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Abstract

Dynamic topological logic provides a context for studying the confluence of the topological
semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4
is based on topological spaces rather than Kripke frames. In this semantics,� is interpreted as
topological interior. Thus S4 can be understood as the logic of topological spaces, and� can be
understood as a topological modality. Topological dynamics studies the asymptotic properties of
continuous maps on topological spaces. Let adynamic topological systembe a topological spaceX
together with a continuous functionf . f can be thought of in temporal terms, moving the points
of the topological space from one moment to the next.Dynamic topological logicsare the logics
of dynamic topological systems, just as S4 is the logic of topological spaces. Dynamic topological
logics are defined for a trimodal language with an S4-ish topological modality� (interior), and two
temporal modalities,© (next) and∗ (henceforth), both interpreted using the continuous function
f . In particular,© expressesf ’s action onX from one moment to the next, and∗ expresses the
asymptotic behaviour off .
© 2004 Elsevier B.V. All rights reserved.
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Dynamic Topological Logic (DTL) provides a context for studying the confluence of
three research areas: the topological semantics for S4, topological dynamics, and temporal
logic.1
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In the topological semantics for S4, amodelis a topological spaceX together with a
valuation functionV assigning to each propositional variable a subset ofX. Conjunction
is interpreted as intersection, disjunction as union, and negation as complementation. If we
interpret the necessity connective,�, as topological interior, the resulting modal logic is
S4. Thus we can think of S4 as a topological logic, or a logic of topological spaces.2

Topological dynamicsstudies the asymptotic properties of continuous maps on
topological spaces ([28, p. 118]). Let adynamic topological systembe an ordered pair
〈X, f 〉 whereX is a topological space andf is a continuous function onX.3 We can think
of the function f as moving the points inX in each discrete unit of time:x gets moved to
f x and then tof f x and so on. It is natural to extend S4—the logic of (static) topological
spaces—to a logic of dynamic topological systems, by adding temporal modalities suited
to formalizing the action off on X. In particular, we want to formalize both the transition
from one discrete moment to next, asf acts, moment by moment, on the points inX; and
the asymptotic behaviour of the functionf .

We turn toω-time temporal logic with two future-looking modalities:next, ©, and
henceforth, ∗. Suppose that we ignore topological issues and represent discrete moments
as natural numbers. We can take aninterpretationto be an assignment of a truth value
to each propositional variable at each moment. The Boolean connectives are given their
standard interpretations. As for the modalities, the formula©A is true at the momentm
iff A is true at the next momentm + 1; and the formula∗A is true at the momentm iff
A is true at the momentn, for eachn ≥ m. Note that∗A is thus equivalent to the infinite
conjunctionA & ©A & ©2A & ©3A.... We follow [23] in defining the logic W0 to be the
set of sentences true at every moment on every interpretation.4 W0 can be axiomatized by
the classical tautologies; S4 axioms for∗; (©(A∨ B) ≡ (©A∨©B)); (©¬A ≡ ¬©A);
(©∗A ≡ ∗©A); (∗A ⊃ ©A); the induction axiom(A & ∗(A ⊃ ©A) ⊃ ∗A); and the
rules of modus ponens, and necessitation for∗.

In this paper, we combine the topological modality and the two temporal modalities, to
define trimodaldynamical topological logics: logics of dynamic topological systems. Let
a dynamic topological modelbe an ordered triple〈X, f, V 〉, where〈X, f 〉 is a dynamic
topological system andV is a valuation function assigning to each propositional variable
a subset ofX. If we think of the subsets ofX as thepropositions, then, as in the static
topological semantics,�P = Int(P), for propositionsP. We interpret the temporal
modalities© and∗ using the functionf . Suppose that, at momentm, the propositionP
is true at the pointf x, i.e. f x ∈ P. Then afterf has acted onx once,P will be true atx.
In other words, at the next momentm+ 1, the propositionP is true at the pointx. So at

2 The topological semantics pre-dates the more well-known Kripke semantics. An interpretation of S4 in the
topology ofR2 is given, with a soundness proof, in [25]. A general topological semantics is given, with soundness
and completeness proofs, in [16]. This work is extended in [17]. For a general and comprehensive discussion,
see [20]. See also [1] and [18] for new proofs that S4 is the logic of the closed unit interval.

3 One might put constraints onX, such as being compact or metrizable; and onf , such as being bijective,
surjective, open or a homeomorphism. Of particular interest to topological dynamicists are measure-preserving
functions on compact measure spaces, because of the phenomenon ofrecurrence. SeeSection 5, below.

4 Such a logic was first put forward in [26,27] and [19]. [21] credits Dana Scott, Hans Kamp, and Kit Fine with
unpublished axiomatizations and completeness proofs. The first published completeness proof occurs in [22]
(a Russian translation of [23], which did not appear in print until 1989). See also [15] and [8].
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momentm, the proposition©P is true atx. Thusx ∈ ©P iff f x ∈ P iff x ∈ f −1(P).
Thus our interpretation of thenextmodality:©P = f −1(P). As for∗, we understand∗P
as in the preceding paragraph as an infinite conjunction:P & ©P & ©2P & ©3P & ....
Thus∗P = ∩n≥0 f −n(P).

Our plan in this paper is as follows.Section 1: we work with a trimodal language, with
one topological modality (interior) and two temporal modalities (nextandhenceforth). We
give a precise definition ofdynamic topological models—includingdynamic Alexandrov
models, the dynamic topological analogues of Kripke models—and standard definitions of
validity with respect to a model, or a class of models. We give a semantic definition of the
dynamic topological logic generated by a classT of topological spaces and/or a classF
of continuous functions. We also give a precise definition of afragmentof a topological
logic. Sections 2–5: we consider various specific DTLs, presenting their properties and
axiomatizing some of their next-interior fragments.Section 6: we give conditions under
which the purely topological fragment of a DTL is simply S4, and the purely temporal
fragment is simply W0.Section 7: we give a sound and complete axiomatization of a DTL
in a trimodal fragment of the language in which the temporal modalities cannot occur in
the scope of a topological modality. (Nikolai Bjorner originally suggested considering this
fragment of the language.)

