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ABSTRACT

This work studies branch predictor implementations for gen-
eral purpose, pipelined, single core soft processors. It shows
that the existing designs do not map well onto reconfig-
urable hardware since they were optimized for custom logic
implementation. This work then proposes an accurate and
fast branch predictor that uses few resources on FPGAs.
The proposed predictor uses: (1) an FPGA-friendly pattern
based direction predictor, (2) a return address stack, (3) in-
fetch target address calculation instead of a branch target
buffer, and (4) instruction pre-decoding. Experimental mea-
surements using a subset of the SPECCPU2006 workloads
show that the presented FPGA-friendly branch predictor de-
livers high performance while operating at approximately
259 MHz using only 147 ALUTs and one BRAM on an Al-
tera Stratix IV FPGA.

1. INTRODUCTION

FPGA-based designs often incorporate one or more general
purpose soft processors. As the range of FPGA applications
broadens and evolves, it is likely that the performance de-
mand from soft processors will increase. A key performance
enhancing technique that even simple general purpose pro-
cessors use is branch prediction. Without branch prediction,
a branch has to execute completely before the processor can
fetch the instructions that follow. Branch prediction elimi-
nates these stalls by guessing the target address of branches.
Current state-of-the-art branch prediction techniques, e.g.,
TAGE [1], rely on dynamically collected information about
past branch behavior. Such techniques have been proven to
be very effective even in deeply pipelined, highly specula-
tive, high-performance custom processor designs.

Branch prediction has been extensively studied in the
context of application specific custom logic (ASIC) imple-
mentations. Since the tradeoffs are different for reconfig-
urable logic, naı̈vely porting ASIC-based branch predictors
to FPGAs may prove slow and/or resource-inefficient. Ac-
cordingly, this work studies the FPGA implementation of
several commonly used branch predictor designs and does
so in the context of simple pipelined processors, the most

commonly used general purpose soft processor architecture
due to its excellent balance of performance and resource
cost. For this purpose, it assumes a pipelined processor im-
plementation representative of Altera’s Nios II-f and inves-
tigates the performance and resource cost of various branch
predictors. The analysis confirms that existing designs are
not efficient nor high-performing on reconfigurable logic.
Accordingly, this work proposes FPGA-specific modifica-
tions that improve accuracy, resource cost, or both.

In more detail, this work makes the following contribu-
tions: (1) It studies the FPGA-implementation of Branch
Target Buffers (BTB), including designs that fuse the BTB
and the direction predictor and shows that, contrary to ASIC
implementations, it is best to avoid a BTB and instead to
calculate branch target addresses on-the-fly. (2) It studies
the FPGA implementation of the three most commonly used
branch direction predictors (DIR): bimodal [2], gshare, and
gselect [3]. The analysis corroborates the results of past
studies showing that gshare achieves the best accuracy among
the three for practical table sizes, but also shows that un-
like an ASIC implementation, frequency suffers with gshare
on FPGAs. It proposes gRselect, an FPGA-friendly gselect
implementation that uses a simple indexing scheme to out-
perform gshare by 11.4%. (3) It demonstrates that a con-
ventional Return Address Stack (RAS) maps well onto the
MLABs of FPGAs improving performance with little addi-
tional cost.

The rest of the paper is organized as follows. Section 2
reviews branch prediction basics and details the goals of this
work. Section 3 discusses the architecture of the various
branch prediction components studied. Section 4 presents
FPGA-specific optimizations. Section 5 presents the exper-
imental evaluation results and finally Section 6 concludes.

2. BACKGROUND AND GOALS

Fig. 1 shows the organization of a typical branch predictor
comprising: (1) a DIR, (2) a BTB, and (3) a RAS. The pre-
dictor operates in the fetch stage where it aims to predict the
program counter (PC), that is the address in memory, of the
instruction to fetch in the next cycle using the current in-
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Fig. 1. Canonical Branch Predictor.

struction’s PC and other dynamically collected information.
The DIR guesses whether the branch will be taken or not.
The BTB and the RAS guess the address for predicted as
taken branches and function returns respectively. The mul-
tiplexer at the end selects based on the branch type and the
direction prediction whether the target is the fall through ad-
dress (PC+4 in Nios II), the target predicted by the BTB, or
the target provided by the RAS. Since, at this point in time,
the actual instruction is not available in a typical ASIC im-
plementation, it is not directly possible to determine whether
the instruction is a return, a branch, or some other instruc-
tion. Accordingly, a Selection Logic block uses either pre-
decode information or a PC-based, dynamically populated
lookup table to guess which target is best to use. With the
latter scheme, when no entry exists in the lookup table, some
default action is taken until the first time a branch is encoun-
tered. Once the branch executes, its type is stored in the
lookup table where it serves to identify the branch type on
subsequent encounters. This scheme is not perfectly accu-
rate due to aliasing.

