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Landau Free-Energy Expansion

L. D. Landau

f0(φ) = a0 +
1

2
a2 φ

2 +
1

4
a4 φ

4︸ ︷︷ ︸
symmetry

+ a1φ︸︷︷︸
non-ideal excess/external

I Free-energy can be written in polynomial expansion near
phase transitions

I Extremals of free-energy describes equilibrium state

I Describes symmetry breaking

I A mean field theory (uses an order parameter, φ),
homogeneous/non-functional
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Cahn-Hilliard Equation
J.W. Cahn, J.E. Hilliard (1958).
The free-energy functional for coupled thermodynamical systems
can be constructed like so,

F [φ(~x)

, ~∇φ(~x)

] =

∫
V
d~x f0(φ(~x))

+ γ |~∇φ(~x)|2

I Introduce a fluctuation term

I Functional derivative → boundary layer.

I γ is the surface/interface free-energy

I Sigmoidal, tanh ( x√
2γ

) equilibrium solution in 1-D

I Interface free-energy density is 2
√
γ (f − feq)

I Used to model phase segregation, or incorporate anisotropic
surface tension (crystal-like)
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Example: Spinodal Decomposition

Movie.
User: http://www.youtube.com/user/fabiogarofalophd
Source: http://www.youtube.com/watch?v=sysya3Lo78Y
Legend: Black is one phase, and white is the other.
The system was initialized as random.



Typical free-energy,



Modeling of spinodal decomposition can be done using the
following free-energy, and diffusion dynamics,

Trial Bulk Free Energy

f(φ) = 1
4φ

4 + a
2 (T − Tc )φ2 + bφ︸︷︷︸

non-ideal, maybe

, (a < 0)

Diffusional Dynamics

∂φ
∂t = −~∇ · ~Jφ = −~∇ · (−D ~∇µ) = D∇2 δF

δφ
or in Fourier space,
∂φ̂(k)
∂t = −D k2 δ̂F

δφ (k),
which would require some ”semi-” scheme for the non-linear parts.

Scales

∆t ∝ D
γ , ∆x ∝ √γ

γ is the interface width/energy.
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The Idea

I We try to simulate non-equilibrium systems whose dynamics
are driven by an ordering potential (or, as was in my case,
material chemical potential).

I One such method is called ‘Phase-field’.



Digression

I Non-equilibrium: ergodic breaking/glassy states (PFC)

I Noise is not modeled

I Length and time scales are mesoscopic (diffusive), but
fluctuation to energy ratio unknown.

I Diffusion is numerically unstable under time reversal
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The Swift-Hohenberg Equation

P.C. Hohenberg, J.B. Swift (1977)

ψ̇ = (q0 +∇2)2ψ︸ ︷︷ ︸
structure

+ P(ψ)︸ ︷︷ ︸
nonlinear

I Langevin type equation, macroscopic description from
microscopic interactions

I Quartic dependence in Fourier space
→ minimized at k = q0 (finite)

I Can be used to model Rayleigh-Bénard convection of different
structures (symmetries) i.e. rolls, and hexagonal cells

I Applets by Michael Cross.



The Swift-Hohenberg Equation

P.C. Hohenberg, J.B. Swift (1977)

ψ̇ = (q0 +∇2)2ψ︸ ︷︷ ︸
structure

+ P(ψ)︸ ︷︷ ︸
nonlinear

I Langevin type equation, macroscopic description from
microscopic interactions

I Quartic dependence in Fourier space
→ minimized at k = q0 (finite)

I Can be used to model Rayleigh-Bénard convection of different
structures (symmetries) i.e. rolls, and hexagonal cells

I Applets by Michael Cross.



The Swift-Hohenberg Equation

P.C. Hohenberg, J.B. Swift (1977)

ψ̇ = (q0 +∇2)2ψ︸ ︷︷ ︸
structure

+ P(ψ)︸ ︷︷ ︸
nonlinear

I Langevin type equation, macroscopic description from
microscopic interactions

I Quartic dependence in Fourier space
→ minimized at k = q0 (finite)

I Can be used to model Rayleigh-Bénard convection of different
structures (symmetries) i.e. rolls, and hexagonal cells

I Applets by Michael Cross.



The Swift-Hohenberg Equation

P.C. Hohenberg, J.B. Swift (1977)

ψ̇ = (q0 +∇2)2ψ︸ ︷︷ ︸
structure

+ P(ψ)︸ ︷︷ ︸
nonlinear

I Langevin type equation, macroscopic description from
microscopic interactions

I Quartic dependence in Fourier space
→ minimized at k = q0 (finite)

I Can be used to model Rayleigh-Bénard convection of different
structures (symmetries) i.e. rolls, and hexagonal cells

I Applets by Michael Cross.



The Swift-Hohenberg Equation

P.C. Hohenberg, J.B. Swift (1977)

ψ̇ = (q0 +∇2)2ψ︸ ︷︷ ︸
structure

+ P(ψ)︸ ︷︷ ︸
nonlinear

I Langevin type equation, macroscopic description from
microscopic interactions

I Quartic dependence in Fourier space
→ minimized at k = q0 (finite)

I Can be used to model Rayleigh-Bénard convection of different
structures (symmetries) i.e. rolls, and hexagonal cells

I Applets by Michael Cross.