The current paper is part of a research programme whose first results were announced
in three conference abstracts, [11,12], and [13]. (These results are reproduced and proved
below.) An independent and closely related research programme saw its first results
published in [3], and has been further pursued in [6]. Reference [3] considers two
bimodal logics, S4F and S4C: S4C is the next-interior fragment of our basic trimodal
logic, generated by the class of all dynamic topological systems; and S4F is the next-
interior fragment of the weaker logic generated bytopological structures, i.e. ordered
pairs 〈X, f 〉 where X is a topological space andf is a total function,continuous or
not, on X. (Ourdynamic topological systemsare theircontinuoustopological structures.)
Reference [3] provides both S4F and S4C with Hilbert- and Gentzen-style axiomatizations,
cut elimination theorems, both topological and Kripke completeness theorems, and finite
model property theorems. We will comment further on [3] as we continue.

Reference [6] continues this work. The richest logic in [6] combines the topological
modality with the rich modalities ofPropositional Dynamic Logic(PDL), of which the
above temporal modalities are a special case. The language of standard PDL has both
atomic propositions and atomicactions. The atomic actions are combined to produce
composite actions of the formαβ, α + β, andα∗, whereα andβ are actions. With each
actionα we have a “necessity” modality [α] and a “possibility” modality〈α〉, where the
formula [α]A reads “actionα always makes it the case thatA” and the formula〈α〉A
reads “actionα sometimes makes it the case thatA”. The modality [α∗] is the result
of repeating [α] ω times, just as the temporal modality∗ is the result of repeating©
ω times. The language in [6] is interpreted via a rich notion of a dynamic topological
system: in [6], a topological system, is a topological spaceX together with a continuous
function fα for each atomic actionα. Reference [6] defines a Hilbert-style axiomatic
logic TPDL (Topological Propositional Dynamic Logic), which issound for the class
of all topological systems; and for the class of all topological systems whose underlying
topological space is an Alexandrov space (Alexandrov spaces are the topological duals of
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Kripke frames). Reference [6] also claims that TDPL iscompletefor each of these two
classes of topological systems, but this cannot be, since[α∗]�p ⊃ �[α∗]p is valid when
the underlying space is an Alexandrov space, but is not valid in general. (SeeSection 3for
a proof.) We will comment further on [6] as we continue.

As we were editing the current paper for publication, we received notice of a
proof, in [9], of the nonaxiomatizabilityof a significant range of DTLs: the DTL of
homeomorphisms, the DTL of homeomorphisms onRn (for any fixedn ≥ 1), the DTL of
homeomorphisms on Alexandrov spaces (see below), and the DTL of measure-preserving
homeomorphisms on the unit ball of dimensionn, wheren ≥ 2. Reference [9] leaves open
the axiomatizability problem of DTLs that are based on continuous functions in general,
rather than homeomorphism. We will comment further on [9] as we continue.

1. Basic definitions

We work with a trimodal languageL with a setPV of propositional variables; Boolean
connectives∨ and ¬; and three one-place modalities� (interior), © (next), and∗
(henceforth). We assume that &,⊃, and≡ are defined in terms of∨ and¬. We will
sometimes work with fragments ofL, but always assume that our fragment contains
the Boolean connectives. For example, the©� fragment ofL, denoted asL©� , is the
languageL without the∗ modality. We will be particularly interested in thetemporal-
over-topologicalfragment ofL, denoted asL©∗/� : in this fragment we have all three
modalities, but neither© nor∗ can occur in the scope of an occurrence of�. We usep, q,
r as metavariables overPV andA, B, C as metavariables over formulas.

Definition 1. A topological modelis an ordered pair,M = 〈X, V〉, where X is a
topological space andV : PV → P(X). For each formulaB in the languageL� , we
defineM(B), the subset assigned byM to B as follows:

M(p) = V(p),

M(A∨ B) = M(A) ∪ M(B),

M(¬B) = X − M(B), and

M(�B) = Int(M(B)).

We define standard validity relations:

M |= B iff M(B) = X.

X |= B iff M |= B for every modelM = 〈X, V 〉.
B is valid (|= B) iff X |= B for every topological spaceX.

Definition 2. A Kripke frameis an ordered pair〈W, R〉 whereW is a non-empty set and
R is a reflexive and transitive relation onW.

Definition 3. Given a Kripke frame〈W, R〉, a subsetS of W is openiff S is closed under
R: for everyx, y ∈ W, if x ∈ S and x Ry then y ∈ S. The family of open sets forms
a topology. Thus, for every Kripke frame〈W, R〉, we define a dual topological space by
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imposing that topology on the setW. Note that, in these spaces, the intersection of arbitrary
open sets is open: thus they areAlexandrovspaces, as defined presently.

Definition 4. An Alexandrov spaceis a topological space in which the intersection
of arbitrary open sets is open. Alexandrov spaces were first introduced by [2]; see
also [4].5

Definition 5. Given any topological spaceX, define the relationRX on X as follows:
x RX y iff x ∈ Cl{y}, the topological closure of{y}. RX is reflexive and transitive, so
〈X, RX〉 is a Kripke frame.

Theorem 6. If X is an Alexandrov space, then a subset Y of X is open in X iff Y is open
in the Kripke frame〈X, RX〉. Thus, if X is an Alexandrov space, then the topological space
that is the dual of the Kripke frame〈X, RX〉 is X itself.

Proof. Suppose thatX is an Alexandrov space andY ⊆ X. (⇒) Suppose thatY is open
in X. To see thatY is closed underRX, suppose thatx ∈ Y andx RX y. Thenx ∈ Cl{y},
so every open set containingx also containsy. Thusy ∈ Y. (⇐) Suppose thatY is closed
underRX. To show thatY is open in the topological spaceX, it suffices to show that the
setZ = X − Y is closed. And for this it suffices to show thatCl(Z) ⊆ Z. Suppose that
z ∈ Cl(Z) but thatz �∈ Z. Thenz ∈ Y. Let Oz = ∩{O : O ⊆ X and O is open and
z ∈ O}. Oz is open sinceX is an Alexandrov space. So sincez ∈ cl(Z) there is some
w ∈ Z ∩ Oz. Sow is in every open set containingz. Soz ∈ Cl{w}. Soz RXw. Sow ∈ Y
sinceY is closed underRX . But w ∈ Z = X − Y, a contradiction. �

Remark 7. Thus Kripke frames are, in effect, Alexandrov spaces, and vice versa.

