Structure and Pattern Formation in Material Systems

Philip Lee, MSc Student

Project Supervisor: Dr. Provatas

September 5, 2011

Landau Free-Energy/Cahn-Hilliard Functional

Swift-Hohenberg Type Dynamics/Phase-field Crystal Model Binary Alloy Eutectic Solidification

Amplitude Expansion

Landau Free-Energy/Cahn-Hilliard Functional

Swift Eldhenberg Type Duramice/Rhase/Field Crystal Model Binary Alley

Eutectic Solidification

Amplitude Expansion

The state of the s

 Free-energy can be written in polynomial expansion near phase transitions

L. D. Landau

$$f_0(\phi) = a_0 + \underbrace{\frac{1}{2} a_2 \phi^2 + \frac{1}{4} a_4 \phi^4}_{\text{symmetry}} + \underbrace{a_1 \phi}_{\text{non-ideal excess/external}}$$

- Free-energy can be written in polynomial expansion near phase transitions
- Extremals of free-energy describes equilibrium state

L. D. Landau

$$f_0(\phi) = a_0 + \underbrace{\frac{1}{2} a_2 \phi^2 + \frac{1}{4} a_4 \phi^4}_{\text{symmetry}} + \underbrace{a_1 \phi}_{\text{non-ideal excess/external}}$$

- Free-energy can be written in polynomial expansion near phase transitions
- Extremals of free-energy describes equilibrium state
- Describes symmetry breaking

L. D. Landau

$$f_0(\phi) = a_0 + \underbrace{\frac{1}{2} a_2 \phi^2 + \frac{1}{4} a_4 \phi^4}_{\text{symmetry}} + \underbrace{a_1 \phi}_{\text{non-ideal excess/external}}$$

- Free-energy can be written in polynomial expansion near phase transitions
- Extremals of free-energy describes equilibrium state
- Describes symmetry breaking
- A mean field theory (uses an order parameter, φ), homogeneous/non-functional

J.W. Cahn, J.E. Hilliard (1958).

The free-energy functional for coupled thermodynamical systems can be constructed like so,

 $\mathcal{F}[\phi(\vec{x})] = \int_{V} d\vec{x} f_0(\phi(\vec{x}))$

J.W. Cahn, J.E. Hilliard (1958).

The free-energy functional for coupled thermodynamical systems can be constructed like so,

$$\mathcal{F}[\phi(ec{x}),\,ec{
abla}\phi(ec{x})]\,=\int_V dec{x}\,\,f_0(\phi(ec{x}))\,\,+\,\,\gamma\,|ec{
abla}\phi(ec{x})|^2$$

- Introduce a fluctuation term
- ► Functional derivative → boundary layer.
- ullet γ is the surface/interface free-energy

J.W. Cahn, J.E. Hilliard (1958).

The free-energy functional for coupled thermodynamical systems can be constructed like so,

$$\mathcal{F}[\phi(ec{x}),\,ec{
abla}\phi(ec{x})]\,=\int_V dec{x}\,\,f_0(\phi(ec{x}))\,+\,\gamma\,|ec{
abla}\phi(ec{x})|^2$$

- Introduce a fluctuation term
- ► Functional derivative → boundary layer.
- γ is the surface/interface free-energy
- Sigmoidal, tanh $\left(\frac{x}{\sqrt{2\gamma}}\right)$ equilibrium solution in 1-D
- Interface free-energy density is $2\sqrt{\gamma (f f_{eq})}$

J.W. Cahn, J.E. Hilliard (1958).

