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Abstract. In this paper I attempt to delimit the problem of using a phase
field crystal model to study eutectic lamellar growth. I will discuss my sim-
ulations involving eutectic directional solidification for instability studies. By
summarizing the seminal paper on lamellar eutectics by Jackson and Hunt,
the simulations are put into context.
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Introduction

This short paper will begin with a summary of the work by [JH], to include some
basic details of e morphology in the classical sense. The experienced reader may
skim through chapters 1 and 2 for this, although the model is quite interesting.
The paper will conclude with attempts at creating a lamellar front using a phase
field crystal model simulation, where topological instabilities will be simulated.

The striped eutectic phase is formed when the system is quenched through its
eutectic point, below which no liquid phase can exist. This reaction is similar to
spinodal decomposition in that the solutes tend to segregate, and solid-solid in-
terfaces are formed. But whereas spinodal decomposition may be considered, in
the language of phase field crystals, as a system which is (linearly) unstable to
crystallization[EP], eutectic lamellar structure permeates, and persists through the
sample. In this short paper, we will look at the seminal treatment of lamellar eu-
tectic growth by Jackson and Hunt, and attempt to simulate 2D lamellar growth
using the phase field crystal model. Time permitting, a qualitative summary of
attempts to study the effect of crystalline mismatch with the propagation of insta-
bilities may be included. This paper will conclude with some attempts at creating
these instabilities.

1. The Diffusion Equation

We begin by solving dynamical equations related to the configuration (recon-
figuration) of solute, that are allowed to grow in a lamellar pattern, or as rods
through a liquid phase. This will give us the necessary footing to understand the
full evolution and interplay between regimes of growth, that occurs in the e phase.
Along with the next chapter on curvature calculations , we will gain the necessary
mathematical tools to tackle the problem in full.

1.1. Lamellar Growth. The basic treatment of a diffusion limited, directionally
solidifying system starts with the following steady state equation1,

0 = ∇2C +
v

D

∂C

∂z
Where v is the velocity of the interface in the z (growth) direction. The boundary

condition are:
C = CE + C∞ at z = ∞

and due to the symmetry of the problem,

∂C

∂x
= 0 at x = 0 and x = Sα + Sβ .

The conservation equations are,

∂C

∂z

����
z=0

= − v

D
Cα

0

1Reader may recognize this from the Kirkendall effect, and planar solidification found in many
books on solidification and phase transformations. It is by admitting the convective term in the
equation that is the source of instability in many systems. Although in [JH], this is not noted
(explicitly) as the source of defects in the lamellar structure.
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Figure 1. The setup of our first diffusion equation, z is the direc-
tion of growth.

for the α phase front, and

∂C

∂z

����
z=0

=
v

D
Cβ

0

for the β phase front, i.e. Fick’s law for interface concentrations Cα
0 and Cβ

0 . We
are given the solution of the system of equations to be (discrete gaussian kernel),

C = CE + C∞ +B0e
− v

D z +
∞�

n=1

Bn cos
nπx

Sα + Sβ
e
− nπz

Sα+Sβ ,

where we have assumed the diffusion length to be much smaller than the spacing
Sα + Sβ . Using the boundary conditions to solve for the Fourier coefficients gives,

B0 =
Cα

0 Sα − Cβ
0 Sβ

Sα + Sβ
, and

Bn =
2

(nπ)2
(Sα + Sβ)

v

D
C0 sin(− nπzSα

Sα + Sβ
).

The average composition in the liquid at the interface is,

C̄α = CE + C∞ +B0 − 1
Sα

� Sα

0

�∞
n=1 Bn cos( nπx

Sα+Sβ
) dx

= CE + C∞ +B0 − 2(Sα+Sβ)
2

Sα

v
DC0P .

Similarly for,

C̄β = CE + C∞ +B0 −
2(Sα + Sβ)2

Sβ

v

D
C0P .

P is the series,

P =
∞�

n=1

1

nπ
sin2(

nπSα

Sα + Sβ
).
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Figure 2. The variables referred in the equations. z is normal to
the plane of the paper.

1.2. Rod Growth. We now derive the equation for rod growth through the sam-
ple. Using again the diffusion equation in the interface frame,

0 = ∇2C +
v

D

∂C

∂z

where again z is the direction of growth, and v the rate of growth. With the same
boundary conditions but in the not so tedious cylindrical coordinates2,

C = CE + C∞ at z = ∞

∂C

∂r
= 0 at r = 0 and r = rα + rβ ,

∂C

∂z

����
z=0

= − v

D
Cα

0

∂C

∂z

����
z=0

=
v

D
Cβ

0

where the second equation is for zero flux. The coordinate system used here neglects
discrete symmetry.