Remark 8. If X is not an Alexandrov space, thenX need not be the topological space
dual to the Kripke frame〈X, RX〉. For example, consider the real lineR with the standard
topology. Note that the relationRR is simply the identity relation,{〈x, x〉 : x ∈ R}. So in
the Kripke frame〈R, RR〉, every subset ofR is open. So the topological space that is the
dual of〈R, RR〉 is not the topological space that we started with: the new topological space
is R with the discrete topology rather than the standard topology.

Definition 9. An Alexandrov modelis a topological modelM = 〈X, V〉 whereX is an
Alexandrov space. This is equivalent to the usual definition of aKripke model, given the
duality of Alexandrov spaces and Kripke frames.

Theorem 10 (McKinsey–Tarski–Kripke).Suppose that X is a dense-in-itself metric
space and A is a formula in the language L� . Then the following are equivalent:

(i) A ∈ S4.
(ii) |= A.

(iii) X |= A.

5 Alexandrov spaces are the D-topological spaces of [6]. The work in [6] motivated us to discuss Alexandrov
spaces.
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(iv) R |= A.
(v) Y |= A for every finite topological space Y .
(vi) Y |= A for every Alexandrov space Y .

Proof. The equivalence of (i)–(v) is due to [17]. For the completeness of S4 in the real
line, see the streamlined proofs of [1] and [18]. The equivalence of (i) and (vi) is due, in
effect, to [14]. �

Remark 11. Thus not only does the topological interpretation ofL� give a semantics
for S4, but also S4 is the topological logic of a host of particular topological spaces, for
example the real line,R; the closed unit interval,[0, 1]; and any other dense-in-itself metric
space. SoL� is expressively weak—unable, for example, to distinguish betweenR and
[0, 1] despite their topological dissimilarities.

Definition 12. A dynamic topological system(DTS) is an ordered pair,〈X, f 〉, whereX
is a topological space andf is a continuous function onX. (This terminology is adapted
from [5] and [7].) A dynamic topological model(DTM) is an ordered tripleM = 〈X, f, V 〉
where〈X, f 〉 is a DTS andV assigns a subset ofX to eachp ∈ PV. For each formulaB
we defineM(B), the subset assigned byM to B, by the clauses in Definition 1.1 plus the
following:

M(©B) = f −1(B); and

M(∗B) = ∩n≥0 f −n(B).

Definition 13. A dynamic Alexandrov systemis an ordered pair〈X, f 〉 where X is an
Alexandrov space andf is a continuous function onX. The continuity of f is equivalent
to its monotonicityin the following sense: ifx RX y then ( f x)RX( f y).6 An dynamic
Alexandrov modelis a DTM 〈X, f, V〉 whereX is an Alexandrov space.

Definition 14. Suppose thatM = 〈X, f, V 〉 is a DTM. We define standard validity
relations:

M |= B iff M(B) = X.

〈X, f 〉 |= B iff M |= B for every modelM = 〈X, f, V 〉.
X |= B iff 〈X, f 〉 |= B for every continuous functionf.

B is valid (|= B) iff X |= B for every topological spaceX.

Definition 15. Suppose thatF is a class of functions so that eachf ∈ F is a continuous
function on some topological space. Suppose thatT is a class of topological spaces. We
define three more validity relations:

T ,F |= B iff, for every f ∈ F and everyX ∈ T , if f is a continuous function on

X then〈X, f 〉 |= B.

6 The monotonicity condition characterizes thecontinuousKripke frames of [3].
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F |= B iff, for every topological spaceX and everyf ∈ F , if f is a continuous

function onX then〈X, f 〉 |= B.

T |= B iff X |= B for every topological spaceX ∈ T .

Here we assume that in specifying a particular continuous function, we specify both the
function itself as a set of ordered pairs, and the topological space on which we are taking
it to act.

We are now ready to define variousDynamic Topological Logics, or DTLs.

Definition 16. For any classT of topological spaces and any classF of continuous
functions, we define

DTLT ,F = {A : T ,F |= A}.
DTLT = {A : T |= A}.
DTLF = {A : F |= A}.

Given a particular DTL, we will also be interested in itsfragments.

Definition 17. If D is a dynamic topological logic, then thepurely topologicalfragment
of D is the fragment expressible in the languageL� , that is, the set of formulas inL�

belonging toD. The purely temporalfragment ofD is the fragment expressible in the
languageL©∗. Thenext-interiorfragment ofD is the fragment expressible in the language
L©� . We denote these logics asD� andD©∗ andD©� , respectively. Thetemporal-over-
topologicalfragment ofD is the fragment expressible in the languageL©∗/� . We denote
this logic asD©∗/� .

Our research plan is to consider the properties of various DTLs and their fragments,
particularly those determined by interesting classes of topological spaces or continuous
functions or both. The next four sections specify four DTLs: the DTL of all dynamic
topological systems, DTL0; the DTL of Alexandrov spaces, DTLA; the DTL of
homeomorphisms, DTLH; and the DTL of measure-preserving functions on the closed
unit interval, DTLM. The second of these in nonaxiomatizable ([9]), and the question of
the axiomatizability of the other three is still open. Below, we axiomatize some interesting
fragments. We also begin the process of investigating the expressive resources of the
trimodal languageL and its fragments by comparing various DTLs and their fragments.
Along these lines, we hope eventually to prove or disprove analogues to the McKinsey–
Tarski–KripkeTheorem 10, above.

