
978-1-4799-5944-0/14/$31.00 c©2014 IEEE

Advanced Branch Predictors for Soft Processors

Di Wu and Andreas Moshovos
Electrical and Computer Engineering Department

University of Toronto
peterwudi.wu@utoronto.ca, moshovos@eecg.toronto.edu

Abstract—This work studies implementations of the Percep-
tron [1] and TAGE [2] branch predictors for general purpose,
in-order pipelined single core soft processors. It proposes FPGA-
friendly optimizations whose goal is to achieve high operating
frequency. This work discusses the design tradeoffs and proposes
a highly accurate and fast branch predictor variant based
on TAGE, O-TAGE-SC. It operates at 270MHz, the maximum
frequency of Altera’s highest performing soft-processor Nios II-f.
Using a representative subset of the SPECCPU2006 benchmarks,
this work shows that O-TAGE-SC delivers 5.2% better instruction
throughput versus the previously proposed gRselect predictor [3].

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are increasingly
being used in embedded and other systems. Such designs often
employ one or more embedded microprocessors, and there is a
trend to migrate these microprocessors to the FPGA platform
primarily for reducing costs. While these soft processors
cannot typically match the performance of hard processors,
soft processors are flexible allowing designers to implement
the exact number of processors desired and to customize them
to efficiently fit the application’s requirements.

Current commercial soft processors such as Altera’s
Nios II [4] and Xilinx’s Microblaze [5] use in-order pipelines
with five to six pipeline stages. These processors are often
used for less computation-intensive applications such as system
control tasks. To support more compute-intensive applications,
a key performance improving technique is branch prediction.
Branch prediction has been extensively studied, mostly in
the context of application specific custom logic (ASIC) im-
plementations. However, naı̈vely porting ASIC-based branch
predictors to FPGAs results in slow and/or resource-inefficient
implementations as the tradeoffs are different for reconfig-
urable compared to custom logic. Our previous work have
shown that a branch predictor design for soft processors
should balance its prediction accuracy as well as its maximum
operating frequency [3]. We proposed gRselect, an FPGA-
friendly, minimalistic branch predictor implementation for
Altera’s highest performing soft-processor Nios II-f.

In our previous work, we limited the hardware budget of
the gRselect predictor to just one M9K Block RAM [6] on
Altera Stratix IV devices; Altera’s Nios II-f also uses just
a single M9K BRAM thus gRselect does not increase the
overall soft processor budget disproportionally. Such a small
hardware budget prohibits more elaborate and potentially more
accurate, state-of-the-art branch prediction schemes such as
Perceptron [1] and TAGE [2]. Accordingly, this work relaxes
the hardware budget constraint and investigates FPGA-friendly
implementations of the Perceptron and TAGE predictors. It

studies their accuracy and speed as a function of hardware
budget.

Specifically, this work makes the following contributions:
(1) It studies the FPGA implementation of the Perceptron
and TAGE predictors. It optimizes Perceptron’s maximum
operating frequency by introducing (i) a complement weight
table to simplify the multiplication that is otherwise necessary
at prediction time, and (ii) Low Order Bit (LOB) Elimination
for faster summation. (2) It compares the branch direction
prediction accuracy of the predictors showing that Perceptron
is 19.6% worse than gRselect while TAGE is 2.3x better
than gRselect in terms of Mispredictions Per Kilo Instructions
(MPKI). (3) It finds that TAGE is too slow for single-cycle
access which negates its advantage in MPKI. Accordingly, this
work proposes an overriding predictor O-TAGE-SC that uses
a simple base predictor to provide an initial prediction in the
first cycle which can be overridden in the second cycle should
TAGE disagree with relatively high confidence. O-TAGE-SC
achieves 5.2% better instruction throughput over gRselect.

II. BACKGROUND AND GOALS

Fig. 1 shows the organization of a typical branch predictor
comprising a direction predictor and a target predictor. The
predictor operates in the fetch stage where it aims to predict
the program counter (PC), i.e., the memory address, of the
instruction to fetch in the next cycle using the current instruc-
tion’s PC and other dynamically collected information. The
direction predictor guesses whether the branch will be taken
or not. This work targets the direction predictor. The target
predictor guesses the address for “predicted as taken” branches
and often includes a stack predictor for predicting function
returns.

