (39b)

Π1 =



0.25 0 0 0

0 0.8 0 0

0 0 0.8 0

0 0 0 0.8


, Π2 = Π3 = 0, (39c)

Ψ =

[
3.0 0 2.5 0

]′
, dt = 1,∀t, so no trend, and (39d)

ν = 30. (39e)

This model implies the following relationships among the series variables, yi,t, i =

1, . . . , 4:

y1,t = 3.0 + 0.25 (y1,t−1 − 3.0) + v1,t, (40a)

y2,t = 0.8y2,t−1 + v2,t, (40b)

y3,t = 2.5 + 0.8 (y3,t−1 − 2.5) + v3,t, (40c)

and y4,t = 0.8y4,t−1 + v4,t. (40d)

The following relationship on the conditional scale matrix, St−1, of the Inverse Wishart
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covariance matrices Σt, is given as:

St−1 =

0.09 + 0.25σ2
11,t−1 0.375σ12,t−1 0.425σ13,t−1 0.49σ14,t−1

0.375σ21,t−1 0.09 + 0.5625σ2
22,t−1 0.6375σ23,t−1 0.735σ24,t−1

0.425σ31,t−1 0.6375σ32,t−1 0.09 + 0.7225σ2
33,t−1 0.833σ34,t−1

0.49σ41,t−1 0.735σ42,t−1 0.833σ43,t−1 0.09 + 0.96σ2
44,t−1


· (30− 4− 1), (41)

where the scale matrix is given as in equation (7c) above, and the σij,t−1 are the ele-

ments of Σt−1. Moreover, from equation (9a), the conditional mean of the stochastic

covariance matrix Σt is given as St−1/(30− 4− 1) = CC
′
+ A1Σt−1A1

′
. Finally, by

applying Proposition 3.1, the unconditional means of the stochastic volatilies are given

as:

σ2
11 = 0.12, σ2

22 = 0.21, σ2
33 = 0.32, and σ2

44 = 2.25, (42)

where the stochastic covolatilities have zero unconditional mean.

From the proof of Proposition 3.1 the IWSV model can be written as:

Σt = CC
′
+ A1Σt−1A1

′
+ Zt, (43)

where Zt is a zero mean matrix of weak white noises. Furthermore, this expression

can be vectorized and rewritten in terms of the autoregressive coefficient matrix Υ =

L (A1 ⊗A1) D as:

vech(Σt) = vech(CC
′
) + Υvech(Σt−1) + vech(Zt). (44)
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The persistence in the (co)volatility series are therefore measured by looking at the

eigenvalues of the 10 × 10 dimensional Υ matrix that determines the rate of rever-

sion to the unconditional mean, or response, given a unit impulse shock, Zτ , to the

(co)volatilies, at time τ . Since, the matrix Υ is diagonal, we can easily solve for the

eigenvalues as:

{0.250, 0.375, 0.425, 0.490, 0.563, 0.638, 0.723, 0.735, 0.833, 0.960} . (45)

The largest eigenvalue is close to a unit root, and so it will influence σ2
44,t to exhibit the

slowest rate of autoregressive decay.

The following figures describe the simulated data set. Figure 3, provides the sample

paths of the simulated data series yt. Figure 4, provides a plot of the simulated stochas-

tic volatilities σ2
ii,t, i = 1, . . . , 4, that is, the diagonal elements of the matrix Σt. Finally,

Figure 5, provides the i, jth stochastic correlations ρij,t =
σij,t√

σ2
ii,t

√
σ2
jj,t

.

These artificial series reveal a number of features. For example, we can see that

the values chosen for Ψ influence the mean of the series yt in Figure 3. Moreover,

since the shocks, vi,t, are driven by their conditional volatilities, σ2
ii,t, their conditional

mean Et−1[σ2
ii,t] = 0.09 + αiiσ

2
ii,t−1 plays a role in determining the magnitude of the

volatility of yi,t. Indeed, series yi,t, associated with stochastic volatilities with larger

unconditional means, 0.09/(1−αii), tend to exhibit larger overall episodes of volatility

spikes.

For example, from Figure 3, we see that the 4th series exhibits the largest volatility

episodes as it is associated with Et−1[σ2
44,t] = 0.09 + 0.96σ2

44,t−1, and the largest uncon-

ditional mean σ2
44 = 2.25. Moreover, by examining Figure 3, we see that the IWSV

process exhibits volatility clustering for the 4th series, y4,t. For example, volatility be-
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tween periods 1 to 100 is much smaller than between periods 200 to 300, and volatility

episodes tend to persist across time. Furthermore, these episodes tend to coincide with

larger increases in the volatility process σ2
44,t given in Figure 4, although this relation-

ship is convoluted since it also involves the autoregressive behaviour of the equations

given in (40). Finally, the stochastic correlations seen in Figure 5 tend to grow larger

in magnitude as the α2
ij of the corresponding i, jth expected variance components in-

crease, since it represents a multiplicative constant in the conditional variance of the

(co)volatility Vt−1[σij,t]. For example, the ρij,t’s associated with the 3rd and 4th series

are more variable than those associated with the 1st and 2nd series.
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Figure 1: Subsample sequence by recursive window

Figure 2: Subsample sequence by rolling window
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Figure 5: Simulated stochastic correlations
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ii) Estimation

Given this simulated data, we estimate both the Clark and IWSV volatility specifi-

cations, according to the rolling window scheme, described Figure 2, with fixed window
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size of 260 and 100 sample windows. The prior densities for the Gibbs sampling are set

with means equal to the true values and variances set as in Section 4.

The estimated parameters turn out to be quite close to their true values–see Tables

3.i to 4.ii in Appendix 12, which describe the posterior distribution of the parameters

for both models under the 1st sample window, as well as the distribution of the posterior

means across all N = 100 further iterations. As expected, given the nature of the

simulated data, there is less variation in the distribution of the posterior means across

sample windows than in the posterior density itself, given the 1st sample window. In

other words, there is little change in the posterior means of the model parameters across

sample windows.

The only parameter that seems systematically biased is the degree of freedom pa-

rameter of the IWSV process, ν. Figure 6 plots the true value of ν = 30 against the

posterior mean and 95% credibility region across the N = 100 sample windows. As

can be seen, its estimate is lower than the true value. However, as expected, for larger

simulated sample sizes the estimated value converges to the true value.

From Table 4.i, notice that the posterior means for the VAR parameters of theClark

model are very close to those of the IWSV . For the Clark volatility parameters, the

true values are omitted since the data were generated using the IWSV .

Interestingly, under the IWSV process, the tracking of the latent stochastic volatil-

ity estimated posterior means tends to be worse when tracking series associated with

the smaller eigenvalues of Υ–see Figures 7.i and 7.ii below. It appears as though there

exists a lower bound on the tracking of the posterior mean estimates across time for the

1st volatility series—see Figure 7.i. Multiple tests have revealed that the smaller the

value chosen for the associated diagonal element of A1, the more pronounced is this

lower bound, and conversely, the closer is the diagonal element of A1 to 1, the better
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the posterior mean is able to account for variation in the true volatility sample path.

More generally, we assume that the tracking improves as the eigenvalues of the stability

matrix Υ =
∑K

k=1 Ξk approach 1. More investigation is needed, however, to establish

definitively the theoretical properties of this phenomenon.

Figure 6: IWSV, Posterior of ν across N = 100 sample windows
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Figure 7.ii: IWSV, filtered latent volatility for 4th series, 1st sample window
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iii) Forecasts

In comparing the overall forecast performance, we appeal to the mean of the log pre-

dictive likelihoods, MLPLh,N , term structure, across horizons h = 1, . . . , 10. Notice
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Figure 7.i: IWSV, filtered latent volatility for 1st series, 1st sample window
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that the IWSV model fits the out-of-sample data much better than the Clark, espe-

cially at large horizons–see Figure 8. At large horizons, such as h = 10, the MLPLh,N

metric is much larger for the IWSV model, which suggests that this model fits the

out-of-sample data better as the horizon increases.

Of course, we can also consider the term structure of the model specific log predic-

tive likelihoods, LPLh,n, across the individual sample windows. In this case we can

interpret the log-ratios at each sample window, n, as predictive Bayes factors (recall

equation (38) from Section 6.2.iii). Figure 9 plots these Bayes factors across sample

windows where model A ≡ IWSV and model B ≡ Clark. Larger values suggest

that the IWSV is more representative of the out-of-sample outcomes than the Clark at

each sample window n = 1, . . . , N .

Figure 9 also suggests that there is a variability in the forecasting performance ac-

cording to the LPLh,n metric. This Figure 9 provides the term structure of model per-

formance, according to the LPLh,n metric, across the sample windows n = 1, . . . , N ,
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where as usual A ≡ IWSV and B ≡ Clark. The variability in the LPLh,n fore-

cast metrics for each model, can be measured by considering their sample moments

across sample windows, given in Table 1. Interestingly, while the IWSV fares bet-

ter in terms of the sample mean of LPLh,n metrics across sample windows, the Clark

model metrics have the advantage of being less variable, skewed, and leptokurtic. Fig-

ure 10 provides histograms of these distributions across sample windows, at the 10th

horizon.

Figure 8: Simulated data, Forecast horizon term structure according to MLPLh,N met-
ric, N = 100 sample windows
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7.2 Real data

i) The Clark (2011) data set

Let us now turn to the real-world Clark (2011) macroeconomic data set. In this

case we do not know the true model and so we will attempt to choose between the two
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Figure 9: Simulated data, Sample window term structure according to difference of
LPLh,n’s metric, h = 10
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Table 1: Simulated data, Sample moments of the LPLh,n metrics across N = 100
sample windows

Horizon h = 1 Horizon h = 10
IWSV Clark IWSV Clark

mean -3.6816 -3.8461 -3.7208 -4.2147
stnd. dev. 2.1310 1.9748 2.0290 1.9748
skewness -1.005 -0.6926 -0.9314 -0.5453
kurtosis 3.834 3.1393 3.5944 3.1594
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Figure 10: Histograms of the LPLh=10,n metrics across n = 1, . . . , N sample windows,
10th horizon
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misspecified models, i.e. the Clark and IWSV models, according to out-of-sample

forecast performance.

We first consider plots of the Clark (2011) data series provided in figures Figures

11 and 12. Figure 11 provides a plot of the raw data series, along with exponentially

smoothed trends, as described in Section 2 above. Figure 12 presents the data series af-

ter detrending by the associated smoothed trend. Recall that the trends applied are those

from Clark (2011) in order to replicate the results from that paper, and not necessarily

because we believe these trends to provide the best fit.

ii) Estimation

We estimate both volatility models on an initial subsample data size of 130, across

100 sample windows. Both rolling and recursive window schemes are estimated. Var-

ious orders of both the VAR and IWSV specification were tested and three lags were

ultimately chosen as a balance between parameterization and improvement in model fit.

The Gibbs sampling steps in Appendix 11 are performed for both models with a draw

size ofM = 100, 000, and a burn-in ofM0 = 10, 000, and the priors are set as described

in Section 4.