2.1. Design Goals

This work aims to design a branch predictor that (1) bal-
ances operating frequency and accuracy to maximize execu-
tion performance, and (2) uses as few on-chip resources as
possible. Since Altera’s highest performing soft-processor,
Nios II-f, uses three BRAMs in total [4], this work limits
the predictor’s resource budget to one BRAM; each addi-
tional BRAM would represent a more than 1/3 overhead in
terms of BRAM resources. This work considers the most
commonly used direction predictors, bimodal, gshare and
gselect. These predictors use a single lookup table and map
relatively well onto a single BRAM. Other more accurate,
albeit more elaborate predictors exist [1, 5, 6]. An inves-
tigation of these predictors is left for future work for two
reasons: (1) These predictors often use multiple tables and
tagged entries. Tagged entries require comparator-driven

multiplexers and thus may not map well onto FPGAs. (2) For
an in-order pipelined processor such as Nios II-f and the
workloads studied, the potential for further performance im-
provement with more accurate branch predictors is negligi-
ble over the gshare and gselect predictors considered.

3. FPGA-FRIENDLY BRANCH PREDICTION

This section discusses the architecture of the various FPGA-
friendly branch predictors considered. Section 3.1 discusses
target prediction, while Section 3.2 discusses direction pre-
diction.

3.1. Target Prediction

A conventional method to predict branch targets is to use
Branch Target Buffers (BTB). A BTB is a table that caches
branch target addresses. When a branch executes for the first
time, the BTB stores the target address so that it can be used
on subsequent encounters of the branch. Ideally, the BTB
would be large enough so that each branch can use a separate
entry. In a practical implementation, however, aliasing will
occur reducing prediction accuracy.

The simplest BTB design does not use an address tag per
entry and directly predicts the target address for all instruc-
tions. Not using a tag results in a fast design that uses one di-
rect SRAM lookup. In addition, not filtering non-branch in-
structions is desirable since at the time of access the instruc-
tion opcode is not available. Unfortunately, as Section 5
shows, when all instructions use the BTB, high destructive
aliasing results in poor accuracy. To reduce aliasing, a small
decode logic can prevent non-branches from updating the
BTB. However, as Section 5 shows, while this solution in-
creases target prediction accuracy by 30%, the additional
logic reduces the maximum frequency by 35%. An alterna-
tive is to calculate the target address during the fetch cycle.

3.1.1. Target Address Precalculation

ASIC processor implementations use a BTB since the cache
latency dominates the clock cycle leaving no room for fur-
ther action. This is not true in an FPGA implementation
where memory is generally faster than logic. This creates an
opportunity to precalculate the target address for branches
and thus eliminate the BTB. In this scheme the processor
fetches the instruction from the cache and then, during the
same cycle, calculates the instruction’s taken address. As
an added benefit, address precalculation may improve accu-
racy since, if possible, it is always correct. Unfortunately,
it is not possible to precalculate the target address for all
branches. The Nios II ISA includes two types of branches:
direct and indirect. The target of a direct branch can be cal-
culated using the current PC and an offset that is embedded
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Fig. 2. BTB with Full Address Calculation.
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in the instruction. Indirect branch targets are read from the
register file.

This work proposes enhancing target prediction with Full
Address Calculation (FAC), which as Fig. 2 shows, calcu-
lates the target address for all direct branches and uses a
BTB or some other storage for indirect branches. A selec-
tion logic identifies direct branches which can benefit from
FAC. FAC selects among four possible addresses depending
on the branch type. The Nios II ISA supports two schemes
for direct branch target addresses, one uses a 16-bit offset
(IMM16) and the other a 26-bit range (IMM26). Combined
with the fall-through address (i.e., PC + 4) and the predicted
address coming from the BTB, BTB+FAC uses a four-way
multiplexer to select among these four possible addresses.
Unfortunately, this multiplexer falls into the critical path.