The multiplexer at the end selects based on the branch
type and the direction prediction whether the target is the fall
through address (PC+4 in Nios II) or the target predicted by
the target or stack predictor. Since, at this point in time, the
actual instruction is not available in a typical ASIC pipeline
implementation, it is not directly possible to determine whether
the instruction is a return, a branch, or some other instruction.
Accordingly, a Selection Logic block uses either pre-decode
information or a PC-based, dynamically populated lookup table
to guess which target is best to use. With the latter scheme,
when no entry exists in the lookup table, some default action
is taken until the first time a branch is encountered. Once the
branch executes, its type is stored in the lookup table where it
serves to identify the branch type on subsequent encounters.
Due to limited capacity, multiple branches may map onto the
same prediction entries. This aliasing tends to reduce accuracy.

PC

Target

+4
PC + 4

Direction

Next PC

Selection Logic

Fig. 1: Canonical Branch Predictor.

weight vector

Weight Table

w0

X G0

wh

X Gh
……

+

Fig. 2: The Perceptron branch predictor.

A. Design Goals

This work aims to implement Perceptron and TAGE pre-
dictors that (1) operate at a high operating frequency while
(2) achieving high accuracy so that they improve execution
performance. As Section IV-B will show, a single-cycle TAGE
is prohibitively slow. Therefore, this work considers an overrid-
ing TAGE predictor [7] that produces a base prediction in one
cycle while overriding that decision with a better prediction
in the second cycle if necessary. Perceptron and TAGE both
require large tables. Accordingly, this work investigates how
their accuracy and latency vary with the amount of hardware
resources they are allowed to use.

III. BRANCH PREDICTION SCHEMES

This section discusses the structure of the branch predictors
considered: (1) the Perceptron and (2) TAGE direction pre-
dictors, and (3) the target predictor. Sections III-A and III-B
discuss Perceptron and TAGE, while section III-C discusses
the target predictor.
A. Perceptron Predictor

The Perceptron predictor uses vectors of weights (i.e.,
perceptrons) to represent correlations among branch instruc-
tions [1]. Fig. 2 shows the structure of a Perceptron predictor.
It produces a prediction through the following steps: (1) A
perceptron is read from the table. (2) The weights are multi-
plied with factors chosen based on the corresponding global
history bits. The weights are multiplied by 1 for taken and -1
for not-taken. (3) The resulting products are summed up and
a prediction is made based on the sign of the result: predict
taken if the sum is positive, and not-taken otherwise. Formally,
for a Perceptron predictor using h history bits, let Gi, where
i = 1...h, be 1 for taken and -1 for not-taken, each weight
vector has h weights w0...h, where the bias constant w0 = 1.
The predictor has to calculate y = w0 +

∑h
i=1Giwi, and

predict taken if y is positive and not-taken otherwise.
B. Tagged Geometric History Length Branch Predictor

The TAGE predictor features a bimodal predictor as a base
predictor T0 and a set of M tagged predictor components

b
ase

b

ase

T0

ctr tag u

hash hash

T1
hash hash

PC

=? =?

PC
h[0:L(1)]

ctr tag u

hash hash

T2
hash hash

PC

=? =?

h[0:L(2)]

ctr tag u

hash hash

T3
hash hash

PC

=? =?

h[0:L(3)]

ctr tag u

hash hash

T4
hash hash

PC

=? =?

h[0:L(4)]

Prediction

Fig. 3: A 5-component TAGE branch predictor.

Ti [2]. These predictor components Ti, where 1 ≤ i ≤ M ,
are indexed with hash functions of the branch address and
the global branch/path history of various lengths. The global
history lengths used for computing the indexing functions for
tables Ti form a geometric series, i.e., L(i) = (int)(αi 1 ×
L(1)+0.5). TAGE achieves its high accuracy by utilizing very
long history lengths judiciously. Essentially, the base predictor
captures the bulk of branches that tend to be biased, while
the remaining components capture exceptions by recording
specific history events that lead to exceptions that foil the base
predictor. Fig. 3 shows a 5-component TAGE predictor. Each
table entry has a 3-bit saturating counter ctr for the prediction
result, a tag, and a 2-bit useful counter u. The table indices
are produced by hashing the PC and the global history using
different lengths per table L(i). All tables are accessed in
parallel and each table provides a valid prediction only on a
tag match and provided that the corresponding useful counter
is saturated. The final prediction comes from the matching
tagged predictor component that uses the longest history.