Summary statistics of the posterior distributions of the parameters are given in Ta-

bles 5.i to 6.iii, in Appendix 12. Tables 5.i and 6.i provide the posterior means and 95%

credibility intervals for both the IWSV and Clark model parameters, respectively,

given the 1st sample window of a recursive window scheme. Tables 5.ii and 6.ii pro-

vide the sample means and 95% confidence intervals for the distribution of the posterior

means of both the IWSV and Clark model parameters, across the N = 100 sample

windows, again given a recursive window scheme. Finally, Tables 5.iii and 6.iii are the

analogs to the previous described tables, except we instead employ a rolling sampling

window scheme.
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These tables reveal a number of interesting features. First, irrespective of sample

window size or scheme, the posterior means of many parameters deviate from our as-

sumptions on the prior means, suggesting that the data are informative. For example,

within the context of the IWSV model, the elements of the main diagonal of the C

matrix deviate from the assumption of 0.3, although the off-diagonal elements tend to

stay close to zero.
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Interestingly, the degree of freedom parameter ν exhibits posterior means in a range

between approximately 15 to 19, higher than our assumption of 15 on the prior. As

for the Clark model, the distribution of the posterior means for the elements of the B

matrix, suggests that we can reject the prior mean assumption that these elements are

zero. Within the context of both models, the 1st element, ψ1, of Ψ, associated with

GDP growth, exhibits posterior means slightly above the assumption of 3 and the 3rd

value, ψ3, associated with the interest rate, exhibits posterior means slightly below the

assumption of 2.5. Moreover, ψ2 and ψ4 both exhibit the possibility of non-zero means,

despite our assumptions.

Moreover, there is a surprising level of consistency in the evolution of the posterior

means across sample windows and window types. For example, let us consider Figures

23.i to 24.ii, in Appendix 12, which plot the posterior distributions of various model

parameters from both the IWSV and Clark volatility specifications, across the sample

windows for both the recursive and rolling window schemes. The posterior distributions

involving the rolling sample windows are much more variable than those that employ

the recursive sample window scheme.

We can also check the stability properties of both the VAR and IWSV volatility

process across the sample windows. Figures 13.i and 13.ii plot the absolute value of the

largest eigenvalues from both the VAR(3) companion matrix given as


Π1 Π2 Π3

I4 0 0

0 I4 0

 (46)

and the Υ =
∑3

k=1 L(Ak ⊗Ak)D matrix, which determines the IWSV stability (re-
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call equation (44) and Proposition 3.1), across the N = 100 runs. We employ the

posterior mean of the relevant parameters in constructing these matrices and their asso-

ciated eigenvalues. The VAR(3) processes are generally stable. However, it appears that

there may exist a unit root in the IWSV volatility process.

Finally, Figure 14 plots the posterior mean of the latent stochastic volatilities for

both the IWSV and Clark models, for the complete sample, given augmented param-

eters filtered given a recursive sample window at the N = 100th iteration. Moreover,

Figure 15.i and Figure 15.ii plot the associated stochastic correlations for both the

IWSV and Clark models respectively. The Clark model exhibits stochastic correla-

tions which are too smooth, and, as expected, both models exhibit a negative stochastic

correlation, ρ41,t, between shocks to GDP growth and the unemployment rate.
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Figure 13.i: Largest eigenvalue of VAR(3) companion matrix, across N = 100 sample windows
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Figure 13.ii: Largest eigenvalue of the Υ matrix, across N = 100 sample windows
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iii) Forecasts

We would now like to establish the forecast properties of the VAR associated with

both the IWSV and Clark volatility models. We first compare the MSEh,N metrics

which establish point forecast accuracy across the term structure of forecast horizons,

h = 1, . . . , 20. Figure 16 provides plots of the percentage difference in the main diag-

onal elements of the MSEh,N matrix, across h, for both the recursive sample window

scheme and the rolling sample window scheme, respectively.

From these plots it is not clear that either model performs better in terms of point

forecast performance. This is to be expected of course, since our IWSV modification

to the model is an alternative specification on the volatility of the process, not the mean.
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Figure 15.i: Real data, IWSV model, filtered latent stochastic correlations for the com-
plete sample, n = 100
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Figure 15.ii: Real data, Clark model, filtered latent stochastic correlations for the com-
plete sample, n = 100
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Figure 16: Real data, MSE comparison of VAR forecasts, % difference, both window
types (below 0, IWSV better)

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

Horizon 'h'

Recursive window

GDP growth
Inflation rate
Interest rate

Unemployment rate

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

Horizon 'h'

Rolling window

GDP growth
Inflation rate

Interest rate
Unemployment rate

Turning now to comparing overall forecast performance, we again appeal to the

mean of the log predictive likelihoods, MLPLh,N , term structure, across horizons

h = 1, . . . , 20. This term structure should illustrate improved out-of-sample predic-

tive likelihood, given the alternative specification on the second moment of the VAR

process shocks.

From Figure 17.i we see how the mean of these LPLh,n measures is improved as

the forecast horizon extends out to H . This result is irrespective of sample window

scheme, although the recursive window, which grows in size across the iterations, tends

to fare slightly better than the rolling window at further horizons. Interestingly, the
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Figure 17.i: Real data, Forecast horizon term structure according to MLPLh,N metric,
N = 100 sample windows, both Recursive and Rolling sample windows
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Figure 17.ii: Real data, Forecast horizon term structure according to MLPLh,N metric,
N = 100 sample windows, includes homoskedastic vt
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Clark model does better according to this metric at the 1st horizon, across both sample

window types. It is not clear why this is the case. For reference, Figure 17.ii duplicates

the previous figure, but includes the case of homoskedastic VAR innovations, vt, for

reference.18

Again, we can also consider the term structure of the model specific log predictive

likelihoods, LPLh,n, across the individual sample windows. Figure 18 plots the dif-

ference in the LPLh=20,n metrics at horizon, h = 20, across sample windows, where

model A ≡ IWSV and model B ≡ Clark. Larger values suggest that the IWSV

is more representative of the out-of-sample outcomes than the Clark at each sample

window n = 1, . . . , N .

Moreover, these LPLh,n metrics are changing across the sample windows accord-

ing to their own sampling distribution, given in Table 2. Again, we see similar results

as in the simulated data case above in Section 7.1.iii. For the 20th forecast horizon,

h = H = 20, we find that the mean of the log predictive likelihoods, MLPLh,N=100,

are larger under the IWSV , which initially suggests that the IWSV improves out of

sample fit at the longer horizons. However, for the 1st horizon, we see the opposite,

that is, the Clark has a larger MLPLh=1,N=100 metric associated with it. As for the

the other sample moments, generally they suggest larger deviations in forecast perfor-

mance across the sample windows when using the IWSV model. The larger kurtosis

and negative skew imply that the IWSV is more sensitive to rare occurrences of poor

forecasting fit, this sensitivity increases as the horizon extends out, and it is worse under

18Estimating the VAR model with homoskedastic shocks vt is accomplished by replacing the Gibbs
sampler steps for the volatility parameters with a single Gibbs step that employs an Inverse Wishart
prior density. Since the Inverse Wishart prior is conditionally conjugate with the multivariate Normal,
the conditional posterior is also Inverse Wishart. That is, if π (Σ) ∼ IW (a0,V0) ⇒ p (Σ | v) ∼
IW (a1,V1) such that V1 =

∑T
t=1 vtvt

′
+ V0 and a1 = T + a0, where vt is the p× 1 vector of VAR

residuals. V0 is set to the unconditional sample covariance matrix of simulated VAR residuals (generated
with reasonable guesses on the VAR parameters) and a0 = 15.
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Figure 18: Real data, Sample window structure of the difference of LPLh,n’s metric,
h = 20
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the rolling sample window scheme. Interestingly, with the exception of the recursive

sample window scheme at horizon, h = 1, the Clark model now exhibits a larger stan-

dard deviation of LPLh,n, metrics, than the IWSV . Finally, to get an idea of the shape

of these distributions, Figure 19 provides histograms of the LPLh,n, metrics across the

sample windows.

Figure 20 provides the analog to Figure 18, in scatter plot format. That is, it

presents the LPLh=20,n values, for each sample window n = 1, . . . , 100, at the largest

horizon, h = 20. The shape of the scatter gives us an intuition on how each model

performs across the sample windows which complements the previous Figure 20 which

presented the sample window LPLh=20,n differences in chronological order.

Finally, Figures 21.i to 21.iv plot the out-of-sample forecasts of the VAR series, yt,

out H = 20 periods, given the last recursive sample window n = 100 (this subsample

includes nearly the entire data set). While the forecasted conditional means are quite

similar between the IWSV and Clark models, as expected, the prediction intervals are

distinctly shaped, reflecting the different underlying stochastic volatility processes. The

Clark prediction intervals tend to “bell” out and expand as the horizon grows large,

while the IWSV prediction intervals tend to stabilize. Interestingly, in referencing

Figure 18 for this particular sample window, n = 100, we see that this represented

a subsample where the Clark model performed better. Clearly, in this case the 95%

prediction intervals encompass the true data outcome more accurately than the IWSV

prediction intervals.

69



Figure 19: Histograms of the LPLh=20,n metrics across n = 1, . . . , N sample windows,
20th horizon
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Table 2: Real data, Sample moments of the LPLh,n metrics across N = 100 sample
windows

Recursive sample window
Horizon h = 1 Horizon h = 20
IWSV Clark IWSV Clark

mean -3.6352 -3.5736 -3.7165 -4.3938
stnd. dev. 2.0322 1.9614 1.7725 2.0413
skewness -0.9329 -0.2877 -1.3387 -0.4069
kurtosis 4.1266 2.401 6.5644 3.9734

Rolling sample window
Horizon h = 1 Horizon h = 20
IWSV Clark IWSV Clark

mean -3.5373 -3.4788 -3.8435 -4.501
stnd. dev. 2.0205 2.0533 2.1202 2.3618
skewness -0.9310 -0.2463 -1.8423 -0.2015
kurtosis 4.1083 2.1766 8.0861 2.5614
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Figure 21.i: GDP growth series y1,t and forecast, IWSV and Clark models for vt, n = 100, Recursive sample
window
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Figure 21.ii: Inflation growth series y2,t and forecast, IWSV and Clark models for vt, n = 100, Recursive
sample window
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Figure 21.iii: Interest rate series y3,t and forecast, IWSV and Clark models for vt, n = 100, Recursive sample
window
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Figure 21.iv: Unemployment rate series y4,t and forecast, IWSV and Clark models for vt, n = 100, Recursive
sample window
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8 Conclusion

Dramatic changes in macroeconomic time series volatility have posed a challenge to

contemporary VAR forecasting models. Traditionally, the conditional volatility of these

models had been assumed constant over time or allowed for structural breaks across

long time periods. More recent work, however, has improved forecasts by allowing the

conditional volatility to be completely time variant by specifying the VAR innovation

variance as a distinct discrete time process. For example, Clark (2011) specified the

elements of the covariance matrix process of the VAR innovations as linear functions of

independent nonstationary processes.

However, it is not clear that the choice of nonstationary driving processes is suit-

able. Moreover, in order to reduce parameterization, some form of fixed relationship is

imposed between the elements of the VAR innovation covariance matrix and the inde-

pendent processes driving them.

Ultimately, we would like to have an empirical rationale for this choice of spec-

ification. Given this, we have proposed and tested both the Clark (2011) benchmark

model, and the alternative multivariate volatility process, IWSV , which is constructed

in such a way to directly model the time varying covariance matrices by means of the

Inverse Wishart distribution. These models have been estimated, and forecasts been

constructed, on a data set as close to Clark (2011) as possible.

Motivating this study are also a number of theoretical advantages of the proposed

IWSV specification. For one, the direct specification of the dynamics of the latent

stochastic volatility process, Σt, precludes the need to specify convoluted relationships

between the (co)volatility elements of Γt, γij,t, and the driving processes λi,t, through

the B matrix. Moreover, the autoregressive dynamics between volatility series are more
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easily interpreted as volatility spill-over effects, since we no longer need to disentangle

these relationships. The model is now also invariant to permutation of the order of the

observed series. Finally, it is easy to derive conditions ensuring the existence of the

unconditional mean of the processes (Σt) and (yt).