A lower cost and faster alternative to FAC is Partial Ad-
dress Calculation (PAC) which relies on typical program
behavior to reduce the number of choices for the final ad-
dress multiplexer. Fig. 3 reports the relative frequency of
the various branch types (see Section 5.1 for the method-
ology). Since IMM26 branches are far less frequent than
IMM16 branches, PAC precalculates IMM16 branches and
uses the BTB for IMM26 and indirect branches.

3.1.2. Return Address Stack

The RAS is a hardware, stack-like structure that accurately
predicts the target address of function returns. When a call
instruction executes, it also pushes its return address onto the
RAS. Upon fetching a return instruction, the branch predic-
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Fig. 4. Indirect Branch Instruction Type Distribution.

tor can pop the top value from the RAS accurately predicting
the return address. As long as the RAS has enough entries,
it will accurately predict all return instructions. Since the
call depth of typical workloads is not deep, virtually all high
performance processors incorporate a shallow RAS. For the
workloads studied a 16-entry RAS proves sufficient. The
RAS for a simple pipeline is simple to implement on an
FPGA. Deeper pipelines may require support for specula-
tive RAS insertions and deletions complicating its design.

3.1.3. Eliminating the BTB

Fig. 4 shows that for the workloads studied in this work,
97% of the indirect branches are returns (other workloads,
e.g., those using virtual functions, may behave differently).
Once a RAS is included along with FAC, the BTB ends up
being used for only less than 1% of all branches. Accord-
ingly, the BTB can be eliminated, and instead use a static,
not-taken predictor for all indirect branches other than re-
turns. Section 5 shows that removing the BTB in the pres-
ence of RAS reduces accuracy negligibly. Section 4.1 ex-
plains that lower-level FPGA related considerations also fa-
vor eliminating the BTB.

3.2. Direction Prediction

A bimodal branch direction predictor is a table of two-bit
saturating counters that is indexed with a portion of the PC [2].
The counters are updated up or down depending on whether
the branch is taken or not respectively. The lower bit pro-
vides hysteresis to changes while the upper bit provides the
prediction. As Section 5.3 corroborates, increasing the num-
ber of bimodal entries does not proportionally improve ac-
curacy. Eventually, using a larger bimodal ceases to provide
any improvement since bimodel is fundamentally limited on
the branch prediction patterns it can predict.

Gshare is a pattern-based predictor wihch uses a com-
bination of the PC and a global direction history register
(GHR) to index the counter table [3]. GHR stores the di-
rection of the last few branches in a bit vector. Each GHR
bit stores the direction (taken or not) of a previous branch.
Section 5 shows that gshare is far more accurate than bi-
modal. However, as Section 4 explains, latency suffers with



gshare due to its more complex indexing scheme. Gselect,
an alternative to gshare, indexes the counter table using a
simple concatenation of the GHR and the PC [3]. For prac-
tical table sizes, gshare proves more accurate than gselect.
Section 4.2 explains that with proper modification, gselect
proves faster than gshare on an FPGA while sacrificing little
in accuracy.

4. FPGA IMPLEMENTATION OPTIMIZATIONS

This section discusses additional FPGA-specific implemen-
tation optimizations. While this section assumes a modern,
Altera FPGA, the optimizations presented should be broadly
applicable.

4.1. Eliminating the BTB

As Section 2.1 explained, this work aims to use one M9K
BRAM. An M9K BRAM can be configured as wide as 36
bits with 256 rows [7], and it can be used to implement a
fused BTB and direction predictor. Specifically, each BRAM
row can store one BTB entry along with up to three direction
prediction entries for a total of 768 direction entries and 256
target entries. This fused BTB+DIR predictor works well
with a bimodal DIR. The PC indexes a row which contains
a single target prediction entry and up to three direction pre-
diction entries. Another portion of the PC selects one of
these direction prediction entries. The target is used only
from taken branches.