The free-energy functional for coupled thermodynamical systems can be constructed like so,

$$\mathcal{F}[\phi(ec{x}),\,ec{
abla}\phi(ec{x})]\,=\int_V dec{x}\,\,f_0(\phi(ec{x}))\,\,+\,\,\gamma\,|ec{
abla}\phi(ec{x})|^2$$

- Introduce a fluctuation term
- ► Functional derivative → boundary layer.
- γ is the surface/interface free-energy
- Sigmoidal, tanh $\left(\frac{x}{\sqrt{2\gamma}}\right)$ equilibrium solution in 1-D
- Interface free-energy density is $2\sqrt{\gamma (f f_{eq})}$
- Used to model phase segregation, or incorporate anisotropic surface tension (crystal-like)

Example: Spinodal Decomposition

Movie.

User: http://www.youtube.com/user/fabiogarofalophd Source: http://www.youtube.com/watch?v=sysya3Lo78Y Legend: Black is one phase, and white is the other. The system was initialized as random.

Trial Bulk Free Energy

$$f(\phi) = \frac{1}{4}\phi^4 + \frac{a}{2}(T - T_c)\phi^2 +$$

$$\stackrel{b\phi}{\leadsto}$$
 , (a < 0)

non-ideal, maybe

Trial Bulk Free Energy

$$f(\phi) = \frac{1}{4}\phi^4 + \frac{a}{2}(T - T_c)\phi^2 +$$

$$\phi \phi$$
 , (a < 0

Diffusional Dynamics

$$\frac{\partial \phi}{\partial t} = -\vec{\nabla} \cdot \vec{J_{\phi}} = -\vec{\nabla} \cdot (-D \vec{\nabla} \mu) = D \nabla^2 \frac{\delta F}{\delta \phi}$$

or in Fourier space,
$$\frac{\partial \hat{\phi}(k)}{\partial t} = -D k^2 \frac{\delta F}{\delta \phi}(k),$$

which would require some "semi-" scheme for the non-linear parts.

Trial Bulk Free Energy

$$f(\phi) = \frac{1}{4}\phi^4 + \frac{a}{2}(T - T_c)\phi^2 +$$

$$b\phi$$
 , $(a<0)$

Diffusional Dynamics

$$\begin{array}{l} \frac{\partial \phi}{\partial t} = -\vec{\nabla} \cdot \vec{J_{\phi}} = -\vec{\nabla} \cdot (-D \, \vec{\nabla} \mu) = D \, \nabla^2 \frac{\delta \mathcal{F}}{\delta \phi} \\ \text{or in Fourier space,} \\ \frac{\partial \hat{\phi}(k)}{\partial t} = -D \, k^2 \frac{\delta \mathcal{F}}{\delta \phi}(k), \\ \text{which would require some "semi-" scheme for the non-linear parts.} \end{array}$$

Scales

$$\Delta t \propto rac{D}{\gamma}$$
, $\Delta x \propto \sqrt{\gamma}$
 γ is the interface width/energy.

The Idea

- We try to simulate non-equilibrium systems whose dynamics are driven by an ordering potential (or, as was in my case, material chemical potential).
- One such method is called 'Phase-field'.

Digression

æ

nan

Digression

- Non-equilibrium: ergodic breaking/glassy states (PFC)
- Noise is not modeled
- Length and time scales are mesoscopic (diffusive), but fluctuation to energy ratio unknown.
- Diffusion is numerically unstable under time reversal

Content

Kandau Free-Energy Cabin Hilliand Hunctional

Swift-Hohenberg Type Dynamics/Phase-field Crystal Model

FY

λ₩.

12ac

≁≣⊼

Binary Alley Eutectic Solidification

Amplitude Expansion

P.C. Hohenberg, J.B. Swift (1977)

 Langevin type equation, macroscopic description from microscopic interactions

- Langevin type equation, macroscopic description from microscopic interactions
- ► Quartic dependence in Fourier space → minimized at k = q₀ (finite)

- Langevin type equation, macroscopic description from microscopic interactions
- Quartic dependence in Fourier space \rightarrow minimized at $k = q_0$ (finite)
- Can be used to model Rayleigh-Bénard convection of different structures (symmetries) *i.e.* rolls, and hexagonal cells