In applying both models to the data, we have chosen to evaluate their performance

strictly in terms of forecasting ability. In doing so, we have chosen to evaluate both

point and interval forecasts. Point forecasts consider the mean squared error (MSE) of

out-of-sample forecasts, while interval forecasts considered the Bayesian log predictive

likelihood measure, LPLh,n, along a number of forecast horizons. Moreover, we have

computed these metrics a number of times, across sample windows, which represent

subsamples of the entire data set.

Estimating both models provides a number of interesting results. First, posterior

means of the parameters are much more stable across the sample windows, given a

recursive window that grows larger, than a rolling window of fixed size. Moreover, ir-

respective of sample window size or scheme, the posterior means of many parameters

deviate from our assumptions on the prior means, suggesting that the data are informa-

tive, despite the small sample size.

Interestingly, the stationarity of the multivariate volatility process driving the VAR

innovations may be questionable, as the IWSV model estimates seem to suggest the

possibility of at least one unit root. We also find that the filtered latent (co)volatilities of

the Clark model are much too smooth and suggest too little variation across time.

Forecasting performance is also mixed. For example, the MSE out-of-sample fore-

casts suggest that neither model exhibits a strong advantage. Turning to interval fore-

casts, we consider the distribution of the log predictive likelihood, LPLh,n, measures

for both models. While the IWSV exhibits a strong advantage in the sense that the
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mean of these measures are substantially improved, this model suffers from the fact that

the measures are more skewed in the negative direction, and prone to rare occurrences of

dramatically poor forecast fit, with this sensitivity becoming worse as the forecast hori-

zon grows large. Finally, as expected, given the dramatic nonstationarity of the Clark

volatility process, its prediction intervals tend to grow exponentially.

Ultimately, we must emphasize that our methodology does not presume that one of

the competing models is well specified, instead we insist on the opposite. Rather, given

these results we suggest an approach that might make use jointly of both the Clark and

IWSV specifications in practice. That is, use, say, theClark in some environments and

the IWSV in others. Moreover, we could likely encompass both models in a better, also

misspecified, model. A natural idea is to introduce a model with endogenous switching

regimes, where the Clark model is employed in situations where it performs better,

while the IWSV can be used otherwise. It is important to note that this encompassing

model would not represent a mixture of the Clark and IWSV specifications, with

unknown mixing weights, regularly updated by Bayesian techniques.
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10 Appendix: Real data, LDL′ factorization of Σt

Further evidence for the IWSV model can be drawn by considering the form of the
constraint which the Clark model places on the time varying structure of the covariance
matrix process of the VAR innovations, vt. Recall from Section 3.1 that the Clark
model imposes the following parameterization on the VAR innovations given as

vt=B−1Λ0.5
t εt, where εt ∼MVNp (0, Ip) . (47)

Of course, the constraint above implies that

Γt=B−1Λt

(
B−1

)′
= var (vt) . (48)

The interesting point to note is that this parameterization is equivalent to imposing an
LDL

′ factorization on the covariance matrix of the VAR innovations, where L is a lower
triangular matrix with ones on the diagonal and D is a diagonal matrix. Note that this
LDL

′ factorization always exists for positive definite, real, symmetric matrices and is
unique.

This result implies a method for testing whether Clark’s parametric assumption on
the volatility process is correct. Suppose that we estimate the VAR model under the
IWSV specification, given the entire data set. At each point in time that we draw a co-
variance matrix Σt

(m), from the Gibbs sampler, we factorize this covariance matrix as
Σt = LtDtL

′
t. Iterating in this way provides us with a finite sample distribution of the

L
(m)
t matrices implied by the IWSV specification for each time period t = 1, . . . , T .

Since these Lt matrices are unique, their time varying distributions must suggest some-
thing about whether or not it is appropriate to assume that the elements of the B−1

matrix in the Clark specification should be specified as constant across time.
Of course, while there are other ways to check the validity of this assumption (e.g.

estimate theClark with time varying B matrices and compare results according to some
metric), the aforementioned test proves the most immediately applicable.

Figures 22.i and 22.ii illustrate the results of this test which suggest that there exists
significant time variation in the elements of the Lt matrix factors across time, especially
with regards to the elements corresponding to the pairing of GDP growth with both the
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inflation rate and the interest rate (i.e. L21,t and L31,t).

Figure 22.i: L21,t, time varying density
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11 Appendix: Derivation of the posterior distributions
needed for Gibbs sampling

The following appendix describes the steps required for generating the conditional pos-
terior distribution of the parameters used in the Gibbs sampler. First, we consider the
steps required for estimation of the V AR(J) model with Clark volatility, then we con-
sider the steps required for estimating the IWSV parameters. Please refer to Section 5
for a summary of the steps outlined below.

The benchmark volatility specification, Clark, is estimated by Gibbs sampler, given
estimation steps based on those of Villani (2009) and Cogley and Sargent (2005). Clark
(2011) provides expressions for the conditional posterior distributions of the VAR pa-
rameters of his Gibbs sampler, obtained from Mattias Villani, who himself derived them
based on the constant variance sampler employed in Villani (2009). We have re-derived
them here for completeness.
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Figure 22.ii: L31,t, time varying density
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11.1 Definition of the parameters and priors

What follows provides descriptions of the model parameters and their chosen prior dis-
tributions.

i) Parameters related to the V AR(J) process:

◦ Πj , for j = 1, . . . , J , the autoregressive coefficient matrices on the V AR(J)

specification. Each Πi is of dimension p × p. Combining all the J coefficient
matrices, Πj, into one larger matrix, Π, the conditionally conjugate prior is mul-
tivariate Normal, Π ∼ N(µΠ,ΞΠ).

◦ Ψ, the matrix which when multiplied by the deterministic trend vector dt, forms
the unconditional mean vector of the VAR specification. Ψ is of dimension p× q.
The conditionally conjugate prior is multivariate Normal, Ψ ∼ N(µΨ,ΞΨ).

ii) (Augmented) parameters specific to the Clark (2011) volatility specification:

◦ B, the lower triangular matrix with ones along its main diagonal, which when
inverted, and pre and post multiplied by Λt, forms the covariance matrix of the
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VAR shocks, vt, given as Γt below. B is of dimension p× p. The elements of the
B matrix are assumed independent Normal, with details provided in the relevant
section below.

◦ Λt, the diagonal matrix which contains the nonstationary, independent, driving
processes λi,t, for i = 1, . . . , p, along its main diagonal. Λt is of dimension p× p.
The prior for this augmented parameter is Log-normal with details provided in
the relevant section below.

◦ Φ, the diagonal matrix which contains the variances, ϕi, of the shocks of the
driving processes, ξi, for i = 1, . . . , p. Φ is of dimension p× p. We assume con-
ditionally conjugate, independent Inverse-Gamma priors on each ϕi ∼ IG(γ

2
, δ
2
).

iii) (Augmented) parameters specific to the proposed IWSV volatility specification:

◦ Ak, for k = 1, . . . , K, the autoregressive coefficient matrices on the IWSV

volatility specification. Each Ak is of dimension p × p, and is not necessar-
ily symmetric. We assume multivariate Normal priors for each of the Ak, for
k = 1, . . . , K, matrices.

◦ C the lower diagonal constant matrix in the IWSV volatility specification. C is
of dimension p× p. We assume a multivariate Normal prior for on the C matrix.

◦ ν the degree of freedom parameter describing the shape of the Inverse Wishart
distribution driving the volatility shocks. The degree of freedom parameter is a
scalar. The prior chosen is a Gamma distribution.

◦ Σt, ∀t, the covariance matrices of the VAR process shocks under the IWSV

model. The Σt matrices are all of dimension p × p. The prior is Inverse Wishart
with details provided in the relevant section below.

11.2 Computation of the posterior distribution for the Clark (2011)
volatility model

Let us now describe the different conditional posterior distributions involved in the se-
quence for Gibbs sampling.
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1. Draw from the posterior density of the slope coefficients Π
′

= [Π1,Π2, . . . ,ΠJ]

of the VAR, conditional on Ψ, ΛT, B, Φ=diag(ϕ1, ϕ2, . . . , ϕp) and the data,
given multivariate Normal prior, Π ∼ N(µΠ,ΩTΠ).

For this step we rewrite the VAR as:

Yt = Π
′
Xt + vt, (49a)

where Yt = yt−Ψdt, (49b)

vt = B−1Λ0.5
t εt, (49c)

and Xt =
[
(yt−1−Ψdt−1)

′
, (yt−2−Ψdt−2)

′
, . . . , (yt−J−Ψdt−J)

′
]′
.

(49d)

This is a linear model with respect to the parameter elements of the matrix Π. To
clearly illustrate this linear model we can use the alternative expression [Magnus
and Neudecker (1998)]:

Yt = vec
(
Π
′
Xt

)
+ vt

=
(
Ip ⊗X

′

t

)
· vec (Π) +vt, (50a)

where ⊗ denotes the tensor product. Eliminating the heteroskedasticity by pre-
multiplication we have

Y∗t=Γ−0.5t Yt=Γ−0.5t

(
Ip ⊗X

′

t

)
· vec (Π) +εt, (51)

where εt ∼ N (0, Ip) and Γ−0.5t =Λ−0.5t B. Or equivalently with clear notation:

Y∗t = X∗tvec(Π) + εt, (52)

where X∗t = Γ−0.5
t

(
Ip ⊗Xt

′
)

.

Thus we have the following Lemma [See Tsay (2005), Section 12.3.2, or Box and
Tiao (1973)].

Lemma 11.1.
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Let us consider the Gaussian regression model

Y∗t = X∗tvec(Π) + εt, (53)

with prior,

vec(Π) ∼ N(µΠ,ΞΠ). (54)

Then the posterior distribution is such that vec(Π) ∼ N(µ∗Π,Ξ
∗
Π),

where

Ξ∗Π =
[
Ξ−1Π + X∗

′
X∗
]−1

(55a)

and µ∗Π = Ξ∗Π[Ξ−1Π µΠ+X∗
′
Y∗], (55b)

(55c)

given X∗X∗
′
=
∑T

t=1 X∗
′

t X∗t and X∗Y∗
′
=
∑T

t=1 X∗
′

t Y∗t .