C. Branch Target Predictor

For completeness, this section also reviews the target
predictor used in this work. Branch Target Prediction usually
requires a Branch Target Buffer (BTB), a cache-like structure
that records the addresses of the branches and their target
addresses. If a branch is predicted to be taken and there is
also a BTB hit, then the next PC is set to be the predicted
target. A BTB can be set-associative to reduce aliasing.

Another common structure used for branch target predic-
tion is the Return Address Stack (RAS), a stack-like structure
that predicts the target address of function returns. When a call
instruction executes, the return address of that call is pushed
onto the RAS. When the processor executes the corresponding
return instruction, RAS pops the return address and provides
a prediction. The prediction is accurate as long as the RAS’
size is less than the current call depth. Most modern processors
have a shallow RAS because typical programs generally do not
have very deep call depths.

In our previous work, we have shown that when using one
M9K BRAM – a hardware budget on par with that of Nios II-f

– eliminating the BTB and using Full Address Calculation
(FAC) together with a RAS results in better performance [3].
FAC calculates the target address in the fetch stage and thus
accurately determines the target addresses for direct branches,
whose target can be calculated based on the instruction it-
self [4]. We have shown that direct branches and returns
comprise over 99.8% of all branches. Implementing FAC with
RAS can cover these branches with 100% accuracy, therefore
having a BTB to cover all branches results in negligible
improvement in target prediction accuracy. On the other hand,
eliminating the BTB and dedicating the entire BRAM for
direction prediction improves direction prediction accuracy
significantly.

Since, this work investigates how branch prediction ac-
curacy can improve when additional hardware resources are
used, adding a BTB for better target prediction coverage could
improve target prediction accuracy. Accordingly, we consider
reintroducing a BTB. However, simulations show that accuracy
is still better without a BTB. This is because when the target
predictor only has FAC and RAS, it never predicts indirect
branches that are not returns because it is not capable to do so.
As a result, the destructive aliasing in the direction predictor is
alleviated because fewer branches are being predicted. Based
on this observation, we only use FAC with a 16-entry RAS as
the branch target predictor, the same one used in gRselect.

IV. FPGA IMPLEMENTATION OPTIMIZATIONS

This section discusses FPGA-specific implementation op-
timizations for Perceptron and TAGE. While this section
assumes a modern Altera FPGA, the optimizations presented
should be broadly applicable.

A. Perceptron Implementation

Section III-A explained that the Perceptron predictor main-
tains vectors of weights in a table and produces a prediction
through three steps. Each of these steps poses difficulties to
map to an FPGA substrate. The rest of this section addresses
these problems.

1) Perceptron Table Organization: Each weight in a per-
ceptron is typically 8-bit wide, and Perceptron predictors
usually use at least a 12-bit global history [1]. The depth of the
table, on the other hand, tends to be relatively shallow (e.g., 64
entries for 1KB hardware budget). This requires a very wide
but shallow memory, which does not map well to BRAMs
on FPGAs. For example, the widest configuration of a M9K
BRAM on Altera Stratix IV is 36-bit wide times 1K entries [6].
If we implement the 1KB Perceptron as proposed by Jiménez
et al. [1], which uses 96-bit wide perceptrons with 12-bit global
history, it will result in a huge resource inefficiency.

Since typically the Perceptron table does not require large
storage space, the proposed Perceptron implementation uses
MLABs as storage, which are fast fine-grain distributed mem-
ory resources. Since 50% of all LABs can be configured as
MLAB on Altera Stratix IV devices, using MLABs does not
introduce routing difficulty.

