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Abstract. We add propositional quantifiers to the propositional modal logic S4 and to the propo-
sitional intuitionistic logic H, introducing axiom schemes that are the natural analogs to axiom
schemes typically used for first-order quantifiers in classical and intuitionistic logic. We show that
the resulting logics are sound and complete for a topological semantics extending, in a natural way,
the topological semantics for S4 and for H.

In this article, we add propositional quantifiers to the propositional modal [intuitionistic]
logic S4 [H], with axiom schemes that are the natural analogs to axiom schemes typically
used for first-order quantifiers in classical logic. We show that the resulting logics are
sound and complete for a topological semantics extending, in a natural way, the topological
semantics for S4 and for H.1 In particular, we interpret the second-order propositional
modal and intuitionistic languages in topological structures, where a topological structure
is an ordered pair 〈X, D〉, with X a topological space and D ⊆ P(X) a domain over which
the propositional quantifiers range. (Extra conditions on D typically have to be met: see
below.)

Analogous work has already been done for Kripke semantics: for the modal case, see
[1]; and for the intuitionistic case see [2] and [12] and a short discussion in [13]. There is a
notable disanalogy between Kripke and topological semantics: in the Kripke semantics for
second-order propositional S4 and H, if we have a constant domain for the quantifiers then,
in the modal case, we have to add a Barcan axiom scheme, B, (∀p�A → �∀p A); and, in
the intuitionistic case, a constant-domain axiom scheme, C, ∀p(A∨B) → (A∨∀pB) (p is
not free in A). To get completeness in the Kripke semantics for second-order propositional
S4 [H] without B [C], we have to allow varying domains.2 In the topological semantics, by
contrast, we get completeness for second-order propositional S4 [H] without B [C], even
though our topological structures have a constant domain. This is analogous to the first-
order case. Let QS4 [QH] be first-order S4 [H] without identity, with standard first-order
axiom schemes for the quantifiers. In the Kripke semantics we get the completeness of QS4
+ a Barcan scheme [QH + a constant-domain scheme] in a constant-domain semantics, and
we only get the completeness of QS4 [QH] if we allow varying domains. Meanwhile, in
the topological semantics we get the completeness of QS4 [QH] with constant domains.
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Another notable disanalogy between Kripke and topological semantics is that the com-
pleteness proofs in the Kripke semantics for second-order propositional S4 [H] deliver
strong completeness, the claim that every consistent set of formulas is satisfiable, since
these proofs use the now standard canonical-models method ([10]). Here we adapt the al-
gebraic completeness methods from [11], which do not seem well-suited to proving strong
completeness.3 We leave it as an open question whether the second-order propositional
logics given below are strongly complete in the topological semantics.

One last remark, before we get down to work. For propositional S4 [H], topological
semantics can be seen as a generalization of Kripke semantics. But even more general is
the algebraic semantics (see [11]): in the modal case, formulas are interpreted as points in
an interior algebra, and in the intuitionistic case, as points in a Heyting algebra. A natural
extension of the algebraic semantics to propositionally quantified languages is to interpret
these languages in complete interior or Heyting algebras: the completeness of the algebra
ensures that quantified formulas can be interpreted. As noted in [14], the completeness
proof presented in [3] for the intuitionistic case has a subtle flaw. To our knowledge the
question remains open whether a suitable propositionally quantified version of S4 or H is
complete for complete interior or Heyting algebras.

§1. Preliminaries.

1.1. Syntax. Let L be a second-order propositional language with a countable set PV
of propositional variables; connectives &, ∨, →, and ∼; and propositional quantifiers ∀
and ∃. And let L� be L extended with a modal operator �. In either language, (A ↔ B)
is defined as (A → B) & (B → A). We use upper case A, B, etc., to range over formulas
and lower case p, q, etc., to range over PV. We let Form be the set of formulas of L and
Form� be the set of formulas of L�.

If p and q are propositional variables occurring in A, then an occurrence p is in the
scope of q if that occurrence of p is in the scope of a quantifier phrase ∀q or ∃q. In either
language, if A and B are formulas and p ∈ PV, then B is substitutible for p in A if no
free occurrence of p in A is in the scope of a variable with a free occurrence in B. If B is
substitutible for p in A, then we define A[B/p] as the formula that results from replacing
every free occurrence of p with B—otherwise A[B/p] is undefined. When A[B/p] is
defined, we say that it is a substitution instance of A.