The sufficient summaries of the past, appearing in this posterior distribution, are

given as

X∗
′
X∗ =

T∑
t=1

[
Γ−0.5t

(
Ip ⊗X

′

t

)]′
Γ−0.5t

(
Ip ⊗X

′

t

)
(56a)

=
T∑
t=1

(
Ip ⊗X

′

t

)′
Γ−1t

(
Ip ⊗X

′

t

)
(56b)

and X∗
′
Y∗ =

T∑
t=1

[
Γ−0.5t

(
Ip ⊗X

′

t

)]′
(Γ−0.5t Yt) (56c)

=
T∑
t=1

(
Ip ⊗X

′

t

)′
Γ−1t Yt. (56d)

2. Draw from the posterior density of the coefficients Ψ defining the trend, condi-

tional on Π, ΛT, B, and Φ=diag(ϕ1, ϕ2, . . . , ϕp) and the data, given a multivari-

ate Normal prior, Ψ ∼ N(µΨ,ΞΨ).
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The equation defining Yt can be rewritten as:

Yt = Π (L) yt = Π (L) Ψdt + vt. (57)

Let us check that this is still a linear model. We have

Yt =

(
Ip −

J∑
j=1

ΠjL
j

)
Ψdt + vt (58a)

= IpΨdt −Π1Ψdt−1 − · · · −ΠJΨdt−J + vt (58b)

=
(
dt
′ ⊗ Ip

)
· vec(Ψ)−

(
dt−1

′ ⊗Π1

)
· vec(Ψ)− · · · −

(
dt−J

′ ⊗ΠJ

)
· vec(Ψ) + vt

(58c)

=
((

dt
′ ⊗ Ip

)
−
(
dt−1

′ ⊗Π1

)
− · · · −

(
dt−J

′ ⊗ΠJ

))
· vec(Ψ) + vt

(58d)

= Xt · vec(Ψ) + vt, (58e)

where Xt =
((

dt
′ ⊗ Ip

)
−
(
dt−1

′ ⊗Π1

)
− · · · −

(
dt−J

′ ⊗ΠJ

))
.

Thus we can standardize by pre-multiplication and get

Y∗t = Γ−0.5t Yt=Γ−0.5t (Π (L) yt) =Γ−0.5t Xt · vec (Ψ) +εt (59a)

≡ X∗tvec(Ψ) + εt, say. (59b)

We can reapply Lemma 11.1, with this new set of explanatory variables, to get
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the posterior mean and variance for vec(Ψ) ∼ N(µ∗Ψ,Ξ
∗
Ψ) as:

Ξ∗Ψ =
[
Ξ−1Ψ + X∗

′
X∗
]−1

(60a)

and µ∗Ψ = Ξ∗Ψ[Ξ−1Ψ µΨ+X∗
′
Y∗]. (60b)

The sufficient summaries of the past are now given as

X∗
′
X∗ =

T∑
t=1

(
Γ−0.5t Xt

)′
Γ−0.5t Xt =

T∑
t=1

Xt
′
Γ−1t Xt (61a)

and X∗
′
Y∗ =

T∑
t=1

(
Γ−0.5t Xt

)′
Γ−0.5t Yt =

T∑
t=1

Xt
′
Γ−1t Yt. (61b)

3. Draw from the posterior density of the elements of B (lower triangular with ones

in the diagonal) conditional on Π,Ψ, ΛT, Φ=diag(ϕ1, ϕ2, . . . , ϕp) and the data,

given Normal, independent, priors on each of the elements of the B matrix.

The system defining Yt can now be rewritten as

BΠ (L) (yt −Ψdt) = BYt = Λ0.5
t εt (62)
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Since B is lower triangular, this system of equations reduces to the following

Y1,t = λ0.51,t ε1,t (63a)

Y2,t = −b21Y1,t + λ0.52,t ε2,t (63b)

Y3,t = −b31Y1,t−b32Y2,t + λ0.53,t ε3,t (63c)

Y4,t = −b41Y1,t−b42Y2,t−b43Y3,t + λ0.54,t ε4,t (63d)

...

Yp,t = −bp1Y1,t−bp2Y2,t−bp3Y3,t − . . .−bp,(p−1)Y(p−1),t + λ0.5p,t εp,t (63e)

where Yi,t is the ith element of the p× 1 column vector Π (L) (yt −Ψdt) = Yt.

We can treat each of the i = 2, . . . , p equations above as linear regressions.

Again, pre-multiplication of each of the i equations by λ−0.5i,t , ∀t, removes the

heteroskedasticity. Furthermore, given the assumption of independent Normal

prior densities, the conditional posterior for each row vector of B is also Normal:

N (βi
∗,Gi

∗) , ∀i = 2, . . . , p, where

G∗i =
[
Gi
−1 +X∗i

′
X∗i

]−1
, (64a)

and β∗i = G∗i [G
−1
i βi+X∗i

′
Y∗i ], (64b)
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and

Y∗i =
[
λ−0.5i,1 Yi,1, . . . , λ

−0.5
i,T Yi,T

]′
(65a)

and X∗i =


−λ−0.5i,1 Y1,1 −λ−0.5i,1 Y2,1 . . . −λ−0.5i,1 Yi−1,1

. . . . . . . . . . . .

−λ−0.5i,T Y1,T −λ−0.5i,T Y2,T . . . −λ−0.5i,T Yi−1,T

 . (65b)

4. Draw from the posterior density of the elements of the time varying covariance

matrix Λt for each time t = 1, . . . , T in sequence, each conditional on Π, Ψ, B,

and Φ=diag(ϕ1, ϕ2, . . . , ϕp) and the data.

Since the stochastic volatilities are independent of each other for all i = 1, . . . , p,

we can estimate the corresponding equation separately. In order to do so, we

need an expression for the posterior density of each augmented parameter λi,t

conditional on everything else, including the entire macroeconomic series values

for all t = 1, . . . , T .

Since each volatility is Markov of order one, we can write for each i = 1, . . . , p

g
(
λi,t

∣∣ λi,\t, ϕi,Y∗i ) ∝ f (Y∗i | λi) g
(
λi,t

∣∣ λi,\t, ϕi) ∝ f
(
y∗i,t
∣∣ λi,t) g (λi,t ∣∣ λi,\t, ϕi)

= f
(
y∗i,t
∣∣ λi,t) g (λi,t | λi,t−1, ϕi) g (λi,t+1 | λi,t, ϕi) = f

(
y∗i,t
∣∣ λi,t) g (λi,t | λi,t−1, λi,t+1, ϕi)

(66)

where λi,\t denotes all elements of the λi vector except for the tth element, Y∗i ={
y∗i,1, . . . , y

∗
i,T

}
, and y∗i,t is the ith element of BΠ (L) (yt −Ψdt). Furthermore,

since

λi,t|λi,t−1 ∼ LN
(
eln(λi,t−1) +

ϕi
2 , (eϕi − 1)e2ln(λi,t−1) +ϕi

)
, (67)
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we have

f
(
y∗i,t
∣∣ λi,t) g (λi,t | λi,t−1, λi,t+1, ϕi)

∝ λ−0.5i,t exp

(
−
(
y∗i,t
)2

2λi,t

)
λ−1i,t exp

(
−(ln (λi,t) − µi,t)2

2σ2

)
, (68)

where we can solve for missing values according to Section 12.6.1 of Tsay (2005)

and find that

µi,t =
1

2
(ln (λi,t+1) + ln (λi,t−1) ) , (69a)

and σ2 =
1

2
ϕi. (69b)

Therefore, in implementing a Metropolis-within-Gibbs step we can draw a pro-

posal from the Gibbs sampler for λ(m)
i,t , from λ

(m)
i,t ∼ LN(eµi,t+

σ2

2 , (eµi,t −

1)e2µi,t+σ
2
), and accept it as the mth draw with probability

α
(
λ
(m−1)
i,t , λ

(m)
i,t

)
= min{1,

f
(
y∗i,t

∣∣∣ λ(m)
i,t

)
f
(
y∗i,t

∣∣∣ λ(m−1)i,t

)}, (70)

since the proposal densities cancel out in the ratio.

5. Draw from the posterior density of the diagonal elements of Φ conditional on

Π, Ψ, B, and ΛT and the data.

The Inverse Gamma prior is conjugate for the variance parameter of the Normal
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density. Therefore, the conditional posterior of ϕi is also Inverse Gamma as

f(ϕi|λi) ∝ h (λi | ϕi) p(ϕi)

∝
T∏
t=1

1

ϕ0.5
i

exp

{
−(ln (λi,t) − ln (λi,t−1) )2

2ϕi

}
× ϕ−( γ2+1)

i e
− δ

2ϕi . (71)

Furthermore, the right hand side above is equal to

ϕ
−( γ2+1)−T2
i exp

{
− δ

2ϕi
− 1

2ϕi

T∑
t=1

ln

(
λi,t
λi,t−1

) 2
}

= ϕ
−( γ+T2 +1)
i exp

−
δ +

∑T
t=1 ln

(
λi,t
λi,t−1

) 2

2ϕi

 (72)

Consequently, assuming identical Inverse Gamma priors on each ϕi ∼ IG(γ
2
, δ
2
),

the conditional posterior is also Inverse Gamma, or IG(γ
∗

2
, δ
∗

2
), where

γ∗ = γ + T, (73a)

and δ∗ = δ +
T∑
t=1

(
ln

(
λi,t
λi,t−1

) )2

. (73b)

11.3 Computation of the posterior distribution for the IWSV model

Let us now describe the sequence of conditional posterior distributions for the IWSV

model.

1. First, we repeat step (1) above in Section 11.2, except that we replace Γt=B−1Λt(B
−1)

′
=

var (vt) with Σt. That is, we no longer condition on B, ΛT, and Φ, but rather on
Ak, for k = 1, . . . , K, C, ν, and ΣT.

2. Repeat step (2) above in Section 11.2, except this time replace Γt=B−1Λt(B
−1)

′
=

var (vt), with Σt.
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3. Draw from the posterior density of the parameters Ak, ∀k,C, and ν jointly, con-
ditional on Π, Ψ, and ΣT, and the data.

All of the individual elements of the parameter matrices Ak, ∀k,C and ν are
drawn jointly by a Metropolis-within-Gibbs step employing a random walk pro-
posal. The joint proposal is multivariate Normal, and we assume multivariate
Normal priors on both Ak, ∀k and C and a Gamma prior on (ν− p). See Section
4 on priors for more details.

The random walk multivariate Normal proposal is symmetric and conditioned on
the last value in the process through its mean vector; therefore it drops out of the
acceptance ratio. The variance of the proposal is initially set to the inverse of the
observed negative Hessian matrix at the mode of the conditional posterior for a
first attempt, and then a second attempt is employed using the covariance matrix
of the initial Markov process draws themselves for improved mixing.

Moreover, the likelihood of the IWSV model is now given as

f (v | θ) = L (θ) =
T∏
t=1

f (vt | Σt) g (Σt | Σt−1, . . . ,Σt−K; θ)

=
T∏
t=1

1

(2π)
p
2 |Σt|

1
2

exp

{
−1

2
v
′

tΣ
−1
t vt

}
× 2−( νp2 ) |St−1|

ν
2 Γp

(ν
2

)−1
|Σt|−(ν+p+1)/2exp

{
−1

2
tr
[
St−1Σ−1t

]}
, (74)

where vt = Π (L) (yt −Ψdt) is a function of the data, y. Therefore, by Bayes
Theorem we can consider the conditional posterior of θ as proportional to the
likelihood (which is really a function of the data) times the prior density for θ
(where θ = {A1, . . . ,Ak,C, ν}) as follows

p(θ|yT,Π,Ψ,ΣT) ∝ L(θ)π(θ) = f(yT,ΣT|θ; Π,Ψ)π(θ) ∝ f(vT|θ)π(θ).