2) Multiplication: The multiplication stage calculates the
products of weights in a perceptron and their global direction
histories. Since the value of the global direction history can

Weight Table

w1

…… negate

-w1

h1

negate

-wn

hn

wn

(a)

Weight Table

w1

……
-w1

h1

-wn

hn

wn

(b)

Complement
Weight Table

Fig. 4: Perceptron multiplication implementation.

only be either 1 or -1, the “multiplication” degenerates to
two cases, i.e., each product can either be the true form or
the 2’s complement (i.e., negative) form of each weight. A
straightforward implementation calculates the negative of each
weight and uses a mux to select, using the corresponding
global history bit hi, the appropriate result, as Fig. 4(a) shows.
To improve operating frequency, when updating the perceptron
in the execution stage where the branch is resolved, both
positive and negative forms of the updated weight can be pre-
calculated, and the negatives can be stored on a complement
perceptron table. This way, the multiplication stage at predic-
tion time requires only a 2-to-1 mux, as Fig. 4(b) shows. This
optimization trade offs increased resources (it requires extra
storage for the negative weights) for improved speed.

3) Adder Tree: The adder tree sums the products from
the multiplication stage. As Section V-B will show, a global
history of at least 16 bits has to be used to achieve sufficient
accuracy. Implementing a 16-to-1 adder tree for 8-bit integers
naı̈vely degrades maximum frequency severely. The maximum
frequency has to be improved for Perceptron to be practical.

This work employs Low Order Bit (LOB) Elimination that
was proposed by Aasaraai et al. [8]. LOB elimination ignores
the Low Order Bits (LOBs) of each weight and only use the
High Order Bits (HOBs) during prediction, while still using all
the bits for updates. Section V-B shows that eliminating five
LOB bits reduces accuracy by less than 1% compared to using
all eight bits, but summing fewer bits results in 14.6% higher
maximum frequency. Section V-D will show that using three
HOBs for prediction achieves the best overall performance.

Cadenas et al. proposed a method to rearrange the weights
stored in the table in order to reduce the number of lay-
ers of the adder tree [9]. Assuming a Perceptron predictor
uses h history bits, instead of storing h weights wi where
i = 1...h, a new form of weights w̃i: w̃i = −wi +
wi+1; w̃i+1 = −wi − wi+1, for i = 1, 3, ..., h − 1 is
used. The perceptron prediction can now be computed by
y = w0 +

∑h/2
i=1(−G2i−1)w̃2i−h2i−1

⊕
h2i

. This work applies
this new arrangement because it pushes part of the calculation
to the less time critical update logic of the Perceptron predictor
so that only h/2 additions have to be performed, hence reduces
the number of adders required by 50%.

Using fast adders such as carry-lookahead adders does not
help to reduce the adder tree latency. This is because that
the problem is not summing a few very wide numbers, but
many narrow numbers. Most of the latency comes from going
through layers of adders rather than propagating the carry bits.
To further improve maximum frequency, this work adapts the

implementation of a Wallace Tree [10]. A Wallace tree is a
hardware implementation of a digital circuit that efficiently
sums the partial products when multiplying two integers, which
is similar to the situation that a Perceptron predictor is facing.
The Wallace tree implementation proves to be 10.5% faster
than a naı̈ve binary reduction tree implementation.

B. TAGE Implementation

Section V-B shows that TAGE is the most accurate amongst
all the direction predictors considered in this work when they
use the same hardware budget. Unfortunately, TAGE uses mul-
tiple tables with tagged entries that require comparator driven
logic which does not map well onto FPGAs. Section V-D
shows that the resulting frequency slowdown with TAGE is not
amortized by the corresponding accuracy gains. Fortunately,
TAGE can be used as an overriding predictor maintaining the
accuracy gains and relatively high operating frequency.

The critical path of TAGE is as follows: (1) It performs an
elaborate PC-based hashing to generate multiple table indices,
one per table. (2) It accesses the tables and in parallel compares
the tags of the read entries to determine whether they match.
(3) Finally each matching entry has to pass through cascaded
layers of multiplexers to select the longest matching prediction.
Although the latency of these operations is high, the path
can be easily pipelined to achieve much higher operating
frequency. Based on this observation, this work explores an
overriding branch predictor implementation using TAGE.

Overriding branch prediction is a technique to leverage the
benefits of both fast but less accurate, and slow but more ac-
curate predictors. This technique has been used commercially,
e.g., in the Alpha EV8 microprocessors [11]. In an overriding
predictor, a faster but less accurate base predictor makes a base
prediction quickly in the first cycle, and then a slower but more
accurate predictor overrides that decision, at a latter cycle, if
it disagrees with the base prediction.

