
Image Signal Processors on FPGAs

Di Wu and Andreas Moshovos
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

{wudi7, moshovos}@eecg.toronto.edu

Abstract— An Image Signal Processor (ISP) converts raw
imaging sensor data into a format appropriate for further
processing and human inspection. This work explores FPGA-
based ISP designs considering specialized and programmable
implementations and proposes an ISP using a programmable
generic processing unit with comparable performance versus
the dedicated implementations.

This work considers the most commonly performed op-
erations in an Image Signal Processor (ISP) including de-
mosaicing, color correction, filtering, color space conversion,
and gamma correction demonstrating that the 2-D filter is the
bottleneck. Further, it compares the performance, area and
power of (1) a highly specialized 2-D filter (SF) that exploits
the symmetry of certain filter kernels, (2) a general 2-D filter
(GF), and (3) a generic processing unit filter (GPUF) that is
programmable and tailored for ISP operations.

We first implement the SF and the GF with on-chip
BRAM-based row buffers followed by a 7×7 2-D FIR filter
[1]. These specialized filters are rigid and support one type of
operation only. Accordingly, we explore the possibility of a
more general structure that can support different operations.
The ISP operations generally have two stages, (1) selecting
data and/or coefficients to compute intermediate results, and
(2) summing up the intermediate results. We present the
GPUF that implements this functionality via a vector of DSP
blocks followed by a programmable reduction tree that sums
up intermediate results at different reduction levels.

Fig. 1 shows the high level diagram of our generic ISP
computation unit (GPUF). The GPUF uses a 2-D shift
register file that provides simultaneous access to all of its
elements. The 2-D shift register file supports row shift and
column shift operations. A column shift operation shifts all
the columns to the left in a circular manner. Similarly, a row
shift operation shifts a new row of pixel data into the 2-D
shift register, and all the rows currently in the register file are
also shifted upwards. The DSP block units are fed by the 2-D
shift register file and the coefficient register file which store
pixel data and coefficients respectively. Data and coefficients
are routed to their designated DSP block depending on the
kernel type through the data switching interface. The results
for the DSP blocks are sent to the reduction tree.

Qadeer et al. proposed the Convolution Engine (CE),
a similar ASIC-based structure [2] specialized for the

Pixel Stream

Frame Buffer

Data Switching Interface

2D Shift Reg File

Coef.

Reg

Reduction Tree

DSP Block
……

Coefficients

DSP Block DSP Block

Figure 1: The generic processing unit.

convolution-like applications. The CE focuses on post ISP
algorithms such as H264 etc. Our generic computation unit
uses a similar idea, but is tailored to process ISP related
operations with an FPGA-friendly implementation.

The generic processing unit supports up to 7× 7 kernels.
We find that because the GPUF has a fixed number of
multipliers, the number of filtering operation that can be pro-
cessed concurrently drops for large kernels, hence affecting
the frame rate. Table I summarizes Fmax, area and power
of each filter implementation, as well as the corresponding
frame rates processing 1080p images with 7× 7 kernels.

Configuration Frames Fmax ALUT DSP Power
per Second

SF 191.85 401MHz 566 48 100.48mW
GF 186.10 378MHz 1224 150 562.79mW

GPUF
3x3 185.51

385MHz 4773 180 738.04mW5x5 132.49
7x7 82.44

Table I: Results.

REFERENCES

[1] D. Bailey, Design for Embedded Image Processing on FPGAs.
Wiley, 2011.

[2] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. A. Horowitz, “Convolution engine:
Balancing efficiency & flexibility in specialized computing,”
in Proceedings of the 40th Annual International Symposium
on Computer Architecture. ACM, 2013, pp. 24–35.