(75)
Therefore, the Metropolis acceptance probability of the mth draw, θ(m), in the
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random walk sampler can be expressed as

α(θ(m−1), θ(m)) = min

{
1,

p(θ(m)|yT,Π,Ψ,ΣT)

p(θ(m−1)|yT,Π,Ψ,ΣT)

}
. (76)

4. Similarly to step (4) above, we now draw from the posterior density of Σt condi-
tional on
Σ\t,Ak, ∀k,C, ν, Π, Ψ, and the data, in sequence for each time t = 1, . . . , T .
We have:

P
(
Σt

∣∣ Σ\t,v
)
∝ P (vt | Σt)P (Σt | Σt−1)P (Σt+1 | Σt) (77a)

∝ |Σt|−
1
2 |St|

ν
2 |Σt|−(ν+p+1)/2exp

{
−1

2
tr
[(

St−1 + vtv
′

t

)
Σ−1t

]}
exp

{
−1

2
tr
[
StΣ

−1
t+1

]}
, (77b)

where
St−1

ν − p− 1
= CC

′
+

K∑
k=1

AkΣ
−1
t−kA

′

k. (77c)

Therefore, by letting the proposal be Inverse Wishart Σt ∼ IWp

(
ν,S∗t−1

)
where

S∗t−1 = St−1 + vtv
′
t, the proposal drops out of the Metropolis-Hastings ratio.

Indeed, the probability of accepting the mth draw of Σ
(m)
t , sequentially, for each

time period t = 1, . . . , T , is now 19

α
(
Σ

(m−1)
t ,Σ

(m)
t

)
= min

1,
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t

∣∣∣− 1
2
∣∣∣S(m)

t

∣∣∣ ν2 exp
{
−1

2
tr
[
S
(m)
t Σ−1t+1

]}
∣∣∣Σ(m−1)

t

∣∣∣− 1
2
∣∣∣S(m−1)

t

∣∣∣ ν2 exp
{
−1

2
tr
[
S
(m−1)
t Σ−1t+1

]}
 .

(78)

12 Appendix: Tables and Figures

19To avoid numerical problems logs are taken of both the numerator and denominator, then differenced,
before finally taking their exponential. This avoids issues when the non-logged function values grow
either too large or too small to be machine comparable.
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Table 3.i: Section 7.1: Posterior distribution of the parameters for IWSV model, Simulated data, 1st sample,
Rolling window

Parameter Pop. value 2.5% C.I. mean 97.5% C.I. Parameter Pop. value 2.5% C.I. mean 97.5% C.I.
vech(C) 0.3 0.2778 0.2984 0.3208 vec(Π1) 0.2 0.0976 0.2185 0.3374

0 -0.0229 0.0046 0.0320 0 -0.1666 -0.0157 0.1360
0 -0.0413 -0.0069 0.0248 0 -0.2724 -0.0920 0.0882
0 -0.0407 -0.0048 0.0381 0 -0.2415 0.0110 0.2627

0.3 0.2775 0.3038 0.3337 0 -0.0806 0.0113 0.1025
0 -0.0375 -0.0057 0.0273 0.8 0.5904 0.7091 0.8277
0 -0.0392 -0.0003 0.0418 0 -0.0888 0.0456 0.1798

0.3 0.2736 0.3077 0.3427 0 -0.1756 0.0218 0.2188
0 -0.0468 -0.0039 0.0403 0 -0.1156 -0.0425 0.0309

0.3 0.2701 0.3138 0.3577 0 -0.0961 -0.0047 0.0870
vec(A1) 0.5 0.4449 0.4943 0.5344 0.8 0.7345 0.8532 0.9721

0 -0.0417 0.0020 0.0486 0 -0.2937 -0.1246 0.0447
0 -0.0438 0.0019 0.0455 0 -0.0508 -0.0107 0.0291
0 -0.0468 0.0014 0.0503 0 0.0227 0.0744 0.1262
0 -0.0467 -0.0018 0.0487 0 -0.1318 -0.0693 -0.0065

0.75 0.7062 0.7440 0.7811 0.8 0.6551 0.7704 0.8863
0 -0.0477 -0.0029 0.0421 vec(Π2) 0 -0.2741 -0.1557 -0.0367
0 -0.0466 -0.0011 0.0451 0 -0.2246 -0.0768 0.0697
0 -0.0447 -0.0077 0.0338 0 -0.1544 0.0256 0.2042
0 -0.0444 -0.0030 0.0349 0 -0.2398 0.0054 0.2486

0.85 0.8052 0.8459 0.8804 0 -0.1330 -0.0199 0.0927
0 -0.0417 -0.0008 0.0415 0 -0.0688 0.0753 0.2175
0 -0.0200 0.0027 0.0293 0 -0.2405 -0.0768 0.0860
0 -0.0191 0.0039 0.0267 0 -0.1928 0.0324 0.2563
0 -0.0250 0.0024 0.0279 0 -0.0284 0.0688 0.1653

0.98 0.9477 0.9739 1.0006 0 -0.1910 -0.0714 0.0485
vec(A2) 0 0.0007 0.0189 0.0508 0 -0.1478 0.0007 0.1505

0 -0.0455 -0.0005 0.0402 0 -0.1146 0.0918 0.2959
0 -0.0424 0.0001 0.0421 0 -0.0796 -0.0276 0.0244
0 -0.0445 0.0016 0.0456 0 -0.0540 0.0124 0.0781
0 -0.0416 0.0002 0.0460 0 0.0106 0.0902 0.1691
0 -0.0438 -0.0014 0.0400 0 -0.0797 0.0618 0.2005
0 -0.0458 -0.0024 0.0458 vec(Π3) 0 -0.1753 -0.0536 0.0676
0 -0.0440 -0.0007 0.0428 0 -0.0817 0.0704 0.2227
0 -0.0452 -0.0003 0.0453 0 -0.0947 0.0814 0.2565
0 -0.0409 0.0010 0.0412 0 -0.3865 -0.1355 0.1140
0 -0.0487 0.0017 0.0479 0 -0.0670 0.0241 0.1144
0 -0.0488 -0.0033 0.0466 0 -0.1501 -0.0357 0.0786
0 -0.0372 0.0016 0.0433 0 -0.1332 -0.0015 0.1319
0 -0.0421 -0.0007 0.0410 0 -0.1896 0.0080 0.2093
0 -0.0450 -0.0002 0.0431 0 -0.1138 -0.0421 0.0296
0 -0.0381 0.0018 0.0450 0 -0.0385 0.0546 0.1461

vec(A3) 0 0.0005 0.0158 0.0448 0 -0.1840 -0.0714 0.0401
0 -0.0382 0.0021 0.0477 0 -0.2107 -0.0451 0.1206
0 -0.0470 -0.0011 0.0464 0 -0.0360 0.0064 0.0488
0 -0.0499 -0.0001 0.0445 0 -0.1245 -0.0708 -0.0177
0 -0.0428 0.0005 0.0423 0 -0.0620 0.0039 0.0705
0 -0.0422 0.0001 0.0404 0 -0.1837 -0.0698 0.0439
0 -0.0434 -0.0046 0.0376 Ψ 3 2.9699 3.0083 3.0465
0 -0.0420 0.0006 0.0432 0 -0.0832 -0.0223 0.0388
0 -0.0478 -0.0032 0.0379 2.5 2.4380 2.4987 2.5600
0 -0.0452 -0.0037 0.0425 0 -0.0596 0.0016 0.0630
0 -0.0459 -0.0002 0.0483
0 -0.0424 -0.0003 0.0441
0 -0.0387 -0.0001 0.0388
0 -0.0396 0.0022 0.0399
0 -0.0396 0.0040 0.0544
0 -0.0395 0.0041 0.0477

ν 30 15.9899 19.9123 26.1828
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Table 3.ii: Section 7.1: Distribution of the posterior mean of the parameters for IWSV model, Simulated
data, across N = 100 samples, Rolling window

Parameter Pop. value 2.5% C.I. mean 97.5% C.I. Parameter Pop. value 2.5% C.I. mean 97.5% C.I.
vech(C) 0.3 0.2943 0.3003 0.3070 vec(Π1) 0.2 0.2145 0.2303 0.2498

0 -0.0003 0.0033 0.0086 0 -0.0441 -0.0107 0.0206
0 -0.0146 -0.0093 -0.0053 0 -0.1211 -0.0611 0.0006
0 -0.0105 -0.0051 0.0005 0 -0.0394 -0.0132 0.0140

0.3 0.3032 0.3098 0.3155 0 0.0114 0.0360 0.0522
0 -0.0133 -0.0068 -0.0001 0.8 0.6974 0.7248 0.7497
0 -0.0069 -0.0019 0.0031 0 -0.0833 -0.0031 0.0751

0.3 0.2924 0.2994 0.3064 0 -0.0148 0.0361 0.0751
0 -0.0041 0.0007 0.0059 0 -0.0377 -0.0055 0.0193

0.3 0.3101 0.3147 0.3192 0 -0.0301 -0.0124 -0.0005
vec(A1) 0.5 0.4921 0.4970 0.5031 0.8 0.6782 0.7691 0.8529

0 -0.0052 -0.0004 0.0048 0 -0.1299 -0.1068 -0.0662
0 -0.0050 -0.0011 0.0028 0 -0.0074 -0.0009 0.0056
0 -0.0069 -0.0016 0.0029 0 0.0089 0.0418 0.0747
0 -0.0022 0.0038 0.0106 0 -0.0901 -0.0726 -0.0578

0.75 0.7377 0.7438 0.7492 0.8 0.7667 0.7887 0.8148
0 -0.0060 -0.0005 0.0046 vec(Π2) 0 -0.1492 -0.1286 -0.1064
0 -0.0098 -0.0041 0.0019 0 -0.0638 -0.0408 -0.0230
0 -0.0127 -0.0053 0.0031 0 -0.0440 0.0070 0.0423
0 -0.0105 -0.0024 0.0052 0 0.0107 0.0671 0.1271

0.85 0.8334 0.8408 0.8481 0 -0.0437 -0.0253 -0.0119
0 -0.0058 -0.0014 0.0034 0 0.0112 0.0404 0.0696
0 -0.0134 -0.0056 0.0040 0 -0.1043 -0.0603 0.0024
0 0.0000 0.0051 0.0120 0 -0.0987 -0.0476 0.0028
0 -0.0043 0.0018 0.0088 0 0.0368 0.0551 0.0869

0.98 0.9675 0.9743 0.9825 0 -0.0745 -0.0430 -0.0105
vec(A2) 0 0.0156 0.0178 0.0208 0 -0.0068 0.0230 0.0750

0 -0.0058 0.0001 0.0050 0 -0.0123 0.0596 0.1291
0 -0.0044 0.0000 0.0044 0 -0.0298 -0.0116 0.0031
0 -0.0052 0.0001 0.0051 0 -0.0047 0.0103 0.0240
0 -0.0037 0.0000 0.0043 0 0.0596 0.0895 0.1091
0 -0.0055 -0.0003 0.0047 0 0.0423 0.0695 0.1054
0 -0.0039 0.0003 0.0051 vec(Π3) 0 -0.0437 -0.0268 -0.0100
0 -0.0042 0.0001 0.0049 0 -0.0723 -0.0117 0.0631
0 -0.0043 -0.0001 0.0041 0 0.0212 0.0502 0.0785
0 -0.0049 0.0004 0.0043 0 -0.1623 -0.1254 -0.0914
0 -0.0055 -0.0002 0.0047 0 0.0073 0.0316 0.0690
0 -0.0053 0.0001 0.0057 0 -0.0352 -0.0194 -0.0017
0 -0.0044 0.0000 0.0037 0 -0.0057 0.0414 0.0755
0 -0.0047 -0.0003 0.0043 0 -0.0033 0.0635 0.1190
0 -0.0040 0.0006 0.0052 0 -0.0634 -0.0495 -0.0390
0 -0.0042 0.0001 0.0052 0 0.0088 0.0386 0.0664

vec(A3) 0 0.0147 0.0178 0.0206 0 -0.0939 -0.0620 -0.0218
0 -0.0045 0.0000 0.0050 0 -0.1322 -0.0835 -0.0406
0 -0.0048 0.0001 0.0047 0 -0.0266 -0.0082 0.0124
0 -0.0045 0.0003 0.0053 0 -0.0705 -0.0422 -0.0259
0 -0.0044 0.0000 0.0054 0 -0.0268 -0.0144 0.0048
0 -0.0042 0.0001 0.0042 0 -0.0778 -0.0592 -0.0424
0 -0.0057 0.0000 0.0049 Ψ 3 3.0092 3.0289 3.0482
0 -0.0043 0.0000 0.0046 0 -0.0236 -0.0207 -0.0163
0 -0.0059 0.0002 0.0054 2.5 2.4865 2.4942 2.5011
0 -0.0040 0.0002 0.0052 0 0.0001 0.0015 0.0027
0 -0.0051 0.0002 0.0052
0 -0.0031 0.0002 0.0036
0 -0.0038 0.0001 0.0038
0 -0.0045 0.0000 0.0048
0 -0.0042 0.0002 0.0048
0 -0.0057 -0.0002 0.0050