In this work, the base predictor is the simple bimodal
predictor included in TAGE itself, i.e., T0 in Fig. 3. The
bimodal predictor provides a base prediction in the first cycle,
and the tagged components of the original TAGE provide a
prediction at the second cycle. Sections V-B and V-C show that
an overriding TAGE predictor outperforms all the other branch
prediction schemes in terms of both accuracy and maximum
frequency.

With an overriding predictor, there is no guarantee that
the overriding component will indeed be correct. Accordingly,
it is essential that any benefits gained when the overriding
component is right are higher than the performance lost when
it is wrong. For this purpose, this work proposes the use of
a confidence mechanism for applying overrides judiciously.
Specifically, the confidence mechanism implemented is a small
table with 256 entries that is indexed by eight bits from the
PC. Each entry is a 10-bit saturating counter. The counter
is updated whenever the basic and the overriding component
disagree. When they disagree, the counter is incremented when
the overriding component is correct and reset otherwise. Over-
rides are activated only after the counter saturates. Seznec also
suggested using a similar confidence mechanism, a statistical
corrector, in his ISL-TAGE improvement over the original

TAGE [12]. There the statistical corrector is used in a single-
cycle non-overriding TAGE predictor to avoid using the tagged
components whenever the bimodal component proves better.
Seznec’s observation was that the tagged components fail
at predicting branches that are statistically biased towards a
direction but not correlated to the history path. On some of
these branches, TAGE often performs worse than a simple PC-
indexed table, e.g., a bimodal predictor.

The confidence mechanism/statistical corrector used in this
work is similar to those proposed by Jacobsen et al. [13],
except that our specific statistical corrector is only updated
when the basic and the overriding component disagree. The
specific confidence mechanism performed better than Seznec’s
mechanism. This is no surprise as here it is used to guide
overrides in an overriding TAGE predictor. Specifically, in
Nios II-f where the branch resolution latency is only two
cycles, the overriding TAGE saves one cycle for each correct
override, but loses two for each incorrect override. Hence, the
overriding TAGE must be very confident to make an overriding
decision, which necessitates the specific statistical corrector.

As a result, this work proposes four TAGE-based designs
that use one or two cycles, with or without a confidence
mechanism: (1) the single-cycle TAGE, which requires TAGE
to provide a prediction in one cycle (i.e., in the fetch stage),
(2) the Overriding TAGE (O-TAGE), which uses just the
bimodal predictor (i.e., T0) to provide a base prediction in the
first cycle, and always overrides the base prediction if TAGE
disagrees at the end of the second cycle, (3) the single-cycle
TAGE with a Statistical Corrector (single-cycle TAGE-SC),
which forces the predictor to use the base prediction unless
TAGE consistently disagrees over several encounters of the
same event, and (4) the Overriding TAGE with a Statistical
Corrector (O-TAGE-SC), which is similar to the single-cycle
TAGE-SC except that TAGE overrides the base prediction
in the second cycle. The accuracy and critical path of the
Perceptron predictor did not justify investigating an overriding
configuration based on Perceptron.

V. EVALUATION

This section evaluates the branch predictors. Section V-A
details the experimental methodology. Section V-B compares
the accuracy of the various direction predictors: bimodal,
gshare, gRselect, Perceptron and TAGE. It shows that TAGE is
the most accurate. Section V-C reports the maximum operating
frequency. Finally, Section V-D reports the overall performance
and the FPGA resource usage, showing that the overriding
TAGE predictor is the best performing predictor.

As Section III-C discussed, all configurations use the same
target prediction scheme, which includes a FAC and RAS, the
same target predictor used in the gRselect predictor [3].

A. Methodology

To compare the predictors, this work measures: (1) Ac-
curacy as Mispredictions Per Kilo Instructions (MPKI), which
has been shown to correlate better with performance compared
to prediction accuracy alone. (2) The Instruction Per Cycle
(IPC) instruction execution rate, a frequency agnostic metric
that better reflects the accuracy of each predictor factoring
away their latency, (3) Instructions Per Second (IPS), a true

0

5

10

15

20

1KB 2KB 4KB 8KB 16KB 32KB

M
P

K
I

b
e
tt

e
r

Fig. 5: Perceptron: MPKI of the most accurate Perceptron
configuration with various hardware budgets.