It will be useful to generalize this last definition in two ways. First, we want a notion
of simultaneous substitution of formulas for propositional variables. Second, we want to
be able to substitute B for p in A, even when B is not substitutible for p in A: for this,
we change bound variables. To be precise, suppose that ϕ : PV → Form�. We will
extend ϕ to Form� (and thus also to Form) so that ϕ(A) is, up to changes in bound
variables, the result of simultaneously substituting the ϕ(p)’s for the p’s in A. First, for
any ϕ : PV → Form�, any B ∈ Form� and any p ∈ PV, let ϕB

p be just like ϕ except that

3 This probably explains why, putting second-order propositional logic aside, the issue of strong
completeness has not been much addressed in topological semantics. Recently, however, [8]
proves the strong completeness of S4 for any dense-in-itself metric space and [9] proves the
strong completeness of QS4 for the rational line (with a constant domain for the quantifiers).
These articles piggyback on strong completeness in the Kripke semantics, simulating Kripke
frames the topological semantics. The strong completeness results in [8] and [9] also apply to H
and to QH.
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ϕB
p (p) = B. Now extend each ϕ : PV → Form� as follows: ϕ(∼A) = ∼ϕ(A); ϕ(�A) =

�ϕ(A); ϕ(A & B) = ϕ(A) & ϕ(B) and similarly for ∨ and →; ϕ(∀p A) = ∀qϕ
q
p(A),

where q ∈ PV is chosen so that q does not occur in A and is not free in ϕ(r) for any
propositional variable r occurring in A; and similarly for ∃. Note that, if ϕ : PV → Form,
the ϕ(A) ∈ Form for every A ∈ Form.

Let ι : PV → Form� be the identity function. Also, say that A and A′ are alphabetical
variants, in symbols A

alpha= A′, iff they differ only in the choice of bound variables. Note
that A

alpha= ι(A); also, for any A, B ∈ Form� and p ∈ PV , there is an A′ ∈ Form�

such that A
alpha= A′ and B is substitutible for p in A′ and A′[B/p]

alpha= ιB
p (A). Also note the

following, where ϕ : PV → Form�; A, B ∈ Form�; p, q ∈ PV; q does not occur in A;
and q is not free in ϕ(r) for any propositional variable r occurring in A:

ιB
q (ϕ

q
p(A))

alpha= ϕB
p (A)

∀p A
alpha= ∀qι

q
p(A)

∃p A
alpha= ∃qι

q
p(A)

ϕ(∀p A)
alpha= ∀qϕ(ι

q
p(A))

ϕ(∃p A)
alpha= ∃qϕ(ι

q
p(A)).

1.2. Axiomatizations. We define propositionally quantified logics by adding axiom
schemes and rules for propositional quantifiers to the base propositional logic, whether
H or S4. Consider the following axiom schemes governing the propositional quantifiers,
where F is a subset of Form� or of Form (depending on the language we are working
with):

1. ∀p(A → B) → (A → ∀pB), if p is not free in A

2. ∀p(A → B) → (∃p A → B), if p is not free in B

3. ∀p A → A[B/p], B ∈ F and B is substitutible for p in A

4. A[B/p] → ∃p A, B ∈ F and B is substitutible for p in A.

Propositionally quantified intuitionistic logics. For any subset F of
Form let H2

F be the logic determined in the language L by all substitution
instances of the theorems of H, Axiom Schemes (1)–(4), and the rules,
Modus Ponens and Universal Generalization (from A to infer ∀p A).

Propositionally quantified modal logics. For any subset F of Form�

let S42
F be the logic determined in the language L� by all substitution

instances of the theorems of S4, Axiom Schemes (1)–(4), and the rules,
Modus Ponens, Universal Generalization, and Necessitation (from A to
infer �A).

We will not consider S42
F [H2

F] for arbitrary F. Say that F is suitable iff PV ⊆ F, F
is closed under alphabetic variants, and F is closed under substitutions: if ϕ : PV → F
and A ∈ F, then ϕ(A) ∈ F. Many interesting sets of formulas are suitable, for example,
the set PV of propositional variables; the set Form� of formulas of L�; the set Form of
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formulas of L; the set F�∀�∃ of quantifier-free formulas of Form�; and the set F�� �∀�∃ of �-

and quantifier-free formulas of Form� (F�� �∀�∃ is also a subset of Form).

LEMMA 1.1. If F is suitable and if A and A′ are alphabetic variants in the language
Form� [Form], then (A ↔ A′) ∈ S42

F [(A ↔ A′) ∈ H2
F].

COROLLARY 1.2. If F ⊆ Form� [F ⊆ Form] is suitable, A, B ∈ F and p ∈ PV, then
the following are theorems of S42

F [H2
F]: ∀p A → ιB

p (A) and ιB
p (A) → ∃p A.