ν 30 18.2853 19.8090 21.3300
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Table 4.i: Section 7.1: Posterior distribution of the parameters for Clark model, Simulated data, 1st sample,
Rolling window

Parameter Pop. value 2.5% C.I. mean 97.5% C.I. Parameter Pop. value 2.5% C.I. mean 97.5% C.I.
b21 n/a -0.1449 0.0192 0.1800 vec(Π1) 0.2 0.0839 0.2117 0.3408
b31 -0.0650 0.1480 0.3667 0 -0.1787 -0.0310 0.1214
b32 -0.0766 0.0693 0.2143 0 -0.2839 -0.0989 0.0873
b41 -0.3200 0.0221 0.3661 0 -0.2180 0.0422 0.3032
b42 -0.2173 0.0609 0.3390 0 -0.0723 0.0170 0.1059
b43 -0.3054 -0.0779 0.1498 0.8 0.5884 0.7131 0.8391
ϕ1 0.1643 0.2869 0.4712 0 -0.1150 0.0198 0.1573
ϕ2 0.1624 0.2783 0.4575 0 -0.2074 -0.0027 0.2066
ϕ3 0.1625 0.2784 0.4718 0 -0.1155 -0.0420 0.0307
ϕ4 0.1655 0.2857 0.4731 0 -0.1196 -0.0223 0.0741

0.8 0.7102 0.8354 0.9611
0 -0.3274 -0.1493 0.0291
0 -0.0555 -0.0175 0.0211
0 0.0135 0.0681 0.1237
0 -0.1441 -0.0806 -0.0168

0.8 0.6478 0.7690 0.8883
vec(Π2) 0 -0.2772 -0.1491 -0.0207

0 -0.2267 -0.0713 0.0821
0 -0.1454 0.0432 0.2280
0 -0.2279 0.0210 0.2680
0 -0.1414 -0.0332 0.0764
0 -0.0729 0.0736 0.2188
0 -0.2103 -0.0430 0.1203
0 -0.1926 0.0414 0.2765
0 -0.0142 0.0742 0.1621
0 -0.1774 -0.0584 0.0619
0 -0.1553 -0.0034 0.1481
0 -0.0863 0.1282 0.3420
0 -0.0602 -0.0109 0.0385
0 -0.0536 0.0157 0.0842
0 0.0181 0.0985 0.1791
0 -0.0803 0.0655 0.2081

vec(Π3) 0 -0.1198 0.0034 0.1265
0 -0.0921 0.0618 0.2147
0 -0.1051 0.0763 0.2574
0 -0.3904 -0.1337 0.1235
0 -0.0537 0.0316 0.1162
0 -0.1479 -0.0305 0.0875
0 -0.1297 0.0010 0.1327
0 -0.2270 -0.0112 0.2051
0 -0.1037 -0.0370 0.0295
0 -0.0458 0.0465 0.1379
0 -0.1650 -0.0478 0.0695
0 -0.2126 -0.0398 0.1322
0 -0.0392 0.0020 0.0431
0 -0.1223 -0.0666 -0.0128
0 -0.0792 -0.0091 0.0607
0 -0.1899 -0.0723 0.0474

Ψ 3 2.9584 2.9990 3.0399
0 -0.0846 -0.0235 0.0378

2.5 2.4360 2.4970 2.5587
0 -0.0591 0.0024 0.0637
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Table 4.ii: Section 7.1: Distribution of the posterior mean of the parameters for Clark model, Simulated data,
across N = 100 samples, Rolling window

Parameter Pop. value 2.5% C.I. mean 97.5% C.I. Parameter Pop. value 2.5% C.I. mean 97.5% C.I.
b21 n/a -0.0622 -0.0161 0.0575 vec(Π1) 0.2 0.2074 0.2277 0.2505
b31 0.0581 0.1111 0.1570 0 -0.0475 -0.0157 0.0198
b32 0.0447 0.0737 0.0976 0 -0.1249 -0.0656 -0.0187
b41 0.0136 0.1623 0.2286 0 -0.0248 0.0012 0.0265
b42 -0.0571 -0.0100 0.0425 0 0.0155 0.0661 0.1033
b43 -0.1218 -0.0750 0.0001 0.8 0.6895 0.7079 0.7328
ϕ1 0.2860 0.2984 0.3196 0 -0.0761 -0.0090 0.0645
ϕ2 0.2774 0.2914 0.3149 0 -0.0254 0.0169 0.0461
ϕ3 0.2659 0.2872 0.3172 0 -0.0409 -0.0096 0.0230
ϕ4 0.2744 0.2997 0.3161 0 -0.0643 -0.0407 -0.0207

0.8 0.6899 0.7621 0.8339
0 -0.1470 -0.1236 -0.0946
0 -0.0179 -0.0070 0.0022
0 0.0006 0.0443 0.0703
0 -0.1090 -0.0846 -0.0703

0.8 0.7640 0.7833 0.8128
vec(Π2) 0 -0.1434 -0.1120 -0.0737

0 -0.0686 -0.0317 -0.0004
0 0.0121 0.0386 0.0704
0 0.0286 0.0782 0.1441
0 -0.0708 -0.0528 -0.0257
0 0.0084 0.0390 0.0689
0 -0.0699 -0.0414 0.0119
0 -0.0815 -0.0274 0.0187
0 0.0504 0.0684 0.0995
0 -0.0635 -0.0325 0.0010
0 -0.0191 0.0215 0.0754
0 0.0013 0.0799 0.1460
0 -0.0150 0.0037 0.0214
0 -0.0108 0.0104 0.0262
0 0.0854 0.1053 0.1303
0 0.0481 0.0778 0.1082

vec(Π3) 0 -0.0087 0.0169 0.0382
0 -0.0770 -0.0212 0.0484
0 0.0023 0.0451 0.0832
0 -0.1576 -0.1200 -0.0886
0 0.0166 0.0399 0.0680
0 -0.0290 -0.0019 0.0201
0 -0.0174 0.0305 0.0564
0 -0.0172 0.0443 0.0981
0 -0.0677 -0.0514 -0.0359
0 0.0155 0.0505 0.0738
0 -0.0816 -0.0649 -0.0520
0 -0.1280 -0.0889 -0.0445
0 -0.0359 -0.0135 0.0114
0 -0.0660 -0.0394 -0.0201
0 -0.0458 -0.0301 -0.0060
0 -0.0893 -0.0699 -0.0503

Ψ 3 2.9994 3.0256 3.0471
0 -0.0282 -0.0236 -0.0181

2.5 2.4833 2.4926 2.5009
0 -0.0003 0.0019 0.0034
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Table 5.i: Section 7.2: Posterior distribution of the parameters for IWSV model, Real data, 1st sample,
Recursive window

Posterior Posterior
Parameter Prior mean 2.5% C.I. mean 97.5% C.I. Parameter Prior mean 2.5% C.I. mean 97.5% C.I.
vech(C) 0.3 0.3026 0.3668 0.4314 vec(Π1) 0.2 0.0998 0.2678 0.4365

0 -0.0924 -0.0101 0.0665 0 -0.0432 0.0129 0.0696
0 -0.0625 0.0089 0.0712 0 -0.0086 0.0187 0.0462
0 -0.0526 0.0009 0.0526 0 -0.0456 -0.0288 -0.0128

0.3 0.3004 0.3702 0.4730 0 0.2734 0.6964 1.1389
0 -0.0661 -0.0065 0.0591 0.8 0.3613 0.5683 0.7760
0 -0.0706 -0.0230 0.0256 0 -0.0551 0.0092 0.0750

0.3 0.1957 0.2553 0.3155 0 -0.0602 -0.0193 0.0190
0 -0.0541 -0.0050 0.0480 0 -0.6476 -0.1205 0.4230

0.3 0.0882 0.1251 0.1671 0 -0.0750 0.1870 0.4571
vec(A1) 0.9 0.9828 1.0039 1.0259 0.8 1.0069 1.1873 1.3663

0 -0.0151 0.0101 0.0246 0 -0.0583 0.0105 0.0761
0 -0.0046 0.0046 0.0140 0 -0.6838 0.0451 0.7751
0 -0.0163 -0.0098 -0.0039 0 -0.7457 -0.2081 0.3390
0 -0.1494 -0.0655 0.0745 0 -0.3954 -0.0664 0.2640

0.9 0.8988 0.9514 0.9860 0.8 0.9701 1.1614 1.3534
0 -0.0364 -0.0029 0.0260 vec(Π2) 0 -0.0961 0.0635 0.2214
0 -0.0089 0.0083 0.0255 0 -0.0348 0.0229 0.0795
0 -0.0757 0.0047 0.0844 0 -0.0180 0.0107 0.0391
0 -0.0931 -0.0094 0.0740 0 -0.0378 -0.0224 -0.0072

0.9 0.8054 0.8714 0.9351 0 -0.9829 -0.5763 -0.1504
0 -0.0614 -0.0155 0.0244 0 -0.0972 0.0953 0.2925
0 -0.1045 -0.0133 0.0735 0 -0.0895 -0.0237 0.0432
0 -0.1191 -0.0446 0.0536 0 -0.0280 0.0114 0.0504
0 -0.0744 0.0077 0.0824 0 -0.9201 -0.2808 0.3699

0.9 0.7397 0.8091 0.8692 0 -0.4920 -0.1107 0.2704
vec(A2) 0 0.0017 0.0405 0.1098 0 -0.7450 -0.4738 -0.2042