0

10

20

30

40

50

60

70

8 7 6 5 4 3 2 1

M
P

K
I

HOB

b
e

tt
e

r

Fig. 6: Perceptron: MPKI when using different number of
HOBs for the most accurate Perceptron configuration.

measure of performance which takes the operating frequency
into account, (4) Operating frequency, and (5) Resource usage.
Simulation measures MPKI and IPC using a custom, cycle-
accurate, full-system Nios II simulator. The simulator boots
ucLinux [14], and runs a representative subset of SPEC
CPU2006 integer benchmarks with reference inputs [15].

The baseline predictors considered are: (1) bimodal,
(2) gshare and (3) gRselect. These predictors use the exact
same implementations of our previous work[3]. All designs
were implemented in Verilog and synthesized using Quartus II
13.0 on a Stratix IV EP4SE230F29C2 chip in order to measure
their maximum clock frequency and area cost. The maximum
frequency is reported as the average maximum clock frequency
of five placement and routing passes with different random
seeds. Area usage is reported in terms of ALUTs used.

B. Branch Prediction Accuracy

This section first presents data that justify the final design
of Perceptron and TAGE configurations, then a comparison
with bimodal, gshare and gRselect is presented.

1) Perceptron: This work considers Perceptron predictors
with a hardware budget ranging from 1KB to 32KB. For
each hardware budget, the number of global history bits is
varied and the best performing one is chosen. Fig. 5 shows
the most accurate Perceptron configuration for each hardware
budget. All of these configurations uses 16 history bits. As
Section V-D will show, although the 32KB Perceptron is 3.2%
more accurate than the 16KB Perceptron, its IPC saturates at
the 16KB budget, therefore for the rest of this work the 16KB
Perceptron predictor is used.

To determine how many HOBs the predictor should use,
we took the 16KB Perceptron and experimented with all
possible numbers of HOBs used. Fig. 6 shows the MPKI
of this Perceptron when different number of HOBs are used.
The data shows that using three HOBs degrades accuracy by
less than 1% compared to using all eight bits. However, the
MPKI doubles when using only two HOBs. Therefore the the
implemented Perceptron designs use three HOBs to improve
operating frequency without affecting accuracy.

The best performing Perceptron uses 16 global history
bits. It has a 16KB perceptron table, which stores 1K per-
ceptrons. Each perceptron contains 16 8-bit weights with the
arrangement discussed in Section IV-A3. It also has a 6KB

0

2

4

6

8

10

12

Single-cycle TAGE O-TAGE Single-cycle TAGE-SC O-TAGE-SC

M
P

K
I

b
e
tt

e
r

Fig. 7: TAGE: MPKI of the four TAGE variations.

0

5

10

15

20

GRselect GShare Bimodal Perceptron Single-cycle
TAGE

O-TAGE Single-cycle
TAGE-SC

O-TAGE-SC

M
P

K
I

1KB 2KB 4KB 8KB 16KB 32KB

b
e
tt

e
r

Fig. 8: MPKI of the direction predictors.

150

170

190

210

230

250

270

GRselect GShare Bimodal Perceptron Single-cycle
TAGE

O-TAGE Single-cycle
TAGE-SC

O-TAGE-SC

F
M

a
x

 (
M

H
z
)

1KB 2KB 4KB 8KB 16KB 32KB

b
e

tt
e

r
Fig. 9: Maximum operating frequency of the considered
branch prediction schemes with various hardware budget.

complement table that stores three HOBs per weight in its
2’s complement form to improve frequency. Thus we name
this best performing Perceptron the 16KB+6KB Perceptron.
We will follow this convention in the rest of this paper, but
the hardware budgets for various Perceptron configurations in
the remaining figures only refer to their perceptron table sizes.

2) TAGE: All TAGE configurations studied in this work
use Seznec’s original table configurations [2] and are within
32KB hardware budget. Adjusting TAGE’s size is a non-trivial
task, moreover, the results of this work show that the 32KB
O-TAGE-SC outperforms the other predictors. Accordingly, we
do not vary TAGE’s size in this work. Fig. 7 shows the MPKI
of the four designs that incorporate TAGE. It shows that the
single-cycle and overriding predictors have virtually identical
MPKI, the statistical correcter improves MPKI by ∼2.4x.