Unfortunately, it is not possible to use one BRAM for
both a BTB and the most accurate of the direction predictors
considered, gshare. There are two reasons why: (1) gshare
uses a different indexing scheme than the BTB, and (2) there
is a limited number of ports per BRAM [7]. As Section 3
discussed, the BTB can be eliminated when address precal-
culation and a RAS are used. Eliminating the BTB frees up
the entire BRAM for direction prediction.

4.2. FPGA-Friendly Direction Predictor Indexing

This section investigates which of the three branch direction
predictors is best to use on an FPGA. Focusing just on accu-
racy gshare would be the best. However, performance is not
the highest with gshare since its indexing scheme results in
low clock frequency. Fig. 2 depicts why the predictor’s in-
dexing scheme, when implemented on an FPGA, falls into
the critical path. At every clock cycle the predicted PC is
used to index the direction predictor table for the next in-
struction. Since BRAMs are synchronous, their index must
arrive before the clock edge and thus it cannot be a regis-
tered signal of the Predicted PC [7]. Moreover, the setup
time for the BRAM is longer than that of simple registers.
Therefore, the entire path starting from the BRAM data out-
put, through the prediction logic and back into the lookup
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Fig. 5. FAC with gRselect.

address of the BRAM forms the critical path. This is es-
pecially a concern with gshare that uses the exclusive-or of
the global history register (GHR) with Predicted PC to index
the BRAM. This extra XOR logic prolongs the critical path,
reducing the operating frequency.

Contrary to gshare, gselect has a simpler indexing scheme.
Specifically, gselect uses a simple concatenation of the GHR
with Predicted PC as index. Not only is gselect’s indexing
fast, but it can also be tailored to map well onto FPGAs.
This work proposes gRselect which breaks the BRAM-to-
BRAM critical path by breaking the BRAM access into two
parts the first of which does not need to be “predicted PC”. It
uses GHR, which is a registered signal, to index the BRAM
to retrieve one wide row of counters. Fig. 5 shows the gRs-
elect scheme in more detail.

4.3. Instruction Decoding

To be able to select the appropriate target, the predictor needs
to determine whether an instruction is a branch and if so,
what kind of branch it is. This information is needed to se-
lect the corresponding predicted target through the output
multiplexer. However, the decode logic lies in the critical
path. To eliminate this delay, the predictor pre-decodes the
instructions prior to installing them in the instruction cache.
The pre-decode information is stored along with the instruc-
tion. This is similar to typical ASIC implementations.

4.4. RAS

The RAS can be implemented efficiently with MLABs, which
are small-grain, distributed memory resources. Compared
to a logic-based RAS, an MLAB-based RAS proves smaller
and faster. Furthermore, because 50% of all LABs can be
configured as MLABs, there is no routing penalty with MLABs.

5. EVALUATION

This section presents the experimental evaluation of the pro-
posed branch predictors. Section 5.1 details the experimen-
tal methodology. Section 5.2 evaluates the accuracy of tar-



get address schemes showing that using a RAS with FAC is
best. Section 5.3 compares the accuracy of various direction
predictions, showing that a single BRAM gRselect is among
the best performers. Section 5.4 reports resource usage and
maximum operating frequency. Finally, Section 5.5 reports
the overall performance showing that the predictor that com-
bines FAC, RAS, gRselect and pre-decoding is best.

5.1. Methodology

To compare the predictors this work measures: (1) Accu-
racy as misses per kilo instructions (MPKI) which has been
shown to correlate better with performance compared to pre-
diction accuracy alone. Processor performance in (2) in-
structions per cycle (IPC), a frequency agnostic metric, that
isolates the effects of implementation, and in (3) instructions
per second (IPS), a true measure of performance. (4) Oper-
ating frequency, and (5) resource usage.

Simulation measures MPKI and IPC using a custom,
cycle-accurate, full-system Nios II simulator. The simula-
tor boots ucLinux [8], and runs a subset of SPEC CPU2006
integer benchmarks with reference inputs [9]. The evalua-
tion uses a baseline predictor (BASE) with a fused BTB and
bimodal, as discussed in Section 4.1 both with 256 entries.
BASE does not decode instructions and thus uses the BTB
and the bimodal for all instructions.