0 -0.0613 -0.0032 0.0616 0 -0.1357 -0.0376 0.0629
0 -0.0280 0.0015 0.0281 0 -0.3902 0.3363 1.0635
0 -0.0170 -0.0016 0.0141 0 -0.4375 0.1732 0.7828
0 -0.0974 -0.0062 0.0935 0 -0.3910 0.0464 0.4760
0 -0.0970 -0.0014 0.0931 0 -0.6903 -0.4303 -0.1641
0 -0.0621 0.0035 0.0640 vec(Π3) 0 -0.3406 -0.1860 -0.0356
0 -0.0439 0.0000 0.0385 0 -0.0329 0.0165 0.0665
0 -0.1015 -0.0019 0.0791 0 -0.0300 -0.0042 0.0214
0 -0.0829 -0.0003 0.0934 0 -0.0161 -0.0025 0.0115
0 -0.0854 -0.0009 0.0903 0 -0.6159 -0.2589 0.0889
0 -0.0677 -0.0023 0.0659 0 -0.1229 0.0435 0.2100
0 -0.1018 -0.0074 0.0855 0 -0.0574 -0.0055 0.0477
0 -0.1016 -0.0071 0.0795 0 -0.0161 0.0169 0.0490
0 -0.0804 0.0087 0.0984 0 -0.3772 0.2538 0.8965
0 -0.0952 -0.0038 0.0792 0 -0.2421 0.0972 0.4394

vec(A3) 0 0.0022 0.0427 0.1221 0 0.0530 0.2489 0.4410
0 -0.0603 0.0011 0.0560 0 -0.0582 0.0239 0.1064
0 -0.0282 0.0011 0.0300 0 -0.4226 0.2740 0.9774
0 -0.0144 0.0012 0.0171 0 -0.4789 0.0136 0.5048
0 -0.0911 -0.0016 0.0869 0 -0.3233 -0.0316 0.2655
0 -0.0893 0.0014 0.0916 0 -0.0173 0.1529 0.3212
0 -0.0596 -0.0047 0.0552 Ψ 3 2.9048 3.2533 3.5801
0 -0.0403 0.0043 0.0457 0 -0.1817 0.1979 0.5711
0 -0.0712 0.0140 0.1038 2.5 0.8292 1.8164 3.0835
0 -0.0958 -0.0006 0.0941 0 -0.1466 0.2088 0.5409
0 -0.0922 -0.0082 0.0807
0 -0.0632 0.0059 0.0777
0 -0.0802 0.0066 0.0923
0 -0.0924 0.0057 0.0911
0 -0.0755 0.0048 0.0895
0 -0.0822 0.0020 0.0853

ν 15 13.0737 15.9185 19.2311
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Table 5.ii: Section 7.2: Distribution of the posterior mean of the parameters for IWSV model, Real data,
across N = 100 samples, Recursive window

Distribution Distribution
Parameter Prior mean 2.5% C.I. mean 97.5% C.I. Parameter Prior mean 2.5% C.I. mean 97.5% C.I.
vech(C) 0.3 0.3169 0.3570 0.3940 vec(Π1) 0.2 0.1783 0.2069 0.2417

0 -0.0472 -0.0101 0.0244 0 0.0188 0.0283 0.0401
0 -0.0102 0.0087 0.0266 0 0.0138 0.0169 0.0203
0 -0.0098 0.0029 0.0156 0 -0.0314 -0.0254 -0.0222

0.3 0.3078 0.3575 0.3972 0 0.2150 0.3770 0.6117
0 -0.0137 -0.0019 0.0135 0.8 0.5636 0.5971 0.6360
0 -0.0271 -0.0174 -0.0100 0 0.0000 0.0181 0.0254

0.3 0.1809 0.2132 0.2406 0 -0.0215 -0.0054 0.0013
0 -0.0202 -0.0078 0.0042 0 -0.0235 0.1114 0.2094

0.3 0.0946 0.1171 0.1378 0 0.0029 0.0524 0.1450
vec(A1) 0.9 0.9962 1.0018 1.0068 0.8 1.1440 1.2516 1.3223

0 -0.0110 0.0013 0.0104 0 -0.0072 -0.0019 0.0104
0 0.0023 0.0047 0.0076 0 -0.0303 0.0498 0.1240
0 -0.0112 -0.0100 -0.0089 0 -0.2833 -0.2083 -0.1313
0 -0.0792 -0.0297 0.0369 0 -0.1228 -0.0924 -0.0575

0.9 0.9218 0.9332 0.9467 0.8 1.1078 1.1842 1.2344
0 -0.0033 0.0036 0.0091 vec(Π2) 0 0.0807 0.1457 0.1885
0 -0.0004 0.0040 0.0076 0 0.0078 0.0137 0.0208
0 -0.0436 -0.0006 0.0357 0 0.0071 0.0107 0.0155
0 -0.0238 0.0082 0.0414 0 -0.0234 -0.0186 -0.0150

0.9 0.8701 0.8866 0.8998 0 -0.5158 -0.3684 -0.2794
0 -0.0247 -0.0191 -0.0134 0 0.0854 0.1547 0.1928
0 -0.0335 -0.0008 0.0359 0 -0.0230 -0.0055 0.0048
0 -0.0429 -0.0184 0.0141 0 0.0070 0.0103 0.0155
0 -0.0244 -0.0019 0.0221 0 -0.4067 -0.2102 -0.0803

0.9 0.7822 0.7959 0.8100 0 -0.1261 0.0442 0.1253
vec(A2) 0 0.0363 0.0452 0.0544 0 -0.5686 -0.5257 -0.4351

0 -0.0141 -0.0011 0.0110 0 -0.0389 -0.0268 -0.0187
0 -0.0026 0.0011 0.0056 0 0.1418 0.3322 0.4701
0 -0.0029 -0.0014 0.0005 0 0.0574 0.1723 0.2386
0 -0.0115 -0.0004 0.0103 0 -0.0120 0.0219 0.0637
0 -0.0182 -0.0062 0.0060 0 -0.4234 -0.3567 -0.3030
0 -0.0085 -0.0007 0.0072 vec(Π3) 0 -0.1889 -0.1567 -0.1048
0 -0.0021 0.0019 0.0054 0 -0.0003 0.0141 0.0229
0 -0.0127 0.0011 0.0144 0 -0.0102 -0.0065 -0.0027
0 -0.0109 0.0021 0.0172 0 -0.0061 0.0004 0.0043
0 -0.0202 -0.0054 0.0067 0 -0.3499 -0.2877 -0.2174
0 -0.0081 -0.0001 0.0064 0 0.0297 0.1074 0.1437
0 -0.0120 -0.0005 0.0097 0 -0.0171 -0.0132 -0.0063
0 -0.0109 0.0002 0.0121 0 0.0170 0.0217 0.0255
0 -0.0084 0.0005 0.0120 0 -0.0871 0.0283 0.1934
0 -0.0108 0.0000 0.0080 0 -0.1700 -0.0872 0.1153

vec(A3) 0 0.0388 0.0455 0.0536 0 0.1564 0.2198 0.2630
0 -0.0111 -0.0016 0.0083 0 0.0207 0.0286 0.0434
0 -0.0021 0.0017 0.0061 0 0.1454 0.2404 0.3274
0 -0.0034 -0.0014 0.0004 0 -0.1485 -0.0634 0.0384
0 -0.0119 -0.0009 0.0119 0 -0.0453 0.0107 0.0459
0 -0.0159 -0.0035 0.0081 0 0.0378 0.0787 0.1527
0 -0.0074 -0.0002 0.0074 Ψ 3 3.1668 3.2304 3.2954
0 -0.0020 0.0026 0.0071 0 -0.0393 0.0112 0.1700
0 -0.0098 0.0005 0.0122 2.5 1.8627 2.1368 2.4718
0 -0.0100 0.0001 0.0117 0 -0.0699 0.0350 0.2396
0 -0.0150 -0.0042 0.0082
0 -0.0070 0.0005 0.0088
0 -0.0097 -0.0004 0.0112
0 -0.0142 -0.0012 0.0106
0 -0.0100 0.0011 0.0121
0 -0.0098 0.0005 0.0130

ν 15 14.7539 15.7235 16.3972
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Table 5.iii: Section 7.2: Distribution of the posterior mean of the parameters for IWSV model, Real data,
across N = 100 samples, Rolling window

Distribution Distribution
Parameter Prior mean 2.5% C.I. mean 97.5% C.I. Parameter Prior mean 2.5% C.I. mean 97.5% C.I.
vech(C) 0.3 0.3185 0.3531 0.3832 vec(Π1) 0.2 0.0400 0.1544 0.2780

0 -0.0371 -0.0066 0.0222 0 -0.0100 0.0065 0.0200
0 -0.0132 0.0068 0.0336 0 0.0165 0.0310 0.0584
0 -0.0169 -0.0063 0.0046 0 -0.0353 -0.0183 -0.0104

0.3 0.3064 0.3458 0.3836 0 -0.1644 0.1977 0.4825
0 -0.0209 -0.0008 0.0182 0.8 0.4511 0.5484 0.6119
0 -0.0208 -0.0110 0.0013 0 -0.0454 0.0289 0.0486

0.3 0.1913 0.2236 0.2495 0 -0.0092 0.0121 0.0332
0 -0.0312 -0.0093 0.0070 0 -0.2187 -0.0084 0.1595

0.3 0.0816 0.1003 0.1321 0 -0.0593 0.0253 0.1636
vec(A1) 0.9 0.9910 0.9961 1.0023 0.8 1.0033 1.0719 1.1743

0 -0.0179 -0.0046 0.0081 0 -0.0058 0.0160 0.0317
0 -0.0027 0.0031 0.0101 0 -0.1244 0.0075 0.1431
0 -0.0110 -0.0077 -0.0054 0 -0.3676 -0.1666 0.0647
0 -0.0676 -0.0050 0.0482 0 -0.3851 -0.2110 -0.0573

0.9 0.8813 0.9029 0.9404 0.8 1.0663 1.1334 1.2186
0 -0.0137 0.0028 0.0188 vec(Π2) 0 0.0633 0.1755 0.2832
0 -0.0050 0.0027 0.0087 0 -0.0132 0.0032 0.0192
0 -0.0348 0.0104 0.0534 0 0.0151 0.0240 0.0321
0 -0.0157 0.0190 0.0502 0 -0.0240 -0.0170 -0.0113

0.9 0.8688 0.8838 0.8970 0 -0.5463 -0.2745 0.0846
0 -0.0285 -0.0216 -0.0121 0 0.0916 0.1512 0.2574
0 -0.0358 -0.0048 0.0249 0 -0.0128 0.0363 0.1100
0 -0.0418 -0.0103 0.0239 0 -0.0131 0.0066 0.0223
0 -0.0314 -0.0085 0.0217 0 -0.5758 -0.3562 -0.1639

0.9 0.7857 0.8007 0.8251 0 -0.1191 0.0599 0.1634
vec(A2) 0 0.0331 0.0410 0.0511 0 -0.5216 -0.4447 -0.3696

0 -0.0321 -0.0015 0.0264 0 -0.0522 -0.0314 -0.0133
0 -0.0128 -0.0005 0.0094 0 0.0263 0.2298 0.4928
0 -0.0042 -0.0015 0.0012 0 0.0015 0.2249 0.3491
0 -0.0109 -0.0002 0.0082 0 -0.1277 -0.0247 0.0834
0 -0.0150 -0.0030 0.0086 0 -0.4164 -0.2914 -0.1717
0 -0.0107 -0.0012 0.0084 vec(Π3) 0 -0.2182 -0.0745 0.0015
0 -0.0036 0.0014 0.0050 0 0.0062 0.0231 0.0419
0 -0.0099 0.0005 0.0097 0 -0.0056 0.0027 0.0101
0 -0.0088 0.0004 0.0098 0 -0.0138 -0.0074 -0.0009
0 -0.0144 -0.0029 0.0110 0 -0.3420 -0.1868 -0.0281
0 -0.0086 -0.0011 0.0060 0 0.0505 0.1847 0.2479
0 -0.0095 0.0000 0.0097 0 -0.0340 -0.0042 0.0250
0 -0.0106 0.0004 0.0094 0 0.0027 0.0182 0.0298
0 -0.0093 0.0003 0.0088 0 -0.1851 0.0293 0.2204
0 -0.0079 0.0003 0.0094 0 -0.3163 -0.1617 0.0951

vec(A3) 0 0.0342 0.0414 0.0486 0 0.1535 0.2405 0.3026
0 -0.0263 0.0020 0.0289 0 0.0320 0.0602 0.0965
0 -0.0119 0.0006 0.0126 0 -0.0743 0.0807 0.2953
0 -0.0037 -0.0018 0.0003 0 -0.4598 -0.2316 0.1492
0 -0.0127 -0.0008 0.0116 0 -0.0681 0.0543 0.1660
0 -0.0135 -0.0021 0.0105 0 0.0391 0.0917 0.1640
0 -0.0102 -0.0010 0.0126 Ψ 3 2.9755 3.2153 3.4335
0 -0.0028 0.0012 0.0056 0 -0.0780 0.0484 0.2550
0 -0.0086 0.0000 0.0088 2.5 1.5758 1.8761 2.2094
0 -0.0084 0.0008 0.0093 0 -0.1144 -0.0045 0.2037
0 -0.0128 -0.0034 0.0041
0 -0.0060 0.0002 0.0056
0 -0.0117 -0.0014 0.0070
0 -0.0138 -0.0012 0.0103
0 -0.0110 0.0004 0.0104
0 -0.0080 0.0001 0.0088