2. Basic DTL

Our most basic DTL is the following:

DTL0 = {A : |= A}.
It is not known whether DTL0 is axiomatizable. In this section, we give [3]’s
axiomatization of its next-interior fragment, and inSection 7 we axiomatize its
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temporal-over-topological fragment. [3]’s logic S4C in the languageL©� is given by the
following axioms,

the classical tautologies,

S4 axioms for�,

(©(A∨ B) ≡ (©A∨©B)),

(©¬A ≡ ¬©A), and

(©�A ⊃ �©A) (the axiom of continuity);

and the rules of modus ponens, and necessitation for both© and�. We will use S4C
both for this axiomatization and for the set of all formulas derivable from the axioms by
the inference rules. As it turns out, this axiomatization is both sound and complete with
respect to the class of all dynamic topological models, as well as the class of all dynamic
Alexandrov models (seeDefinition 13). Soundness is easy to establish: in our terminology,

soundness amounts to the claim that S4C⊆ DTL©�
0 and S4C⊆ DTL©�

A . [3] prove

completeness with respect to both classes of models—in our terminology, DTL©�
0 ⊆ S4C

and DTL©�
A ⊆ S4C—as well as the finite model property. [6] gives a simpler proof of the

completeness result; we reproduce that proof here.
First we define some standard notions:A is a theoremiff A ∈ S4C.A is consistentiff

¬A �∈ S4C. Atheoryis a set of formulas in the languageL©� containing all the theorems
of S4C and closed under modus ponens. A theoryT is completeiff for every formula A
eitherA ∈ T or¬A ∈ T . A theoryT is consistentiff some formula is not inT . A setSof
formulas isconsistentiff some theoryT ⊇ S is consistent.

Theorem 18 ([3] and [6]). S4C = DTL©�
0 = DTL©�

A .

Proof. Given soundness and the obvious fact that DTL©�
0 ⊆ DTL©�

A , it suffices to
construct a canonical dynamic Alexandrov modelM (seeDefinition 13) such thatM |= A
iff A ∈ S4C, for every formulaA in the languageL©� . In fact, given soundness, it will
suffice to show that ifM |= A thenA ∈ S4C.

Define a Kripke frame〈X, R〉 and a functionf on X as follows:

X = {x : x is a complete consistent theory};
x Ry iff for every formulaA, if �A ∈ x thenA ∈ y; and

f x = {A : ©A ∈ x}.
Note thatR is reflexive since(�A ⊃ A) ∈ S4C and transitive since(�A ⊃ ��A) ∈

S4C. We can takeX to be an Alexandrov space, as inDefinition 2, by imposing the
following topology on it: a subsetY of X is open iff Y is closed underR: for every
x, y ∈ X, if x Ryandx ∈ Y theny ∈ Y.

Now we show thatf is continuous. It suffices to show thatf is monotonein the
following sense:x Ry ⇒ ( f x)R( f y). So suppose thatx Ry. To see that( f x)R( f y),
suppose�A ∈ f x. Then©�A ∈ x. So �©A ∈ x, since(©�A ⊃ �©A) ∈ S4C.
So©A ∈ y. So A ∈ f y, as desired.



P. Kremer, G. Mints / Annals of Pure and Applied Logic 131 (2005) 133–158 141

Thus〈X, f 〉 is a dynamic Alexandrov system. DefineV(p) = {x ∈ X : p ∈ x}. Then
M = 〈X, f, V 〉 is a dynamic Alexandrov model. By a standard induction on the complexity
of the formulaA, we havex ∈ M(A) iff A ∈ x, for everyx ∈ X.

To show that ifM |= A then A ∈ S4C, suppose thatA �∈ S4C. Then¬A is consistent.
By a standard argument, every consistent formula is a member of some complete consistent
theory. So¬A �∈ x, for somex ∈ X. Sox �∈ M(A). SoM �|= A, as desired. �

Theorem 18suggests the following conjecture:

Conjecture 19. DTL0 can be axiomatized, in the trimodal language, by combining the
axioms ofW0 and S4C, with the rules of modus ponens and necessitation for all three
modalities.

Theorem 18is partially analogous to the McKinsey–Tarski–KripkeTheorem 10for the
languageL©� : for every formulaA of L©� , we haveA ∈ S4C iff |= A iff Y |= A for
every Alexandrov spaceY. The next theorem, however, reveals a disanalogy: it is not the
case thatA ∈ S4C iff R |= A.

Theorem 20. DTL©�
0 � DTL©�

R
, andDTL0 � DTLR.

Proof. Clearly DTL©�
0 ⊆ DTL©�

R
, and DTL0 ⊆ DTLR. So it suffice to show that

DTL©�
R

�⊆ DTL©�
0 . Consider the following formulaA, wherep andq are propositional

variables:

(�©p ⊃ ©♦�p) ∨ (©q ⊃ �©q).

We will show thatA ∈ DTL©�
R

− DTL©�
0 .

We first show thatA �∈ DTL©�
0 . Let M = 〈X, f, V 〉, where

X = {0, 1, 2};
the open sets are∅, X, and{2};
f (2) = f (1) = 0 and f (0) = 1; and

V(p) = {0, 1}, andV(q) = {1}.
Note the following:

V(©p) = X; soV(�©p) = X.

V(�p) = ∅; soV(©♦�p) = ∅.
ThusV(�©p ⊃ ©♦�p) = ∅.

Meanwhile,V(©q) = {0}; soV(�©q) = ∅.

ThusV(©q ⊃ �©q) = {1, 2}.
ThusV(A) = {1, 2} �= X.

ThusM �|= A.



142 P. Kremer, G. Mints / Annals of Pure and Applied Logic 131 (2005) 133–158

We now show thatA ∈ DTL©�
R

. Suppose not. Then there is some dynamic topological
modelM ′ = 〈R, f ′, V ′〉 and somex ∈ R such thatx �∈ V ′(A). Thus,

(i) x ∈ V ′(�©p). So there is an open intervalI such thatx ∈ I ⊆ V ′(©p). So
f ′(x) ∈ f ′(I ) ⊆ V ′(p).