Henceforth, we always assume that F is suitable. If L = S42
F [H2

F] for some F, then we let

FormL = Form� [Form].

1.3. Semantics. A (topological) structure is an ordered pair 〈X, D〉 where X is a
topological space and D ⊆ P(X). The structure is intuitionistic iff D ⊆ O(X), where
O(X) is the set of open sets in X . Given a structure 〈X, D〉, a valuation on 〈X, D〉 is a
function V : PV → D. Given a valuation V , p ∈ PV and P ∈ D, we define V [P/p]
to be the valuation just like V except that it assigns P to p. A (topological) model is an
ordered triple M = 〈X, D, V 〉, where 〈X, D〉 is a structure and V is a valuation on 〈X, D〉.
A model 〈X, D, V 〉 is intuitionistic iff 〈X, D〉 is intuitionistic.

Given a structure 〈X, D〉, we will extend every valuation V to two functions:

• Vmod : Form� → P(X), which gives the modal value of each formula in Form�;
and

• Vint : Form → O(X), which gives the intuitionistic value of each formula in Form.

First, we define two operations on subsets of X , where IntX is topological interior:

∼X S =df IntX (X − S)

S �X S′ =df IntX ((X − S) ∪ S′).

Vmod and Vint are defined as follows:

Vmod(p) = V (p)
Vmod(A & B) = Vmod(A) ∩ Vmod(B)
Vmod(A ∨ B) = Vmod(A) ∪ Vmod(B)

Vmod(A → B) = (X − Vmod(A)) ∪ Vmod(B)
Vmod(∼A) = X − Vmod(A)
Vmod(�A) = I nt (Vmod(A))

Vmod(∀p A) =
⋂

P∈D V [P/p]mod A
Vmod(∃p A) =

⋃
P∈D V [P/p]mod A

Vint(p) = V (p)
Vint(A & B) = Vint(A) ∩ Vint(B)
Vint(A ∨ B) = Vint(A) ∪ Vint(B)

Vint(A → B) = Vint(A) �X Vint(B)
Vint(∼A) = ∼X Vint(A)

Vint(∀p A) = IntX (
⋂

P∈D V [P/p]int A)
Vint(∃p A) =

⋃
P∈D V [P/p]int A.

If L = S42
F [H2

F] for some F, then we let VL = Vmod [Vint].
If M = 〈X, D, V 〉, L is one of our logics, and A ∈ FormL, then we say that M �L A iff

VL(A) = X . We say that 〈X, D〉 �L A iff 〈X, D, V 〉 �L A for all valuations V on 〈X, D〉.
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If S is a class of structures, then we say that S �L A iff 〈X, D〉 �L A for every 〈X, D〉 ∈ S .
Say that L is sound for a class S of structures iff, for every A ∈ FormL, if A ∈ L then
S �L A; and that L is complete for a class S of structures iff, for every A ∈ FormL, if
S �L A then A ∈ L.

A topological structure 〈X, D〉 is modally closed under F ⊆ Form� iff Vmod(A) ∈
D, for every valuation V on 〈X, D〉 and every A ∈ F. And an intuitionistic topological
structure 〈X, D〉 is intuitionistically closed under F ⊆ Form iff Vint(A) ∈ D, for every
valuation V on 〈X, D〉 and every A ∈ F.

THEOREM 1.3. S42
F [H2

F] is sound and complete for the class of all structures modally
[intuitionistically] closed under F.

Soundness is routine, and we leave it to the reader. For completeness, see §2 and §3.

REMARK 1.4. One concern about Theorem 1.3 is that the condition placed on the
structure 〈X, D〉—namely that it be modally or intuitionistically closed under F—is stated
with reference to formulas and to valuations. It would be more appealing to have closure
conditions that are given in terms more intrinsic to 〈X, D〉. For a number of F’s, we can
accomplish this. Say that a topological structure 〈X, D〉 Boolean-closed iff D is closed
under intersection, union, and complementation (wrt X); is interior-closed if D is both
Boolean-closed and closed under interiors; and is Heyting-closed iff D ⊆ O(X) and D is
closed under intersection, union, and the operations ∼X and �X defined above. Note the
following, where the sets F�∀�∃ and F�� �∀�∃ are as defined on page 510:

1. Every structure is modally closed under PV.

2. A structure is modally closed under F�� �∀�∃ iff it is Boolean-closed.

3. A structure is modally closed under F�∀�∃ iff it is interior-closed.

4. Every intuitionistic structure is intuitionistically closed under PV.

5. An intuitionistic structure is intuitionistically closed under F�� �∀�∃ iff it is Heyting-
closed.

Thus, Theorem 1.3 implies

1. S42
PV is sound and complete for the class of all structures.

2. S42
F�� �∀�∃ is sound and complete for the class of Boolean-closed structures.

3. S42
F�∀�∃ is sound and complete for the class of interior-closed structures.

4. H2
PV is sound and complete for the class of all intuitionistic structures.

5. H2
F�� �∀�∃ is sound and complete for the class of Heyting-closed intuitionistic structures.

In the Appendix, we give intrinsic conditions on a topological structure equivalent to that
structure being closed under Form�: a similar strategy gives intrinsic conditions on an
intuitionistic topological structure equivalent to that structure being intuitionistically closed
under Form.