The solution to this system of equations are the Bessel functions,

C = CE + C∞ +B0e
− v

D z +
∞�

n=1

AnJ0(
γnr

rα + rβ
)e

− nπz
rα+rβ ,

where γn denotes the nth root of the J0 Bessel function and the coefficients An

are derivable by the boundary conditions. For a more detailed account of the rod
solutions, please see [JH].

2Much less tedious than paraboloidal.
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2. Average Curvatures

We will simply state the results by [JH] here. These calculations will be needed
to calculate the Gibbs-Thomson effect.

2.1. Lamellar interface. The average curvature is given by,

� 1

r(x)

�
=

1

Sα
sin (θα),

where the geometric variables are as indicated in figure 1.

2.2. Rod-type interface. The average curvature is given by

� 1

ρ(x)

�
=

−2

(rα + rβ)2 − r2α
sin (θβ),

calculated for an arbitrary surface of revolution of a curve in the first quadrant.
θbeta is the angle of the tangent at rα.

3. Thermodynamics

In this section we discuss the thermodynamics, and conjecture a growth condition
for the system. The following will the previous results to arrive at a qualitative
behaviour of eutectics according to the model in [JH].

3.1. Equilibrium and Surface Thermodynamics. The equilibrium phase dia-
gram shown in the figure, gives use the following undercooling,

∆TC = m(CE − C(x)), at the point x along the interface.

The Gibbs-Thompson effect gives us the capillary undercooling,

∆Tσ =
a

r(x)
.

[JH] ignores any kinetic contributions to the undercooling. Combining these effects,
gives us the undercooling away from the eutectic at the interface. Thence,

TE − T i = ∆T = ∆TC +∆Tσ

which remains constant across the solid-liquid interface.
Using the calculations from sections 1 and 2 we can now write,

∆Tα = mα

�
C∞ +B0 +

2v

D
C0

(Sα + Sβ)2

Sα
P
�
+

aLα
Sα

,

similarly for β,

∆Tβ = mβ

�
− C∞ −B0 +

2v

D
C0

(Sα + Sβ)2

Sα
P
�
+

aLβ
Sβ

.

where, a.. are the capillary lengths multiplied by sin (θβ) from section 2.
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Figure 3. A typical eutectic phase diagram.

3.2. Extremum Condition. Nature, in this case will come in form of a constraint.
We make the following ansatz:

”That the growth rate be the one which minimizes the undercooling”
or equivalently,

”for a given undercooling, the growth rate will be the fastest allowable.”

This conjecture is observed in many experiments and is originally proposed by
Zener(1946), and formulated again by Tiller(1958) and Hillert(1960). By taking
the derivative and minimizing, we get,

λ2v =
aL

QL

∆T 2

v
= 4m2aLQL

∆Tλ = 2maL.

Where aL , QL ,and 1
m are,

aL = 2(1 + η)
� aLα
mα

+
aLβ
ηmβ

�

QL =
P (1 + η)2C0

ηD

1

m
=

1

mα
+

1

mβ
.

Similar equations hold for rod growth, in fact they are the same equations with
the same function relationship to spacing and undercooling. I have included a
schematic figure (4) from [JH] of the undercooling-spacing relationship for a given
growth rate.
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Figure 4. A rough schematic of rod and lamellar growth.

Figure 5. Two possible types of fluctuations.

4. Instability

4.1. Lamellar Fault. Two types of fluctuations may occur. These are shown in
figure 5 originally from [JH].

The fluctuation depicted by the top illustration in figure 5, giving a deviation
above the average spacing, will then be stabilized by a local decrease in undercool-
ing. The bottom fluctuation, however is inherently unstable, as the lamellar will
continue growing normal to the interface and will eventually impinge on each other,
eventually changing the topology of the lamellar pattern. When such instability
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Figure 6. A lamellar fault. Growth direction is normal to the
plane of the paper

occurs, it will be manifested like in figure 6 by [JH]. It is called a lamellar fault. It
is said that the tip of the fault will follow the eutectic rod growth rate. Depending
on the local deviation from the extremum spacing, the fault will move through the
sample due to the uneven depression of the growth front caused by the instabilities
in figure 5. In addition, these fault will only form on eutectic sub-grain boundaries
as it is not very likely to occur homogeneously in the bulk.

5. Phase Field Crystal Preliminary

This will be a summary of [EP].

5.1. Diffusion Equation. We begin with the functional diffusion equation, which
is a general quality of material systems, in order to explain the phase field crystal
model. From now on, phase field crystal will be referred to as PFC. A concentration
C and a density field n in a binary alloy are coupled via the following two diffusion
equations in the Gibbs free energy F ,

∂n

∂t
= �∇ ·

�
M1∇

δF
δn

�
+ �∇ ·

�
M2

�∇δF
δC

�

∂C

∂t
= �∇ ·

�
M1∇

δF
δn

�
+ �∇ ·

�
M2

�∇δF
δC

�

where M1 and M2 are the mobilities of the species normalized to atomic densities.
The concentrations may be found given atomic volumes of the species. Finally,
these dynamic equations may be discretized to create a time-stepped evolution
equation.