- Langevin type equation, macroscopic description from microscopic interactions
- Quartic dependence in Fourier space \rightarrow minimized at $k = q_0$ (finite)
- Can be used to model Rayleigh-Bénard convection of different structures (symmetries) *i.e.* rolls, and hexagonal cells
- Applets by Michael Cross.

$$\dot{\psi}=arepsilon\psi-\left(
abla^2+1
ight)^2\psi+g_1\psi^2-\psi^3$$

Density Functional Theory/"Functional Taylor Expansion"

Density functional theory says that we can generally write the free-energy $\frac{\mathcal{F}[\rho,\partial^n\rho]}{k_BT}$ as,

$$\mathcal{F}_{ideal}[\rho] + \sum_{n=2}^{\infty} \frac{1}{n!} \int_{\mathcal{V}} \prod_{i=1}^{n} d\vec{r}_{i} \rho(\vec{r}_{i}) C_{n}(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{n})$$

the functions C_n are the *n*-point correlation functions defined by,

 $C_n(\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_n) \equiv \frac{\delta^n \Phi[\rho]}{\prod_{i=1}^{i=n} \delta \rho(\vec{r}_i)}.$

 $\Phi[\rho]$ is the interaction potential energy.

Phase-field Crystal (PFC) Model

K.R. Elder and M. Grant (2004)

$$\mathcal{F} = \mathcal{F}_{ideal} + rac{1}{2} \iint d\vec{r} \, d\vec{r'} \,
ho(\vec{r}) C_2(|\vec{r} - \vec{r'}|)
ho(\vec{r'})$$

Natural model of crystalline structure and elasticity

Phase-field Crystal (PFC) Model

K.R. Elder and M. Grant (2004)

$$\mathcal{F} = \mathcal{F}_{ideal} + \frac{1}{2} \iint d\vec{r} \, d\vec{r'} \, \rho(\vec{r}) C_2(|\vec{r} - \vec{r'}|) \rho(\vec{r'})$$
$$\frac{\partial \rho}{\partial \tau} = \nabla^2 \frac{\delta \mathcal{F}}{\delta \rho}$$

- Natural model of crystalline structure and elasticity
- Atomic diffusion time-scale, long compared to phonons

Phase-field Crystal (PFC) Model

K.R. Elder and M. Grant (2004)

$$\mathcal{F} = \mathcal{F}_{ideal} + \frac{1}{2} \iint d\vec{r} \, d\vec{r'} \, \rho(\vec{r}) C_2(|\vec{r} - \vec{r'}|) \rho(\vec{r'})$$
$$\frac{\partial \rho}{\partial \tau} = \nabla^2 \frac{\delta \mathcal{F}}{\delta \rho}$$

- Natural model of crystalline structure and elasticity
- Atomic diffusion time-scale, long compared to phonons
- Computationally feasible for simulating mesoscopic crystalline structures

More Details

C(r) is the crystallographic structure factor S(k)
 4th order spline is used to approximate structure factor
 Maxima correspond to crystal planes

More Details

C(r) is the crystallographic structure factor S(k)
 4th order spline is used to approximate structure factor
 Maxima correspond to crystal planes

Content

Kandau Free-Energy Cabin Hulliand Hunctional

Swift-Hohenberg Type Dynamics/Phase-field Crystal Model Binary Alloy

Dag

Eutectic Solid fication

Amplitude Expansion

PFC: Binary Alloy

K.R. Elder et al. (2007) We theoretically model the binary correlation function as,

$$egin{aligned} \mathcal{C}_{ ext{eff}} &= \psi^2 \ \mathcal{C}_{lpha lpha} \ + \ (1-\psi)^2 \ \mathcal{C}_{eta eta} \ + \ \psi(1-\psi) \ \mathcal{C}_{lpha eta} \ \psi &= rac{n_lpha}{n_lpha + n_eta} \ , \ \psi_eta &= 1-\psi \end{aligned}$$