REMARK 1.5. Say that a model 〈X, D, V 〉 is modally principal if D = P(X) and is
intuitionistically principal iff D = O(X). Let S42+ =df {A ∈ Form� : Vmod(A) = X for
every modally principal model 〈X, D, V 〉} and H2+ =df {A ∈ Form : Vint(A) = X for
every intuitionistically principal model 〈X, D, V 〉}. [7] shows that second-order arithmetic
can be recursively embedded in S42+, and claims without proof that second-order arithmetic
can be recursively embedded in H2+. This is related to earlier work in Kripke semantics:
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the principal second-order propositional extensions of the modal logics S4, S4.2, K4, K, T
and B and of the intuitionistic logic H are all recursively isomorphic to full second-order
logic.4

§2. Completeness of S42
F. Fix a suitable F. We will freely use Lemma 1.1, which

tells us that S42
F is closed under alphabetic variants. The completeness proof for S42

F relies
on our ability to embed the Lindenbaum algebra of S42

F in the algebra of sets of some
topological space: this is exactly the strategy used in [11] for propositional and first-order
modal and intuitionistic logic. Now for the details.

An interior algebra is a seven-tuple A = 〈A, �, �, −, 0, 1, I〉, where 〈A, �, �, −, 0, 1〉
is a Boolean algebra and I : A → A satisfies the following, for any a, b ∈ A: Ia ≤ a,
IIa = Ia, I(a � b) = Ia � Ib, I1 = 1: here, and below, a ≤ b is the partial order defined as
a � b = b. A is degenerate if 0 = 1. Otherwise A is nondegenerate.

One useful example is the algebra of subsets of a topological space. If X is a topological
space, then define AX =df 〈P(X), ∩, ∪, −X , ∅, X, IntX 〉: here −X is complementation
relative to X (−X (S) = (X − S), for S ⊆ X ) and IntX is topological interior. Note that this
is an interior algebra.

Another useful example of an interior algebra is the Lindenbaum algebra for S42
F. Say

that any two formulas A and B are S42
F-equivalent iff (A ↔ B) ∈ S42

F. This is clearly
an equivalence relation. Write |A| for the equivalence class determined by the formula
A ∈ Form�, and let A∗ be the set of equivalence classes. We turn A∗ into an interior
algebra by defining �∗, �∗, −∗, 0∗, 1∗, and I∗ formula-wise as follows:

|A| �∗ |B| = |A & B|
|A| �∗ |B| = |A ∨ B|

−∗|A| = |∼A|
0∗ = |∼(p → p)|
1∗ = |p → p|

I∗|A| = |�A|.
It is routine to check that each of these is well-defined and that 〈A∗, �∗, �∗, −∗, 0∗, 1∗, I∗〉
is indeed an interior algebra. Let ≤∗ be the partial order defined as above: |A| ≤∗ |B| iff
|A| �∗ |B| = |B|. Note:

• for any A, B ∈ Form�, |A| ≤∗ |B| iff (A → B) ∈ S42
F and

• 1∗ = S42
F.

Clearly, every finite subset of A∗ has both a least upper bound and a greatest lower
bound. But so do some infinite subsets. For any A ∈ Form� and p ∈ PV, define J(A, p) ⊆
A∗ as follows: J(A, p) =df {|ιB

p (A)| : B ∈ F}. We claim that |∃p A| = lub(J(A, p)) and
|∀p A| = glb(J(A, p)). We give the argument only for |∃p A|. To see that |∃p A| is an upper
bound of J(A, p), it suffices to note that, by Corollary 1.2, (ιB

p (A) → ∃p A) ∈ S42
F, for

4 Kit Fine and Saul Kripke independently discovered, but did not publish, proofs of this for the
modal logics in the 1970s, though in [1], Fine provides an earlier proof sketch that second-order
arithmetic can be recursively embedded into these modal logics. [4] provides published proofs
for the modal results. [6] gives a proof for H. It should be noted that [1] and [5] independently
provide axiomatizations of the principal interpretation, in the Kripke semantics, of S5.
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every B ∈ F. To see that |∃p A| is the least upper bound of J(A, p), suppose that |C | is
some upper bound of J(A, p). Choose a q ∈ PV that does not occur in either A or C . Note
that |ιqp(A)| ∈ J(A, p) so that |ιqp(A)| ≤∗ |C |. Thus (ι