Density Functional Theory/“Functional Taylor Expansion”

Density functional theory says that we can generally write the
free-energy F [ρ,∂nρ]

kB T as,

Fideal [ρ] +
∑∞

n=2
1
n!

∫
V
∏n

i=1 d~ri ρ(~ri )Cn (~r1 ,~r2 , . . . , ~rn) .

the functions Cn are the n-point correlation functions defined by,

Cn(~r1, ~r2, . . . , ~rn) ≡ δnΦ[ρ]∏i=n
i=1 δρ(~ri )

.

Φ[ρ] is the interaction potential energy.



Phase-field Crystal (PFC) Model

K.R. Elder and M. Grant (2004)

F = Fideal +
1

2

∫∫
d~r d~r ′ ρ(~r)C2(|~r − ~r ′|)ρ(~r ′)

∂ρ

∂τ
= ∇2 δF

δρ

I Natural model of crystalline structure and elasticity

I Atomic diffusion time-scale, long compared to phonons

I Computationally feasible for simulating mesoscopic crystalline
structures
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More Details

This is a qualitative structure factor for a triangular
lattice.

I Ĉ (r) is the crystallographic
structure factor S(k)

I 4th order spline is used to
approximate structure factor

I Maxima correspond to crystal
planes



More Details

This is a qualitative structure factor for a simple fluid.

I Ĉ (r) is the crystallographic
structure factor S(k)

I 4th order spline is used to
approximate structure factor

I Maxima correspond to crystal
planes
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PFC: Binary Alloy

K.R. Elder et al. (2007)
We theoretically model the binary correlation function as,

Ceff = ψ2 Cαα + (1− ψ)2 Cββ + ψ(1− ψ)Cαβ

ψ =
nα

nα + nβ
, ψβ = 1− ψ

∂nα
∂t

= Mα∇2 δF
δnα

,
∂nβ
∂t

= Mβ∇2 δF
δnβ

I Density n of the two components are interpolated through
their concentrations

I Diffusive dynamics.

I Phase diagram indicates that system can be an eutectic
forming alloy.
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Binary Eutectic Solidification

I First order transition.

→ Discontinuity perturbs dynamics.

I Quenched below liquid coexistence/solid-solid solution.
→ Constrained/cooperative growth.

I Pattern forming system: rods, lamellae.
→ Driven/convective growth. (Length scale, D

v )
→ Interface instabilities (Mullins-Sekerka type) and surface
energy.
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Eutectic Solidification

Carbon tetrabromide-hexachlorethane eutectic.
Image from (arrow added): K.A. Jackson, J.D. Hunt (1966).



Eutectic Solidification

Pb-Sn eutectic.
Image from:

http://www.mete.metu.edu.tr/pages/sdml/Research/leadfree.html.



Eutectic Solidification



Eutectic Solidification
K.A. Jackson, J.D. Hunt (1966)

Extremal condition ansatz:
Spacing should minimize undercooling.



PFC Eutectics

I PFC can model crystalline misfit, and mismatched lamellae.

I Program adapted into C by Jonathan Stolle,
based on Fortran code by K.R. Elder.

I Notice the little bumps in the simulation.

I Simulation very small, eutectics ≈ 1000 lattice spacings

I Annealing, zigzag bifurcation and (maybe) topology change.
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1D-QDRG,
1 dimensional quick and dirty renormalization group

Amplitude Expansion: K. R. Elder, Z-F. Huang, N. Provatas
(2010)

I Renormalize to scales of mesoscopic structures along the
interface.

Scheme

n = n0 + η exp (ix) + η∗ exp (−ix) , n0 = 0, and,
ψ = ψ0 + ψ−1 exp (−ix) + ψ1 exp (ix) + . . .
Take, ∂η∂t , and ∂ψ0

∂t modes only.
∗ note that complex exponentials are linearly independent.



I Keeping symmetries (1-D, translation by lattice only)

Differential Operators

Field/Laplacian ∇2 ∇2 + |km|
η exp (ix) ∂2

∂x2 − 1 ∂2

∂x2

ψ = ψ0
∂2

∂x2
∂2

∂x2 + 1

I Solve for equilibrium amplitudes A, B.

I Perturb

η + δη = A cos (Geutx) + a cos ((Geut + Q)x)
ψ + δψ = B cos (Geutx) + b cos ((Geut + Q)x)

I Linearize w.r.t. A and B and solve for eigenvalues in Q.



Conclusions?

I Retains some crystallinity in the macroscopic description.

But:

I 1-D model lacks an interface.

I Phase diagram does not indicate first order transition.

I Boundary conditions unclear.

I Geometric effects of dimensional reduction unclear.

I CALCULATION INCOMPLETE!
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Thank you for your attention.
Presentation Done.

Any Questions?



Background image credit:
Miroslav Vicher
found on the Internet: http://www.vicher.cz/puzzle/
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