(ii) x �∈ V ′(©♦�p). So f ′(x) �∈ Cl(Int(V ′(p))).
(iii) x ∈ V ′(©q). So f ′(x) ∈ V(q).
(iv) x �∈ V ′(�©q). So there is somey ∈ I such thaty �∈ V ′(©q). Thus f ′(y) �∈ V ′(q).

Thus f ′(x) �= f ′(y). Thus f ′(I ) is not a singleton set.

Since f ′(I ) is not a singleton set and sinceI is an open interval,f ′(I ) is either an open
interval, a closed interval, or a semi-closed interval, i.e. an interval of the form[a, b) or
(a, b]. In any case,f ′(I ) ⊆ Cl(Int( f ′(I ))). And since from (i) we havef ′(I ) ⊆ V ′(p),
we also have

f ′(x) ∈ f ′(I ) ⊆ Cl(Int( f ′(I ))) ⊆ Cl(Int(V ′(p))).

But this contradicts (ii). �
Remark 21. Theorem 20 was discovered independently by [24], with a different
counterexample.

Conjecture 22. DTL©�
R

= S4C+ ((�©A ⊃ ©♦�A) ∨ (©B ⊃ �©B)).

3. The DTL of Alexandrov spaces

Of particular interest is the classA of dynamic Alexandrov models (seeDefinition 13),
since these are the models based on Alexandrov spaces, which are, in effect, Kripke frames
(seeRemark 7). The fact that DTL0 � DTLA follows from (∗) and (†), below:

(∗�p ⊃ �∗p) �∈ DTL0 (∗)

(∗�p ⊃ �∗p) ∈ DTLA. (†)

(†) follows from the fact that, in an Alexandrov space, the intersection of arbitrary open sets
is open. To see (∗), let M = 〈R, f, V 〉 where f (x) = 2x andV(p) = (−1, 1). Note that
M(�p) = (−1, 1), so f −n(M(�p)) = (−1/2n, 1/2n). ThusM(∗�p) = {0}. Similarly,
M(∗p) = {0}. SoM(�∗p) = ∅. SoM �|= (∗�p ⊃ �∗p).

By Theorem 18, above, DTL©�
A = DTL©�

0 = S4C. And byCorollary 44, below,

DTL©∗
A = DTL©∗

0 = W0. So any differences between DTLA and DTL0 should arise
from the interaction of∗ and�:

Conjecture 23. DTLA = DTL0 + (∗�p ⊃ �∗p).

Remark 24. We do not know whether DTLA is axiomatizable.

4. The DTL of homeomorphisms

Of particular interest is the classH of homeomorphisms (continuous bijections with
continuous inverses). Intuitively, we keep track oftime with f . Although our temporal
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modalities are forward-looking, it seems natural to keep track of time with functions that
can look in both directions (i.e. that are bijective) and that are continuous in both directions.
Despite the fact that our temporal modalities are forward-looking, restricting our attention
to the classH makes a difference that can be expressed in our trimodal propositional
language. In particular we have (∗) and (†), below:

(�©p ⊃ ©�p) �∈ DTL0. (∗)

(�©p ⊃ ©�p) ∈ DTLH. (†)

(†) follows from the fact thatInt( f −1(S)) ⊆ f −1(Int(S)) where S is a subset of a
topological spaceX on which f is a homeomorphism. To see (∗), let M = 〈X, f, V 〉 where
X = {0, 1} with open sets∅, {0}, and{0, 1}; and wheref (0) = f (1) = 1 andV(p) = {1}.
The function f is continuous and henceM is a DTM. Also note thatM(�©p) = {0, 1}
andM(©�p) = ∅, soM �|= (�©p ⊃ ©�p).7

As mentioned above, [9] presents a proof that DTLH is not axiomatizable. We do,
however, have an axiomatization of its next-interior fragment. Define the logic S4©
in the languageL©� by adding the following axiom to S4C, defined inSection 2,
above:

(�©A ⊃ ©�A).

It turns out that S4© = DTL©�
H . What is more,Theorem 25extends this to give an

analogue to the McKinsey–Tarski–KripkeTheorem 10:

Theorem 25. S4© = DTL©�
H = DTL©�

R,H = DTL©�
[0,1],H = DTL©�

A,H = DTL©�
O =

DTL©�
R,O = DTL©�

[0,1],O = DTL©�
A,O.

Proof.8 The claim that S4© ⊆ DTL©�
O is just a version of soundness, which is proved as

usual. Given this, the following inclusion relations are obvious:

S4© ⊆ DTL©�
O ⊆ DTL©�

H ⊆ DTL©�
R,H

S4© ⊆ DTL©�
O ⊆ DTL©�

R,O ⊆ DTL©�
R,H

S4© ⊆ DTL©�
O ⊆ DTL©�

H ⊆ DTL©�
[0,1],H

S4© ⊆ DTL©�
O ⊆ DTL©�

[0,1],O ⊆ DTL©�
[0,1],H

S4© ⊆ DTL©�
O ⊆ DTL©�

A,O ⊆ DTL©�
A,H.

7 [3] notes that the axiom scheme (�©A ⊃ ©� A) characterizes topological structures withopenfunctions,
i.e. functions that map open sets to open sets; and that this axiom scheme together with(©� A ⊃ �©A)

characterizes topological structures with continuousand open functions.Theorem 25, below, strengthens this,
by showing, in effect, that these two axiom schemes not only characterize the dynamic topological systems
whose functions are continuous and open, but also the dynamic topological systems whose functions are
homeomorphisms, i.e. continuous and open bijections.

8 Vladimir Rybakov helped us with this proof.
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So it suffices to show, for every formulaA in the languageL©� :

if [0, 1],H |= A thenR,H |= A,

if R,H |= A thenA ∈ S4©, and

if A,H |= A thenA ∈ S4© .

SeeTheorems 26, 33and34, respectively. �
Theorem 26. If [0, 1],H |= A thenR,H |= A.