q
p(A) → C) ∈ S42

F. So ∀q(ι
q
p(A) →

C) ∈ S42
F, since S42

F is closed under generalization. So (∃qι
q
p(A) → C) ∈ S42

F, by Axiom

Scheme 2, since q does not occur in C . Note that ∃p A
alpha= ∃qι

q
p(A), since q does not occur

in A. So (∃p A → C) ∈ S42
F, by Lemma 1.1. So |∃p A| ≤ |C |, as desired.

In general, if 〈A, �, �, −, 0, 1, I〉 is an interior algebra, then a join is a subset of A that
has a least upper bound, and a meet is a subset of A that has a greatest lower bound. Thus
J(A, p) is both a join and a meet in A∗.

If 〈A, �, �, −, 0, 1, I〉 and 〈A′, �′, �′, −′, 0′, 1′, I′〉 are interior algebras and h : A →
A′, then h is a homomorphism iff, for every a, b ∈ A, we have h(a � b) = h(a) �′ h(b),
h(a � b) = h(a) �′ h(b), h(−a) = −′h(a), h(0) = 0′, h(1) = 1′, and h(Ia) = I′h(a). If
h is a one-one homomorphism, then h is an embedding. Suppose that J ⊆ P(A) is a set
of joins and K ⊆ P(A) is a set of meets. An embedding h is a (J ,K)-embedding iff for
every J ∈ J and every K ∈ K we have the following: {h(a) : a ∈ J} has a least upper
bound in A′ and lub({h(a) : a ∈ J}) = h(lub(J)); and {h(a) : a ∈ K} has a greatest lower
bound in A′ and glb({h(a) : a ∈ J}) = h(lub(J)).

The following lemma follows immediately from [11], Chapter III, Proposition 4.3, on
page 101:

LEMMA 2.1. Suppose that A = 〈A, �, �, −, 0, 1, I〉 is a nondegenerate interior alge-
bra, and that J and K are countable sets of joins and meets in A, respectively. Then there
is a topological space X and a (J ,K)-embedding h : A → AX , where AX is the algebra
of subsets of X.

Given Lemma 2.1, we can now prove completeness. Let A∗ be the Lindenbaum algebra
for S42

F as defined above. Let J = {J(A, p) : A ∈ Form� & p ∈ PV}. Since |∃p A| =
lub(J(A, p)) and |∀p A| = glb(J(A, p)), the set J is both a set of joins and a set of
meets. Also note that J is countable, since A∗ is countable, since there are only countably
many formulas. By Lemma 2.1, there is a topological space X and a (J ,J )-embedding
h : A∗ → AX .

Consider the structure S∗ = 〈X, D〉, where D is the image of the set {|A| : A ∈ F} under
the (J ,J )-embedding h. For any ϕ : PV → Form�, let V ϕ be the following valuation:
V ϕ(p) = h(|ϕ(p)|). Note that every valuation on S∗ is of this form, since D is the image

of {|A| : A ∈ F} under h. Also note, for future use, the following: V ϕC
p = V ϕ[h(|C |)/p],

for any p ∈ PV and C ∈ F.
Now we will show the following, for every formula A:

for every ϕ : PV → Form�, V ϕ
mod(A) = h(|ϕ(A)|). (∗)

We proceed by induction on A. If A is atomic, the result is by the definition of V ϕ . If
A = (B & C), note that V ϕ

mod(A) = V ϕ
mod(B & C) = V ϕ

mod(B) ∩ V ϕ
mod(C) = h(|ϕ(B)|) ∩

h(|ϕ(C)|) (by the inductive hypothesis) = h(|ϕ(B)| �∗ |ϕ(C)|) (since h is a homomor-
phism) = h(|ϕ(B) & ϕ(C)|) (by the definition of �∗) = h(|ϕ(B & C)|) = h(|ϕ(A)|).
The argument is the same if A is of one of the forms (B ∨ C), (B → C), ∼B or �B.
Suppose that A = ∃pB. Then note the following, where q ∈ PV is chosen so that q
does not occur in B and is not free in ϕ(r) for any propositional variable r occurring
in B:
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h(|ϕ(A)|) = h(|ϕ(∃pB)|) = h(|∃qϕ
q
p(B)|) = h(lub(J(ϕ

q
p(B), q)))