Density n of the two components are interpolated through their concentrations

PFC: Binary Alloy

K.R. Elder et al. (2007) We theoretically model the binary correlation function as,

$$\begin{split} C_{\text{eff}} &= \psi^2 \, C_{\alpha\alpha} \,+\, (1-\psi)^2 \, C_{\beta\beta} \,+\, \psi(1-\psi) \, C_{\alpha\beta} \\ \\ \psi &= \frac{n_\alpha}{n_\alpha + n_\beta} , \, \psi_\beta = 1-\psi \\ \\ \frac{\partial n_\alpha}{\partial t} &= M_\alpha \nabla^2 \frac{\delta \mathcal{F}}{\delta n_\alpha} , \, \frac{\partial n_\beta}{\partial t} = M_\beta \nabla^2 \frac{\delta \mathcal{F}}{\delta n_\beta} \end{split}$$

- Density n of the two components are interpolated through their concentrations
- Diffusive dynamics.

PFC: Binary Alloy

K.R. Elder et al. (2007) We theoretically model the binary correlation function as,

$$C_{eff} = \psi^2 C_{\alpha\alpha} + (1 - \psi)^2 C_{\beta\beta} + \psi(1 - \psi) C_{\alpha\beta}$$
$$\psi = \frac{n_{\alpha}}{n_{\alpha} + n_{\beta}}, \ \psi_{\beta} = 1 - \psi$$
$$\frac{\partial n_{\alpha}}{\partial t} = M_{\alpha} \nabla^2 \frac{\delta \mathcal{F}}{\delta n_{\alpha}}, \ \frac{\partial n_{\beta}}{\partial t} = M_{\beta} \nabla^2 \frac{\delta \mathcal{F}}{\delta n_{\beta}}$$

- Density n of the two components are interpolated through their concentrations
- Diffusive dynamics.
- Phase diagram indicates that system can be an eutectic forming alloy.

Content

Kandan Free Energy Cabin (Milliand Functional

Swift-Hohenberg Type Dynamics/Phase-field Crystal Model Binary Alley Eutectic Solidification

Amplitude Expansion

First order transition.

- First order transition.
 - \rightarrow Discontinuity perturbs dynamics.

- First order transition.
 - \rightarrow Discontinuity perturbs dynamics.
- Quenched below liquid coexistence/solid-solid solution.

- First order transition.
 - \rightarrow Discontinuity perturbs dynamics.
- Quenched below liquid coexistence/solid-solid solution.
 - \rightarrow Constrained/cooperative growth.

- First order transition.
 - \rightarrow Discontinuity perturbs dynamics.
- Quenched below liquid coexistence/solid-solid solution.
 - \rightarrow Constrained/cooperative growth.
- Pattern forming system: rods, lamellae.

- First order transition.
 - \rightarrow Discontinuity perturbs dynamics.
- Quenched below liquid coexistence/solid-solid solution.
 - \rightarrow Constrained/cooperative growth.
- Pattern forming system: rods, lamellae.
 - \rightarrow Driven/convective growth. (Length scale, $\frac{D}{v}$)

- First order transition.
 - \rightarrow Discontinuity perturbs dynamics.
- Quenched below liquid coexistence/solid-solid solution.
 - \rightarrow Constrained/cooperative growth.
- Pattern forming system: rods, lamellae.
 - \rightarrow Driven/convective growth. (Length scale, $\frac{D}{v}$)
 - \rightarrow Interface instabilities (Mullins-Sekerka type) and surface energy.

Carbon tetrabromide-hexachlorethane eutectic. Image from (*arrow added*): K.A. Jackson, J.D. Hunt (1966).

Pb-Sn eutectic. Image from:

http://www.mete.metu.edu.tr/pages/sdml/Research/leadfree.html.