Proof. Suppose thatR,H �|= A. Let M = 〈R, f, V 〉 be a model wheref is a
homeomorphism onR and whereM �|= A. Since f is a homeomorphism onR, f is either
strictly increasing or strictly decreasing. (In fact, as we show in the proof ofTheorem 33,
we can takef to be f (x) = x+1. But we will continue with the more general case for now,
since we have not yet shownTheorem 33.) Choose some strictly increasing continuous
one–one functionh from R onto the open interval(0, 1). Define f ′ on [0, 1] as follows:

f ′(x) = h f h−1(x) if 0 < x < 1;
f ′(x) = x if f is strictly increasing and eitherx = 0 or x = 1;
f ′(x) = 1− x if f is strictly decreasing and eitherx = 0 or x = 1.

And defineV ′(p) = {x ∈ (0, 1) : h−1(x) ∈ V(p)}.
f ′ is one–one and onto.f ′ is also continuous. For iff is strictly increasing

then limx→0 f ′(x) = 0 and limx→1 f ′(x) = 1; and if f is strictly decreasing then
limx→0 f ′(x) = 1 andlimx→1 f ′(x) = 0. SoM ′ = 〈[0, 1], f ′, V ′〉 is a dynamic topological
model.

Notice that(0, 1) ∩ M ′(B) = {x ∈ (0, 1) : h−1(x) ∈ M(B)}, for every formulaB.
The proof of this is a routine induction on formulas. SoM ′(A) �= [0, 1]. For otherwise we
would haveM(A) = R, which is false. So[0, 1],H �|= A, as desired. �

Before we proveTheorems 33and34, we give some definitions and lemmas.

Definition 27. Given a formulaB, let g(B) be the result of pushing all the occurrences of
© to the atomic formulas. For example,g(©(©�(p ∨ ©q) ∨ ©¬r )) = (�(©©p ∨
©©©q) ∨ ¬©©r ). To be more precise, defineg(B) inductively as follows:

g(©nB) = ©nB, if B ∈ PV,

g(©n¬B) = ¬g(©nB),

g(©n(B ∨ C)) = g(©nB) ∨ g(©nC), and

g(©n�B) = �g(©nB).

Definition 28. A near-atomis a formula of the form©n p wherep ∈ PV.

Definition 29. A formula is simple iff it is built up from near-atoms using the Boolean
connectives and�. Simple formulas are the formulas in the range ofg.

Convention 30. We will take S4 to be formulated by its standard axioms and rules,
for a language whose formulas are just the simple formulas, treating the near-atoms as
indivisible atomic formulas. We also slightly restate the definition oftopological model,
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Definition 1: A topological model now becomes an ordered pair,M = 〈X, V〉, whereX
is a topological space andV assigns a subset ofX to each near-atom©n p rather than
to each propositional variablep. Mimicking Definition 1, for eachsimpleformula B, we
defineM(B), the subset assigned byM to B as follows:

M(©np) = V(©np),

M(A∨ B) = M(A) ∪ M(B),

M(¬B) = X − M(B), and

M(�B) = Int(M(B)).

As in Definition 1, we define standard validity relations:

M |= B iff M(B) = X.

X |= B iff M |= B for every modelM = 〈X, V〉.
B is valid (|= B) iff X |= B for every topological spaceX.

The McKinsey–Tarski–KripkeTheorem 10still holds: Suppose thatX is a dense-in-
itself metric space andA is a simple formula. Then the following are equivalent: (i)A ∈ S4;
(ii) |= A; (iii) X |= A; (iv) R |= A; (v) Y |= A for every finite topological spaceY; and
(vi) Y |= A for every Alexandrov spaceY.

Lemma 31. B ∈ S4© iff g(B) ∈ S4 iff g(B) ∈ S4©.

Proof. By a standard induction on the proof ofB in S4©, we can show that ifB ∈ S4©
theng(B) ∈ S4. It is obvious that ifg(B) ∈ S4 theng(B) ∈ S4©. Finally, if g(B) ∈ S4©
thenB ∈ S4©, since(B ≡ g(B)) ∈ S4©. �

Lemma 32. For every formula B, g(B) ∈ S4 iff (0, 1) |= g(B) where(0, 1) is the open
unit interval.

Proof. This follows from the McKinsey–Tarski–KripkeTheorem 10andLemma 31. �

Theorem 33. If R,H |= A then A∈ S4©.

Proof. Suppose thatA �∈ S4©. Then, byLemmas 31and32, for some topological model
M = 〈(0, 1), V〉, we haveM �|= g(A). Let M ′ be the dynamic topological model
〈R, f, V ′〉, where f x = x + 1 and V ′(p) = {x ∈ R: for some natural numberm,
x − m ∈ V(©m p)}. f is a homeomorphism. We will be done if we can show that
M ′ �|= A. For this, it suffices to show thatM ′ �|= g(A), because ofLemma 31and because
of soundness. And for this it suffices to show that for every simple formulaB, we have
M(B) = (0, 1) ∩ M ′(B). We show this by induction on the construction ofB.

Base case:B is a near-atom, say©n p. Note the following:

x ∈ (0, 1) ∩ M ′(B)

⇒ x ∈ (0, 1) andx ∈ M ′(©np)

⇒ x ∈ (0, 1) andx + n ∈ M ′(p)

⇒ x ∈ (0, 1) andx + n ∈ V ′(p)]
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⇒ x ∈ (0, 1) and, for somem, x + n− m ∈ V(©m p)

⇒ m = n, sincex ∈ (0, 1) andx + n− m ∈ V(©m p) ⊆ (0, 1)

⇒ x ∈ (0, 1) andx ∈ V(©np)

⇒ x ∈ V(B)

⇒ x ∈ M(B).

Conversely,

x ∈ M(B)

⇒ x ∈ V(B)

⇒ x ∈ (0, 1) andx ∈ V(©np)

⇒ x ∈ (0, 1) and, for somem, x + n− m ∈ V(©m p)

⇒ x ∈ (0, 1) andx + n ∈ V ′(p)

⇒ x ∈ (0, 1) andx + n ∈ M ′(p)

⇒ x ∈ (0, 1) andx ∈ M ′(©np)

⇒ x ∈ (0, 1) ∩ M ′(B).