3) Accuracy Comparison: For fair comparisons, we scale
bimodal, gshare and gRselect from 1KB to 32KB, which is the
same hardware budget as TAGE and the largest Perceptron
considered in this work. Fig. 8 shows the MPKI of various
direction predictors. The TAGE variations use 32KB. All the
branch predictors get more accurate as the hardware budget
increases. The single-cycle TAGE-SC is the most accurate,
followed by O-TAGE-SC with less than 0.06% difference. The
single-cycle TAGE-SC is ∼2.3x more accurate than the 32KB
gRselect and the 32KB gshare.

C. Frequency

Fig. 9 shows the maximum operating frequency for each
branch prediction scheme and for various hardware budgets.

The fastest predictors are O-TAGE-SC and O-TAGE, both
of them are capped at 270 MHz, the maximum frequency
for Nios II-f on Stratix IV C2 speed grade devices [16].
The 1KB+384B Perceptron and the 1KB gRselect follow

0.322

0.324

0.326

0.328

0.33

0.332

GRselect Gshare Bimodal Perceptron Single-cycle
TAGE

O-TAGE Single-cycle
TAGE-SC

O-TAGE-SC

IP
C

1KB 2KB 4KB 8KB 16KB 32KB

b
e

tt
e

r

Fig. 10: IPC of the considered branch predictors.

50

55

60

65

70

75

80

85

90

GRselect Gshare Bimodal Perceptron Single-cycle
TAGE-SC

O-TAGE-SC

M
il

li
o

n
 I
n

s
tr

u
c

ti
o

n
s

P

e
r

S
e
c
o

n
d

1KB 2KB 4KB 8KB 16KB 32KB

b
e

tt
e
r

Fig. 11: Processor IPS comparison with various predictors.

the O-TAGE variations. The maximum frequency of gshare,
bimodal and Perceptron drop rapidly with increasing size,
while gRselect’s frequency does not suffer too much. Despite
that the logic is larger and more difficult to place and route,
the table indexing of gRselect comes from the GHR register.
GRselect reads a wide entry and then using bits from the PC
to select the appropriate ones. The indexing of gshare, bimodal
and Perceptron uses the predicted PC. The PC is both the input
and the output of the branch predictor. This loop forms the
critical path of gshare, bimodal and Perceptron, which quickly
gets slower as the sizes of the predictors increase. The single-
cycle TAGE-SC operates at 223.7MHz, which is 14.8% slower
than the 1KB gRselect and 17.2% slower than O-TAGE-SC.

D. Performance and Resource Cost

Fig. 10 shows the IPC of the predictors. Although the
MPKI of the 32KB+12KB Perceptron is higher than the
16KB+6KB Perceptron, they deliver identical IPC. The single-
cycle TAGE-SC has the highest IPC, however, as this section
shows, its high IPC cannot amortize the slowdown in operating
frequency. O-TAGE is much faster, but its IPC drops signifi-
cantly. Finally, the IPC of O-TAGE-SC is within 0.5% of the
single-cycle TAGE-SC.

IPC is a measurement that does not take operating fre-
quency into consideration. The actual performance of a pro-
cessor is measured by Instructions Per Second (IPS), which
is the product of IPC and the maximum operating frequency.
Fig. 11 reports the overall performance in terms of IPS.

The IPS of gRselect, gshare, bimodal and Perceptron drops
as they scale, therefore we chose the smallest configurations of
these schemes to maximize IPS. The best performing predictor
is O-TAGE-SC, which delivers 5.2% higher IPS than the
previously proposed 1KB gRselect. Although the single-cycle
TAGE-SC is the most accurate, its IPS is lower than the best
performing predictor in all other prediction schemes because
its latency is too high. The 1KB+384B Perceptron ends up
being 0.2% better than the 1KB gRselect, because of the
optimization efforts into improving its frequency.

Finally, Fig. 12 shows the resource usage in term of ALUTs
used. O-TAGE-SC uses 2.93x ALUTs and the 1KB+384B
Percpetron uses 6.45x ALUTs as the 1KB gRselect.