= h(lub({|ιCq (ϕ
q
p(B))| : C ∈ F}))

= h(lub({|ϕC
p (B)| : C ∈ F})), since ιCq (ϕ

q
p(B))

alpha= ϕC
p (B)

=
⋃{h(|ϕC

p (B)|) : C ∈ F}, since h is a (J ,J )-embedding

=
⋃{V

ϕC
p

mod(B) : C ∈ F}, by the inductive hypothesis

=
⋃{V ϕ

mod[h(|C |)/p](B) : C ∈ F}

=
⋃{V ϕ

mod[P/p]mod(B) : P ∈ D}, since D is the image under h
of the set {|C | : C ∈ F}

= V ϕ
mod(∃pB) = V ϕ

mod(A), as desired.

The argument in the case A = ∀pB is similar.
Given (∗), we can draw two conclusions:

1. The structure S∗ = 〈X, D〉, is modally closed under F. To see this, suppose that
V : PV → D and A ∈ F. We want to show that Vmod(A) ∈ D. Recall that D is the
image of {|A| : A ∈ F} under h. So, for each p ∈ PV, we can choose a Ap ∈ F so
that V (p) = h(|Ap|). Define ϕ : PV → Form� as follows: ϕ(p) = Ap. Note that
Vmod = V ϕ

mod. So by (∗), Vmod(A) = h(|ϕ(A)|). Also, since A ∈ F and F is closed
under substitutions (see page 510), ϕ(A) ∈ F. So h(|ϕ(A)|) ∈ D. So Vmod(A) ∈ D,
as desired.

2. V ι
mod(A) = h(|ι(A)|) = h(|A|), since A

alpha= ι(A).

Thus we get completeness for class of all structures modally closed under F as follows:
suppose that S � A for every structure S in this class. Then, in particular, S∗ � A. Let M
be the model 〈X, D, V ι〉. Then M � A. So V ι

mod(A) = X . So h(|A|) = X . So |A| = 1∗ in
the Lindenbaum algebra A∗. So A ∈ S42

F, as desired.

§3. Completeness of H2
F. Fix a suitable F. The completeness proof for H2

F is al-
most exactly the same as the completeness proof for S42

F, except that this time we use
Heyting algebras instead of interior algebras. A Heyting algebra is a seven-tuple A =
〈A, �, �, ⇒, −, 0, 1〉, where A is a nonempty set; �, �, and ⇒ are binary operations on
A; − is a unary operation on A; and 0 and 1 are members of A all satisfying the following
conditions, where a ≤ b is defined as a � b = b:

• 〈A, �, �, 0, 1〉 is a bounded distributive lattice, that is,

— � and � are commutative and associative;
— a � (a � b) = a � (a � b) = a, for every a, b ∈ A;
— � and � distribute over each other; and
— a � 1 = a and a � 0 = a, for every a ∈ A.

• a ⇒ b is the greatest element such that a � (a ⇒ b) ≤ b.
• (a ⇒ 0) = −a, for every a ∈ A.
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It is easy to see that ≤ is a partial order, and that a � b and a � b are the greatest lower
bound and least upper bound, respectively, of {a, b}. A is degenerate if 0 = 1. Otherwise A
is nondegenerate.

One useful example is the algebra of open subsets of a topological space. If X is a
topological space, then define AX =df 〈O(X), ∩, ∪,�X , ∼X , ∅, X〉. It is easy to check
that this is a Heyting algebra.

Another useful example of a Heyting algebra is the Lindenbaum algebra for H2
F. Say

that any two formulas A and B are H2
F-equivalent iff (A ↔ B) ∈ H2

F. Write |A| for
the equivalence class determined by the formula A ∈ Form, and let A∗ be the set of
equivalence classes. We turn A∗ into a Heyting algebra by defining �∗, �∗, ⇒∗, −∗, 0∗,
and 1∗ formula-wise as follows:

|A| �∗ |B| = |A & B|
|A| �∗ |B| = |A ∨ B|

|A| ⇒∗ |B| = |A → B|
−∗|A| = |∼A|

0∗ = |∼(p → p)|
1∗ = |p → p|.

It is routine to check that each of these is well-defined, and that 〈A∗, �∗, �∗, ⇒∗, −∗, 0∗, 1∗〉
is indeed a Heyting algebra. Let ≤∗ be the partial order defined as above: |A| ≤∗ |B| iff
|A| �∗ |B| = |B|.