Inductive stepB = C ∨ D. M(C ∨ D) = M(C) ∪ M(D) = ((0, 1) ∩ M ′(C)) ∪ ((0, 1) ∩
M ′(D)) = (0, 1) ∩ M ′(C ∨ D).

Inductive stepB = ¬C. M(¬C) = (0, 1) − M(C) = (0, 1) − ((0, 1) ∩ M ′(C)) =
(0, 1)− (R ∩ M ′(C)) = (0, 1) ∩ M ′(¬C).

Inductive stepB = �C. M(�C) = Int(M(C)) = Int((0, 1) ∩ M ′(C)) = Int((0, 1)) ∩
Int(M ′(C)) = (0, 1) ∩ M ′(�C). �
Theorem 34. If A,H |= A then A∈ S4©.

Proof. Suppose thatA �∈ S4©. Then g(A) �∈ S4. So there is a Kripke modelM =
〈W, R, V 〉 (where〈W, R〉 is a Kripke frame) such thatM �|= g(A). Now define a dynamic
topological modelM ′ = 〈X, f, V ′〉 as follows:

X = {〈w, n〉 : w ∈ W andn is an integer},
〈w, n〉R′〈w′, m〉 iff wRw′ andn = m,

Y ⊆ X is openiff Y is closed under the relationR′,
f 〈w, n〉 = 〈w, n + 1〉, and

〈w, n〉 ∈ V ′(p) iff w ∈ V(©np).

X is a topological space, if we take the topology ofopen sets as defined directly
above. In fact,X is an Alexandrov space (seeDefinition 4). f is both continuous and
open since〈w, n〉R′〈w′, m〉 iff f 〈w, n〉R′ f 〈w′, m〉. And f is clearly one–one and onto.
So M ′ = 〈X, f, V ′〉 is a dynamic Alexandrov model, withf a homeomorphism. We will
be done if we can show thatM ′ �|= A. For this, it suffices to show thatM ′ �|= g(A), because
of Lemma 31and because of soundness. And for this it suffices to show that for every
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simple formulaB and everyw ∈ W we havew ∈ M(B) iff 〈w, 0〉 ∈ M ′(B). We show this
by induction on the construction ofB.

Base case:B is a near-atom, say©n p. Then 〈w, 0〉 ∈ M ′(B) iff 〈w, 0〉 ∈ M ′(©np)

iff f n〈w, 0〉 ∈ M ′(p) iff 〈w, n〉 ∈ M ′(p) iff 〈w, n〉 ∈ V ′(p) iff w ∈ V(©np) iff
w ∈ M(©np) iff w ∈ M(B).

Inductive stepB = C ∨ D. 〈w, 0〉 ∈ M ′(C ∨ D) iff 〈w, 0〉 ∈ M ′(C) or 〈w, 0〉 ∈ M ′(D)

iff w ∈ M(C) or w ∈ M(D) iff w ∈ M(C ∨ D).

Inductive stepB = ¬C. 〈w, 0〉 ∈ M ′(¬C) iff 〈w, 0〉 �∈ M ′(C) iff w �∈ M(C) iff
w ∈ M(¬C).

Inductive stepB = �C. 〈w, 0〉 ∈ M ′(�C) iff (∀w′)(∀n)(if 〈w, 0〉R′〈w′, n〉 then〈w′, n〉 ∈
M ′(C)) iff (∀w′)(if (wRw′ then〈w′, 0〉 ∈ M ′(C)) iff (∀w′)(if wRw′ thenw′ ∈ M(C)) iff
w ∈ M(�C). �

GivenTheorem 25, one might conjecture that

DTLH = DTLR,H = DTL[0,1],H = DTLA,H =
DTLO = DTLR,O = DTL[0,1],O = DTLA,O.

But [24] defines a formulaA ∈ DTLR,H − DTLH. Moreover, the example at the
beginning ofSection 3shows that

(∗�p ⊃ �∗p) ∈ DTLA,H − DTLH.

Nonetheless, we propose the following:

Conjecture 35. (i) DTLH = DTLO. (ii) DTLR,H = DTL[0,1],H = DTLR,O =
DTL[0,1],O. (iii) DTL A,H = DTLA,O.

5. Recurrence and the DTL of measure-preserving continuous functions on the closed
unit interval

A central motivation for this study is the phenomenon of recurrence in measure
theory and topological dynamics, and the possibility of expressing this phenomenon in
the framework of propositional logic. In fact, wecan express recurrence in our trimodal
language.

Suppose thatf is a function on a setX. Say that a pointx ∈ S is recurrent(for S) if
f n(x) ∈ S for somen > 1. Letµ be the Lebesgue measure defined on (some) subsets of
the closed unit interval,[0, 1]. If µ(S) exists forS ⊆ [0, 1], we say thatS is measurable.
We say that a functionf on [0, 1] is measure-preservingiff µ( f −1(S)) = µ(S) for every
measurableS ⊆ [0, 1]. Consider the following (non-essential) extension of the Poincar´e
recurrence theorem on[0, 1] (see [28]):

Theorem 36. If f is a measure-preserving continuous function on[0, 1] then the set of
recurrent points of a non-empty open set S⊆ [0, 1] is dense in S.
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In order to express recurrence in our trimodal language, define the possibility connective
♦ as¬�¬, and the possibility connective # as¬∗¬. These represent topological closure
and “some time in the future”, respectively. Letrec be the formula,

(�p ⊃ ♦©#�p).

Let 〈X, f 〉 be any dynamic topological system. Note that〈X, f 〉 |= rec iff

∀ openO ⊆ X : O ⊆ Cl{x : there is ann ≥ 1 such thatf nx ∈ O}. (∗)

By Theorem 36, (∗) is true whenX = [0, 1] and f is any measure-preserving continuous
function on [0, 1]. Thus, byTheorem 36, 〈[0, 1], f 〉 |= rec when f is any measure-
preserving continuous function on[0, 1]. So, in some sense,recexpresses the phenomenon
of recurrence.