5.2. Correlation Function. The free energy F assumed in the PFC model has
the following formal functional dependence on the density field,

F
kBT

=

�

V
d�x ln(ρ(

�ri
ρl
))−

∞�

n=2

1

n!

�

V

n�

i=1

d�ri δρ(�ri)Cn (�r1 ,�r2 , . . . , �rn).

Where the functions Cn are the n-point correlation functions defined by,

Cn(�r1, �r2, . . . , �rn) ≡
δnΦ

�i=n
i=1 δρ(�ri)

,
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Figure 7. The vertical component is the ”temperature” variable.
The eutectic is at DB0 = 0.028.

and Φ is the total potential energy related to a configuration of atoms (density field).
It turns out that by truncating the series at the two-point correlation function, there
is a characteristic periodicity where is it highly correlated. This is what the word
’crystal’ denote in pfc. The advantages of this ’crystal’ model is that it allows for
strain, and elastic effects naturally.

5.3. Eutectic Phase Diagram. The concentration solutions of the common tan-
gents to the free energy, the phase diagram, is given by figure 7, created by [ACSR].
The lines represent phase boundaries.
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6. Simulations/Results

6.1. Setup. A 2D pfc model simulation was set up such that there is a temperature
gradient along one of its directions. The gradient is made in such a way that
the undercooling temperature is at one end and then increases for the rest of the
simulation box. The boundaries are set to have periodic boundary conditions, in
both the lateral the direction and the vertical. A two phased seed was initially put
in the undercooled end and allowed to solidify as the gradient is moved. Soon after
the simulations began the system relaxes into some contact angle at the tri-junction.

6.1.1. Stable Lamellar. A few simulations were made under stable lamellar growth
conditions. It was achieved with those conditions in the first column of table 1.
Reader may find a movie of the simulation in the folder called stable and play
the movie directionalgrowth.mov. However a finer spacing was achieved when the
interface speed was increased 5×. Due to the periodic boundary, the stripes were
diagonal in-order fulfill the proper spacing within the simulation box. In the density
movie, the region where white dots appear in a roughly hexagonal array is the solid.

Variable Stable Finer Spacing
Initial conditions 2 stripes 2 stripes
Undercooling (DB0) 0.022 0.022
Interface speed 1.3× 10−4 6.7× 10−4

Table 1. Stable Conditions

6.2. Lamellae Elimination. Here are the results for unstable lamellar growth.

Variable Elimination Elimination Elimination
Initial conditions 4 stripes 8 stripes 8 stripes
Undercooling (DB0) 0.022 0.022 0.016
Interface speed 6.7× 10−4 6.7× 10−4 6.7× 10−4

Table 2. Elimination Instability

For those parameters of directional solidification, the first column provides condi-
tions that are ’almost’ stable for a 4 striped phase. For both simulation runs where
there were 8 stripes present in the initial conditions, they quickly redistribute so-
lute into a 4 striped phase after which they exhibit a defect, where they return
to the stable 2 striped phase. The run with a smaller undercooling gives a very
unstable wavy 4 striped phase before lamellae elimination. It suggests, as in [JH],
undercooling dependence of lamellar structures3.

3This dependence on undercooling (specifically constitutional undercooling) is of course the
basis of the famed Mullins-Sekerka linear instability analysis.
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6.3. Lamellar Oscillations. Some phase field models [PF, 3D] have produced
oscillations in the lamellar structure; that has yet to be explored in my studies.
However, it may be safe to conjecture that it may appear in 2D simulations given
a striped initial condition where one phase had advanced further than the other.
This has been been shown in a phase field simulation in [PF], with a perturbed
interface. It may be now relevant to remark, that the pfc simulation used, though
within its formalism, does not simulate thermal fluctuations. It was unclear to the
writer whether [PF] allows for thermal fluctuations (dynamically, as a conserved
field of temperature).

7. Conclusion/Future Work

Some correlation to [JH] has been seen. The pfc model shows roughly the right
morphologies of eutectic instabilities in a directionally solidifying system. The code
should be extended to 3-D to study the effects in [?, JH]ore completely. Due to the
quick diffusion found in the simulation default, we are able to see the automatic
relaxation into the correct contact angles at the tri-junction, this allows a more
realistic simulation of surface energy effects, but may not be as useful for simulation
of certain materials in bulk. The rather fast diffusion also allows after solidification
solute redistribution, thus changing the patter. The boundary conditions may be
changed to the no-flux to match those found in [PF, 3D], and compare the results
with these phase field model.
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