0

200

400

600

800

1000

GRselect 1KB Gshare 1KB Bimodal 1KB Perceptron
1KB+384B

O-TAGE-SC

A
re

a
 (

A
L

U
T
s

)

Fig. 12: ALUTs usage comparison with various predictors.

VI. CONCLUSION

This work studied the implementation of Perceptron and
TAGE branch predictors for general purpose soft processors.
It explored the designs tradeoffs of Perceptron and TAGE, and
proposed O-TAGE-SC, an overriding predictor that delivers
5.2% better instruction throughput over the best performing
previously proposed predictor, gRselect. Several FPGA imple-
mentation optimization techniques were proposed to achieve
high operating frequency. Although O-TAGE-SC is ∼3x more
accurate than the 1KB gRselect, the IPS improvement is
smaller due to the processor’s simple in-order pipeline and
cannot justify the 32x more storage used, therefore we do
not recommend O-TAGE-SC for Nios II-f’s in-order pipeline.
Future work may consider investigating the benefits of imple-
menting O-TAGE-SC for more elaborated soft processors, e.g.,
an Out-of-Order soft processor, which requires highly accurate
branch prediction.

REFERENCES

[1] D. A. Jimenez and C. Lin, “Dynamic Branch Prediction with Percep-
trons,” in Intl’ Symposium on High-Performance Computer Architecture.

[2] A. Seznec and P. Michaud, “A case for (partially) tagged geometric
history length predictors,” in Journal of Instruction Level Parallelism
(http://www.jilp.org/vol7), April 2006.

[3] D. Wu, K. Aasaraai, and A. Moshovos, “Low-cost, high-performance
branch predictors for soft processors,” in Field Programmable Logic
and Applications (FPL), 2013 23rd International Conference on, 2013.

[4] Altera Corp., “Nios II Processor Reference Handbook v9.0,” 2009.
[5] MicroBlaze Processor Reference Guide, Xilinx Inc., July 2012.
[6] TriMatrix Embedded Memory Blocks in Stratix IV Devices, Altera Corp,

Dec. 2011.
[7] D. A. Jiménez, S. W. Keckler, and C. Lin, “The impact of delay on

the design of branch predictors,” in Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture, 2000.

[8] K. Aasaraai and A. Baniasadi, “A power-aware alternative for the
perceptron branch predictor,” in Advances in Computer Systems Ar-
chitecture, L. Choi, Y. Paek, and S. Cho, Eds., 2007.

[9] O. Cadenas, G. Megson, and D. Jones, “A new organization for a
perceptron-based branch predictor and its fpga implementation,” in
Proc. IEEE Computer Society Annual Symposium on VLSI., May 2005.

[10] C. S. Wallace, “A suggestion for a fast multiplier,” Electronic Comput-
ers, IEEE Transactions on, vol. EC-13, no. 1, pp. 14–17, Feb 1964.

[11] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design tradeoffs
for the alpha ev8 conditional branch predictor,” in Proc. 29th Annual
International Symposium on Computer Architecture., 2002.

[12] A. Seznec, “A 64 kbytes isl-tage branch predictor,” in JWAC-2: Cham-
pionship Branch Prediction, 2011.

[13] E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning confidence
to conditional branch predictions,” in In Proceedings of the 29th
ACM/IEEE International Symposium on Microarchitecture, 1996.

[14] “Arcturus Networks Inc., uClinux,” http://www.uclinux.org/.
[15] Standard Performance Evaluation Corporation, “SPEC CPU 2006,” http:

//www.spec.org/cpu2006/.
[16] Nios II Performance Benchmarks, Altera Corp., Nov. 2013.

http://www.uclinux.org/
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2006/

	Introduction
	Background and Goals
	Design Goals

	Branch Prediction Schemes
	Perceptron Predictor
	Tagged Geometric History Length Branch Predictor
	Branch Target Predictor

	FPGA Implementation Optimizations
	Perceptron Implementation
	Perceptron Table Organization
	Multiplication
	Adder Tree

	TAGE Implementation

	Evaluation
	Methodology
	Branch Prediction Accuracy
	Perceptron
	TAGE
	Accuracy Comparison

	Frequency
	Performance and Resource Cost

	Conclusion
	References