All designs were implemented in Verilog and synthe-
sized using Quartus II 12.1 on a Stratix IV chip in order
to measure their maximum clock frequency and area cost.
The maximum frequency is reported as the average maxi-
mum clock frequency of five placement and routing passes
with different random seeds. Area usage is reported in terms
of ALUTs and BRAMs used.

5.2. Target Prediction

This section measures the accuracy of target predictors. by
using the baseline direction predictor while considering com-
binations of BTB, PAC, FAC, RAS, and larger BTBs. Fig. 6
reports the reduction in target address mispredictions when
using various target prediction mechanisms compared to BASE.
Using a decode logic to filter non-branches from the BTB
(BTB-256) reduces mispredictions by 30%. However, in-
creasing the BTB size to 512 (BTB-512) or 1024 (BTB-
1024) entries does not improve accuracy noticeably. In the
rest of this section, all BTB configurations except for BASE
use instruction filtering.

Using PAC or FAC with a 256-entry BTB reduces mis-
predictions by 81% and 90% respectively, whereas using
just FAC reduces mispredictions by 84%. Finally, using
FAC with a RAS (FAC+RAS) proves best. In conclusion,
eliminating the BTB and relying instead on a RAS+FAC is
best in terms of accuracy. An added benefit of RAS+FAC is
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that it allows for a standalone, thus larger and more flexible
direction predictor.

5.3. Direction Prediction

Fig. 7 reports the improvement in MPKI for various direc-
tion predictors relative to BASE. Decoding the instructions
and performing prediction only for branches improves MPKI
by 17% (bimodal-256). Using a larger bimodal with 4K en-
tries further improves MPKI by only 8% suggesting that bi-
modal is fundamentally limited in the branch sequences it
can predict. However, using a 256- or a 4K-entry gshare
improves MPKI by 79% and 82% respectively.

Section 4 explained why gselect may be better to imple-
ment on an FPGA. Fig. 7 show that a conventionally indexed
4K-entry gselect results in competitive accuracy, improv-
ing BASE by 80%. Section 5.4 explained that the desired
number of entries for the direction predictor is either 768 or
4K when fused with a BTB or not respectively. The figure
shows that a conventionally indexed 4K-entry gselect im-
proves MPKI by 80%, while the proposed FPGA-friendly
organization, gRselect, improves MPKI by 79%. In con-
clusion, gshare achieves the best accuracy with gselect and
gRselect offering competitive accuracies.
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5.4. Area and Frequency

Fig. 8 shows the maximum frequency and area utilisation for
each predictor design. All configurations use one BRAM.
As expected, BASE is the fastest and least expensive. Adding
instruction filtering reduces fmax from 353 MHz to 287 MHz,
a 18% drop. By adding address calculation, frequency drops
even further. However, removing the BTB partially recovers
from this frequency drop. Finally, adding a RAS to a gRse-
lect with pre-decoding, results in a predictor that operates at
259 MHz and that uses only 147 ALUTs.

5.5. Performance

Fig. 9 reports average IPC gain compared to BASE. The bi-
modal predictor results in the lowest IPC while gselect per-
forms almost as well as gshare.

IPC is proportional to performance only when the clock
frequency remains the same. Actual performance depends
on IPS, the product of IPC and clock frequency. Fig. 10 re-
ports overall performance in IPS. This experiment assumes a
250MHz maximum clock speed for the processor, the max-
imum clock frequency of Nios-II-f on the Stratix IV [10].
The best performing predictor is a 4K-entry gRselect with
FAC+RAS, no BTB, and that uses pre-decoded instructions.
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Fig. 10. IPS comparison of processors with various predic-
tors.

6. CONCLUSION

This work studied the implementation of branch predictors
for general purpose soft processors. This work targeted high
frequency, low area overhead branch predictors for pipelined
processors, and explored various branch predictor designs.
These designs were combinations of a branch target buffer, a
return address stack, three commonly used direction predic-
tors, pre-decoding, in-fetch instruction decoding, and target
address calculation. Several FPGA-specific optimizations
were proposed resulting in a branch predictor that is FPGA-
friendly in that it offers high accuracy, high operating fre-
quency with few resources. Future work may consider more
elaborate processor designs and/or other workloads that may
benefit from more elaborate branch direction predictors than
the ones considered in this work.
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