ν 15 14.8556 17.0125 19.2372
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Table 6.i: Section 7.2: Posterior distribution of the parameters for Clark model, Real data, 1st sample, Recur-
sive window

Posterior Posterior
Parameter Prior mean 2.5% C.I. mean 97.5% C.I. Parameter Prior mean 2.5% C.I. mean 97.5% C.I.
b21 0 -0.0035 0.0340 0.0706 vec(Π1) 0.2 0.0731 0.2563 0.4417
b31 0 -0.0303 -0.0133 0.0013 0 -0.0431 0.0050 0.0535
b32 0 0.0225 0.0537 0.0786 0 -0.0095 0.0040 0.0192
b41 0 0.0298 0.0422 0.0543 0 -0.0445 -0.0275 -0.0113
b42 0 0.0015 0.0285 0.0562 0 -0.1109 0.3320 0.7760
b43 0 0.0221 0.0758 0.1242 0.8 0.3110 0.5186 0.7296
ϕ1 doesn’t exist 0.2569 0.5142 0.9586 0 -0.0461 -0.0149 0.0154
ϕ2 doesn’t exist 0.2716 0.5229 0.9416 0 -0.0440 -0.0043 0.0354
ϕ3 doesn’t exist 0.3263 0.6611 1.2517 0 -0.8804 -0.3001 0.2954
ϕ4 doesn’t exist 0.2419 0.4893 0.9293 0 -0.1741 0.1089 0.4020

0.8 1.1264 1.3160 1.5004
0 -0.0403 0.0288 0.0889
0 -0.7122 0.0270 0.7621
0 -0.8124 -0.2888 0.2411
0 -0.3009 -0.1286 0.0573

0.8 0.9702 1.1552 1.3412
vec(Π2) 0 -0.1059 0.0762 0.2561

0 -0.0319 0.0255 0.0809
0 -0.0074 0.0065 0.0220
0 -0.0373 -0.0216 -0.0066
0 -0.7804 -0.2908 0.1838
0 -0.0849 0.1416 0.3713
0 -0.0565 -0.0275 0.0051
0 -0.0463 -0.0075 0.0305
0 -0.8763 -0.1833 0.5165
0 -0.4712 -0.0387 0.3979
0 -0.8819 -0.6029 -0.3166
0 -0.1286 -0.0536 0.0286
0 -0.4021 0.3384 1.0790
0 -0.4346 0.1610 0.7570
0 -0.0309 0.2028 0.4361
0 -0.7155 -0.4575 -0.1950

vec(Π3) 0 -0.3412 -0.1761 -0.0084
0 -0.0338 0.0140 0.0640
0 -0.0147 0.0006 0.0169
0 -0.0186 -0.0057 0.0069
0 -0.6458 -0.2553 0.1521
0 -0.0510 0.1404 0.3184
0 -0.0190 0.0039 0.0344
0 -0.0108 0.0225 0.0550
0 -0.4066 0.2528 0.9053
0 -0.3194 0.0160 0.3600
0 0.0828 0.2758 0.4662
0 -0.0340 0.0250 0.0853
0 -0.5465 0.1582 0.8685
0 -0.4387 0.0452 0.5377
0 -0.2472 -0.0772 0.0851
0 0.0155 0.1813 0.3413

Ψ 3 2.9053 3.2772 3.6230
0 -0.2167 0.1691 0.5383

2.5 1.0637 2.2502 3.5255
0 -0.0718 0.2747 0.6080
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Table 6.ii: Section 7.2: Distribution of the posterior mean of the parameters for Clark model, Real data,
across N = 100 samples, Recursive window

Distribution Distribution
Parameter Prior mean 2.5% C.I. mean 97.5% C.I. Parameter Prior mean 2.5% C.I. mean 97.5% C.I.
b21 0 0.0271 0.0343 0.0413 vec(Π1) 0.2 0.2193 0.2416 0.2597
b31 0 -0.0226 -0.0186 -0.0140 0 0.0055 0.0222 0.0398
b32 0 0.0316 0.0400 0.0534 0 0.0032 0.0051 0.0073
b41 0 0.0361 0.0403 0.0447 0 -0.0321 -0.0243 -0.0195
b42 0 0.0185 0.0229 0.0317 0 0.0629 0.1623 0.3159
b43 0 0.0807 0.0938 0.1072 0.8 0.5087 0.5298 0.5612
ϕ1 doesn’t exist 0.3160 0.4001 0.5112 0 -0.0180 -0.0082 -0.0026
ϕ2 doesn’t exist 0.3743 0.4450 0.5259 0 -0.0145 0.0080 0.0165
ϕ3 doesn’t exist 0.5106 0.5640 0.6417 0 -0.2665 -0.1119 -0.0251
ϕ4 doesn’t exist 0.3213 0.3985 0.5030 0 -0.0825 -0.0068 0.1260

0.8 1.2945 1.3557 1.4073
0 0.0015 0.0144 0.0371
0 -0.0477 -0.0011 0.0499
0 -0.3630 -0.3034 -0.2356
0 -0.1271 -0.1025 -0.0671

0.8 1.1025 1.1652 1.2153
vec(Π2) 0 0.0829 0.1489 0.1932

0 0.0128 0.0194 0.0259
0 0.0060 0.0081 0.0102
0 -0.0233 -0.0178 -0.0138
0 -0.2946 -0.1851 -0.1330
0 0.1322 0.1765 0.2121
0 -0.0275 -0.0133 -0.0036
0 -0.0112 -0.0003 0.0070
0 -0.3450 -0.1816 -0.0826
0 -0.0759 0.0510 0.1085
0 -0.6551 -0.5973 -0.5603
0 -0.0594 -0.0419 -0.0344
0 0.2069 0.3600 0.4790
0 0.0497 0.2284 0.3607
0 0.1230 0.1734 0.2045
0 -0.4429 -0.3629 -0.2985

vec(Π3) 0 -0.1724 -0.1322 -0.0989
0 0.0030 0.0204 0.0341
0 -0.0018 0.0005 0.0029
0 -0.0083 -0.0024 0.0007
0 -0.2876 -0.2446 -0.1950
0 0.1273 0.1985 0.2413
0 0.0039 0.0079 0.0128
0 0.0165 0.0231 0.0316
0 0.0396 0.1384 0.2786
0 -0.1424 -0.0560 0.0411
0 0.1336 0.2178 0.2769
0 0.0236 0.0364 0.0559
0 0.0896 0.1705 0.2605
0 -0.1737 -0.0393 0.1113
0 -0.0852 -0.0694 -0.0389
0 0.0537 0.1045 0.1890

Ψ 3 3.1523 3.2340 3.3483
0 -0.1078 -0.0359 0.1655

2.5 1.9251 2.2429 2.6220
0 -0.0373 0.0878 0.3491
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Table 6.iii: Section 7.2: Distribution of the posterior mean of the parameters for Clark model, Real data,
across N = 100 samples, Rolling window

Distribution Distribution
Parameter Prior mean 2.5% C.I. mean 97.5% C.I. Parameter Prior mean 2.5% C.I. mean 97.5% C.I.
b21 0 0.0116 0.0332 0.0508 vec(Π1) 0.2 0.1299 0.1831 0.2565
b31 0 -0.0392 -0.0255 -0.0145 0 0.0010 0.0248 0.0539
b32 0 -0.0440 -0.0130 0.0558 0 0.0062 0.0240 0.0516
b41 0 0.0301 0.0360 0.0442 0 -0.0321 -0.0190 -0.0110
b42 0 0.0053 0.0163 0.0315 0 -0.3065 0.0323 0.2289
b43 0 0.0861 0.1064 0.1342 0.8 0.4393 0.5232 0.5880
ϕ1 doesn’t exist 0.4483 0.4846 0.5617 0 -0.0245 0.0125 0.0449
ϕ2 doesn’t exist 0.4900 0.5326 0.5793 0 -0.0093 0.0244 0.0372
ϕ3 doesn’t exist 0.5823 0.6738 0.7938 0 -0.2616 -0.1561 -0.0367
ϕ4 doesn’t exist 0.4382 0.4754 0.5246 0 -0.1113 -0.0291 0.1231

0.8 1.0559 1.1462 1.2749
0 -0.0004 0.0237 0.0350
0 -0.0360 0.0300 0.1174
0 -0.3795 -0.2548 -0.0874
0 -0.3983 -0.2249 -0.0638

0.8 1.0626 1.1299 1.2290
vec(Π2) 0 0.0678 0.1641 0.2412

0 -0.0113 0.0101 0.0325
0 0.0004 0.0157 0.0258
0 -0.0215 -0.0162 -0.0129
0 -0.4334 -0.2454 -0.0504
0 0.1170 0.1688 0.2611
0 -0.0253 0.0368 0.0770
0 -0.0142 -0.0022 0.0172
0 -0.3906 -0.2491 -0.1371
0 -0.0668 0.0364 0.1110
0 -0.6243 -0.5301 -0.4509
0 -0.0531 -0.0336 -0.0188
0 0.0121 0.2567 0.4570
0 0.0297 0.2753 0.4241
0 -0.1188 0.0901 0.2890
0 -0.4588 -0.3234 -0.1831

vec(Π3) 0 -0.1717 -0.0732 -0.0288
0 0.0055 0.0223 0.0481
0 -0.0037 0.0067 0.0179
0 -0.0119 -0.0070 -0.0031
0 -0.2680 -0.1150 -0.0027
0 0.1423 0.2313 0.2925
0 -0.0007 0.0213 0.0496
0 0.0005 0.0146 0.0272
0 -0.0211 0.1319 0.2636
0 -0.1609 -0.0717 0.0500
0 0.1379 0.2394 0.3253
0 0.0311 0.0562 0.0833
0 0.0640 0.1231 0.1940
0 -0.4318 -0.1993 0.1593
0 -0.2045 -0.0389 0.1679
0 0.0603 0.1250 0.1950

Ψ 3 2.9878 3.2183 3.5211
0 -0.1435 0.0376 0.2415

2.5 1.4283 1.7693 2.0976
0 -0.1917 -0.0455 0.2607

107



Figure 23.i: IWSV, Posterior of parameters across N = 100 recursive sample windows
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Figure 23.ii: IWSV, Posterior of parameters across N = 100 rolling sample windows
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Figure 24.i: Clark, Posterior of parameters across N = 100 recursive sample windows
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Figure 24.ii: Clark, Posterior of parameters across N = 100 rolling sample windows
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