Just as in the modal case, we have |∃p A| = lub(J(A, p)) and |∀p A| = glb(J(A, p)),
where J(A, p) =df {ιB

p (A) : B ∈ F}. In general, if 〈A, �, �, ⇒, −, 0, 1〉 is an Heyting
algebra, then a join is a subset of A that has a least upper bound, and a meet is a subset of
A that has a greatest lower bound. Thus J(A, p) is both a join and a meet in A∗.

If 〈A, �, �, ⇒, −, 0, 1〉 and 〈A′, �′, �′, ⇒′, −′, 0′, 1′〉 are Heyting algebras and h :
A → A′, then h is a homomorphism iff, for every a, b ∈ A, we have h(a � b) =
h(a) �′ h(b), h(a � b) = h(a) �′ h(b), h(a ⇒ b) = h(a) ⇒′ h(b), h(−a) = −′h(a),
h(0) = 0′, and h(1) = 1′. If h is a one-one homomorphism, then h is an embedding.

Suppose that h is an embedding of 〈A, �, �, ⇒, −, 0, 1〉 in AX = 〈O(X), ∩, ∪, �X ,
∼X , ∅, X〉 for some topological space X . Also suppose that J ⊆ P(A) is a set of joins.
We say that h is a J -embedding iff for every J ∈ J and every meet K ⊆ A, we have

• h(lub(J)) = ⋃{h(a) : a ∈ J} and
• h(glb(K)) = IntX (

⋂{h(a) : a ∈ K}).
The following lemma follows immediately from [11], Chapter IV, Proposition 9.2, on

page 140:

LEMMA 3.1. Suppose that A = 〈A, �, �, ⇒, −, 0, 1〉 is a nondegenerate Heyting
algebra, and that J is a countable sets of joins in A. Then there is a topological space
X and a J -embedding h : A → AX .

Given Lemma 3.1, the proof of completeness proceeds as in the modal case. Let A∗
be the Lindenbaum algebra for H2

F. Let J = {J(A, p) : A ∈ Form & p ∈ PV},
which is a countable set of joins. By Lemma 3.1, there is a topological space X and a
J -embedding h : A∗ → AX . Consider the structure S∗ = 〈X, D〉, where D is the image
of the set {|A| : A ∈ F} under h. For any ϕ : PV → Form, let V ϕ be the following



516 PHILIP KREMER

valuation: V ϕ(p) = h(|ϕ(p)|). As in the modal case, we can show the following, for every
formula A;

for every ϕ : PV → Form, V ϕ
int(A) = h(|ϕ(A)|). (∗)

And given (∗), we can prove completeness just as in the modal case.

§4. The Barcan and constant-domain schemes. Consider the following two axiom
schemes, the Barcan scheme in the language L� and the constant-domain scheme in L:

B ∀p�A → �∀p A
C ∀p(A ∨ B) → (A ∨ ∀pB) (p is not free in A).

And consider any F ⊆ Form� [F ⊆ Form], suitable or not. Let S42
FB [H2

FC] be the
smallest set of formulas containing every theorem of S42

F [H2
F], every instance of B [C],

and closed under modus ponens, generalization and, in the modal case, necessitation.
Theorems 4.1 and 4.2, below, are from the 1970s: they are completeness results for

certain of the S42
FB and H2

FC, for the Kripke semantics. Theorems 4.3 and 4.4, below, are
analogous results for the topological semantics. As we shall see, the topological results are
immediate corollaries to the Kripke results.

Say that a Kripke frame is an ordered pair K = 〈W, R〉, where W is a nonempty set and
R is a reflexive and transitive relation on W . We define a set U(K ) ⊆ P(W ), of up-sets
of K = 〈W, R〉 as follows: P ∈ U(K ) iff P ⊆ W and ∀w ∈ P , ∀w′ ∈ W , if wRw′
then w′ ∈ P . Take a (constant-domain) Kripke structure to be an ordered triple 〈W, R, D〉
where 〈W, R〉 is a Kripke frame and D ⊆ P(W ). If K = 〈W, R〉, then the Kripke structure
〈W, R, D〉 is intuitionistic iff D ⊆ U(K ). Given a Kripke structure 〈W, R, D〉, a valuation
on 〈W, R, D〉 is a function V : PV → D. A Kripke model is an ordered quartuple M =
〈W, R, D, V 〉, where 〈W, R, D〉 is a Kripke structure and V is a valuation on 〈W, R, D〉.
A Kripke model 〈W, R, D, V 〉 is intuitionistic iff 〈W, R, D〉 is intuitionistic.