K.A. Jackson, J.D. Hunt (1966)

Extremal condition *ansatz*: Spacing should minimize undercooling.

▶ PFC can model crystalline misfit, and mismatched lamellae.

- ▶ PFC can model crystalline misfit, and mismatched lamellae.
- Program adapted into C by Jonathan Stolle, based on Fortran code by K.R. Elder.
- Notice the little bumps in the simulation.

- PFC can model crystalline misfit, and mismatched lamellae.
- Program adapted into C by Jonathan Stolle, based on Fortran code by K.R. Elder.
- Notice the little bumps in the simulation.
- Simulation very small, eutectics \approx 1000 lattice spacings

- PFC can model crystalline misfit, and mismatched lamellae.
- Program adapted into C by Jonathan Stolle, based on Fortran code by K.R. Elder.
- Notice the little bumps in the simulation.
- Simulation very small, eutectics \approx 1000 lattice spacings
- Annealing, zigzag bifurcation and (maybe) topology change.

Content

Kandad Free-Energy/Cabn-Hilliand-Functional

Swift Elducation Englishing Type Duranics Phase field Exist al type Duranics Phase field Exist al type of the test of test of

FIF

Todd

जेहरू

Amplitude Expansion

1D-QDRG,

1 dimensional quick and dirty renormalization group

Amplitude Expansion: K. R. Elder, Z-F. Huang, N. Provatas (2010)

 Renormalize to scales of mesoscopic structures along the interface.

Scheme

$$\begin{split} n &= n_0 + \eta \exp\left(ix\right) + \eta^* \exp\left(-ix\right), \ n_0 = 0, \ \text{and}, \\ \psi &= \psi_0 + \psi_{-1} \exp\left(-ix\right) + \psi_1 \exp\left(ix\right) + \ldots \\ \text{Take, } \frac{\partial \eta}{\partial t}, \ \text{and } \frac{\partial \psi_0}{\partial t} \ \text{modes only.} \\ * \ \text{note that complex exponentials are linearly independent.} \end{split}$$

Keeping symmetries (1-D, translation by lattice only)

Differential Operators

Field/Laplacian	∇^2	$\nabla^2 + k_m $
$\eta \exp(ix)$	$\frac{\partial^2}{\partial x^2} - 1$	$\frac{\partial^2}{\partial x^2}$
$\psi = \psi_0$	$\frac{\partial^2}{\partial x^2}$	$\frac{\partial^2}{\partial x^2} + 1$

- Solve for equilibrium amplitudes A, B.
- Perturb

 $\eta + \delta \eta = A\cos(G_{eut}x) + a\cos((G_{eut} + Q)x)$ $\psi + \delta \psi = B\cos(G_{eut}x) + b\cos((G_{eut} + Q)x)$

Linearize w.r.t. A and B and solve for eigenvalues in Q.

Retains some crystallinity in the macroscopic description.

Retains some crystallinity in the macroscopic description.

- Retains some crystallinity in the macroscopic description.
 - But:
- 1-D model lacks an interface.

Retains some crystallinity in the macroscopic description.

- 1-D model lacks an interface.
- Phase diagram does not indicate first order transition.

Retains some crystallinity in the macroscopic description.

- 1-D model lacks an interface.
- Phase diagram does not indicate first order transition.
- Boundary conditions unclear.

Retains some crystallinity in the macroscopic description.

- 1-D model lacks an interface.
- Phase diagram does not indicate first order transition.
- Boundary conditions unclear.
- Geometric effects of dimensional reduction unclear.

Retains some crystallinity in the macroscopic description.

- 1-D model lacks an interface.
- Phase diagram does not indicate first order transition.
- Boundary conditions unclear.
- Geometric effects of dimensional reduction unclear.
- CALCULATION INCOMPLETE!

Thank you for your attention. Presentation Done. Any Questions? Background image credit: Miroslav Vicher found on the Internet: http://www.vicher.cz/puzzle/