As in the topological semantics, given a Kripke structure 〈W, R, D〉, we can extend
every valuation V to two functions Vmod : Form� → P(W ), which gives the modal value
of each formula in Form�; and Vint : Form → U(K ), which gives the intuitionistic value
of each formula in Form. The clauses for &, ∨, →, ∼, and � are as in standard modal and
intuitionistic logic and the clauses for ∀ and ∃ in the modal and intuitionistic case are as
follows (with the subscript ‘mod’ or ‘int’ suppressed):

V (∀p A) =
⋂

P∈D V [P/p]A
V (∃p A) =

⋃
P∈D V [P/p]A.

The definitions of soundness and completeness are analogous to the topological case. Ditto
for the definition of when a Kripke structure [intuitionistic Kripke structure] is modally
[intuitionistically] closed under a set F of formulas. The 1970s results for Kripke semantics
are as follows:5

THEOREM 4.1 (Fine [1], 1970). If F = F�� �∀�∃ or Form�, then S42
FB is sound and complete

for the class of constant-domain Kripke structures that are closed under F.

5 The axiomatizations of S42
FB and H2

FC in the cited literature are a bit different from, but equivalent
to, ours.
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THEOREM 4.2 (Gabbay [2], 1974, generalized in Sobolev [12], 1977). If PV ⊆ F, then
H2

FC is sound and complete for the class of intuitionistic constant-domain Kripke structures
that are closed under F.

The analogous topological results follow from the fact that we can treat any Kripke
frame as a topological space. More precisely, suppose that K = 〈W, R〉 is a Kripke frame.
Then we get a topological space if we start with the underlying set W and take the open sets
to be the up-sets.6 Moreover suppose that K = 〈W, R〉 is a Kripke frame, that 〈W, R, D〉
is a constant-domain Kripke structure, and that 〈W, R, D, V 〉 is a constant-domain Kripke
model. Consider the Alexandroff space X whose underlying set is W and whose open sets
are the up-sets in K . Note that 〈X, D〉 is a topological structure (and is intuitionistic if
〈W, R, D〉 is intuitionistic) and that 〈X, D, V 〉 is a topological model. Moreover, if we
calculate the functions Vmod and Vint using the topological semantics, then we get the same
values as we would get using the Kripke semantics. Thus, the following results follow
immediately from Theorems 4.1 and 4.2, above.

THEOREM 4.3. If F = F�� �∀�∃ or Form�, then S42
FB is sound and complete for the class of

Alexandroff topological structures that are closed under F.

THEOREM 4.4. If PV ⊆ F, then H2
FC is sound and complete for the class of Alexandroff

topological structures that are closed under F.

§5. Appendix. On page 511, we promised an Appendix giving intrinsic conditions on
a topological structure equivalent to that structure being closed under Form�. By “intrinsic
conditions”, we mean conditions that do not mention formulas.

Consider any topological structure 〈X, D〉. We will consider n-place functions on D,
where n ∈ N, including n = 0: the zero-place functions on D will simply be members of
D. More specifically, we will define a family of finite-place functions on D, which we will
call the formula-like functions. Then we will observe that 〈X, D〉 is closed under Form�

iff D is closed under every formula-like function.
Given any m, n ∈ N with m < n, and n-place functions f and g on D, we define new

finite-place functions notn(f), andn(f, g), orn(f, g), arrown(f, g), boxn(f, g), allmn (f), and
somem

n (f), on D as follows:

notn(f)(P1, . . . , Pn) = X − f(P1, . . . , Pn)

andn(f, g)(P1, . . . , Pn) = f(P1, . . . , Pn) ∩ g(P1, . . . , Pn)

orn(f, g)(P1, . . . , Pn) = f(P1, . . . , Pn) ∪ g(P1, . . . , Pn)

arrown(f, g)(P1, . . . , Pn) = (X − f(P1, . . . , Pn)) ∪ g(P1, . . . , Pn)

boxn(f)(P1, . . . , Pn) = I nt (f(P1, . . . , Pn))

allmn (f)(P1, . . . , Pn−1) =
⋂

P∈D

f(P1, . . . , Pm−1, P, Pm+1, . . . , Pn−1)

somem
n (f)(P1, . . . , Pn−1) =

⋃

P∈D

f(P1, . . . , Pm−1, P, Pm+1, . . . , Pn−1).

6 Incidentally, the resulting space is an Alexandroff space, i.e., arbitrary intersections of open sets
are open.
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Given any n ≥ 1, any m ≤ n, we define an n-place projection function projmn on D:

projmn (P1, . . . , Pn) = Pm .

Finally, the family of formula-like functions on D is the smallest set of functions that
contains all of the projection functions and that is closed under all of the notn , andn , orn ,
arrown , boxn , allmn , and somem

n . Observe that 〈X, D〉 is closed under Form� iff D is
closed under every formula-like function.
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