Thus the classM of measure-preserving functions on the[0, 1] is of interest. As we
have just shown,

(�A ⊃ ♦©#�A) ∈ DTLM.

Conjecture 37. DTLM = DTL[0,1] + (�A ⊃ ♦©#�A).

6. Purely topological and purely temporal fragments of DTLs

In work on DTL, we foresee that most of the action will be in the interaction between the
topological modality (�) and the temporal modalities (© and∗). As it turns out, temporal
differences often do not affect purely topological issues (seeTheorem 38). Furthermore,
the purely topological fragments and the purely temporal fragments of DTLs will often
coincide with previously studied logics (seeTheorems 39and43).

Theorem 38. Suppose thatT is a class of topological spaces andF is a class of
continuous functions. Also suppose that for every X∈ T , there is an f ∈ F with
dom( f ) = X. ThenDTL�

T ,F = DTL�
T . Thus temporal differences do not affect purely

topological issues.

Theorem 39. Suppose thatT is a class of topological spaces and that either

(i) every topological space is inT ,
(ii) R ∈ T ,
(iii) some dense-in-itself metric space is inT ,
(iv) every finite topological space is inT , or
(v) every Alexandrov space is inT .

ThenDTL�
T = S4.

Proof. This follows from the McKinsey–Tarski–KripkeTheorem 10. �

Corollary 40. DTL�
0 = DTL�

H = DTL�
M = DTL�

A = DTL�
R
= DTL�[0,1] = DTL�

R,H =
DTL�

A,H =DTL�
fin = S4, where fin is the class of finite topological spaces.(Such examples

are easily multiplied.)
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Definition 41. Suppose thatf is a continuous function and thatX = dom( f ). For
m, n ∈ ω, f has them–n-propertyiff there is somex ∈ X such thatx, f x, . . . , f m+nx
are all distinct andf m+n+1x = f mx. f has theω-propertyiff there is somex ∈ X such
thatx, f x, f 2x, . . . are all distinct. Suppose thatF is a class of continuous functions.F is
rich iff either (i) F contains some function with theω-property or (ii) for eachm, n ∈ ω,
F contains some function with them–n-property.

Remark 42. The following classes of functions are rich:

(i) the classH of homeomorphisms;
(ii) the classO of open continuous functions (a function isopeniff the image of every

open set is open);
(iii) the classM of measure-preserving continuous functions on[0, 1]; and
(iv) the class of functions on finite topological spaces with the discrete topology.

For (i) and (ii) it suffices to find a homeomorphism onR with theω-property, for example
f x = x + 1. For (iii), the following function is continuous, measure-preserving, and has
theω-property: f (x) = 1− 2x for x ∈ [0, 1

2] and f (x) = 2x − 1 for x ∈ [1
2, 1]. To see

that f is measure-preserving consider anyS ⊆ [0, 1]. Note thatµ( f −1(S) ∩ [0, 1
2]) =

µ( f −1(S) ∩ [1
2, 1]) = 1

2µ(S), soµ( f −1(S)) = µ(S). To see thatf has theω-property,

let x = √
2 − 1. Note that f n(x) is of the formz ± 2n

√
2, wherez is an integer, so

x, f x, f 2x, ... are all distinct. For (iv), we fixm andn and define a function with them–
n–property in the given class. LetX be the set{0, 1, 2, . . . , m+ n} and let f x = x + 1 if
x < m+ n and let f (m+ n) = m.

Theorem 43. Suppose thatF is a rich class of continuous functions. ThenDTL©∗
F = W0.

Proof. Recall the axiomatization of W0 given in the introduction. To show that W0⊆
DTL©∗

F , it suffices to show that this axiomatization is sound for DTL©∗
F . To show that

DTL©∗
F ⊆ W0, we consider two cases.

Case 1.F contains a function with theω-property. Suppose thatA �∈ W0 whereA is in the
languageL©∗. Then there is some infinite purely temporal model falsifyingA. To be more
precise, let aninfinite purely temporal modelbe a functionV : PV × ω → {0, 1}, where
PV is the set of propositional variables; where the natural numbers represent discrete
moments in time; and where 0 and 1 represent falsity and truth. Given an infinite purely
temporal modelV , we definen |= B, for eachn ∈ ω and each formulaB in the language
L©∗ as follows:n |= p iff V(p, n) = 1; n |= ¬B iff n �|= B; n |= (B ∨ C) iff n |= B
or n |= C; n |= ©B iff n + 1 |= B; andn |= ∗B iff m |= B for everym ≥ n. The
completeness theorem for W0 tells us that sinceA �∈ W0, there is some infinite purely
temporal modelV such that 0�|= A. Choose such aV .

SinceF contains a function with theω-property, we can choose a topological spaceX
and a functionf ∈ F and anx ∈ X, such that the pointsx, f x, f f x, f f f x, . . . are all
distinct. Choose a functionV ′ : PV → X such thatf kx ∈ V ′(p) iff V(p, k) = 1, for
everyk ∈ ω. And defineM = 〈X, T, V ′〉. By a standard induction on formulas, it can be
shown thatf kx ∈ M(B) iff k |= B for all formulasB in the languageL©∗ and allk ∈ ω.
Thusx �|= A since 0�|= A. So A �∈ DTL©∗

F , as desired.
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Case 2.F contains a function with them–n-property for everym, n ∈ ω. Suppose thatA �∈
W0 whereA is in the languageL©∗. Let afinite purely temporal modelbe an ordered triple
M = 〈Y, g, V 〉 whereY is a finite set;g is a function onY; andV : PV × Y → {0, 1}.
Given a finite purely temporal modelM = 〈Y, g, V 〉, we definey |= B, for eachy ∈ Y
and each formulaB in the languageL©∗ as follows:y |= p iff V(p, y) = 1; y |= ¬B
iff y �|= B; y |= (B ∨ C) iff y |= B or y |= C; y |= ©B iff g(y) |= B; andy |= ∗B iff
gn(y) |= B for everyn ≥ 0.

Reference [21] proves that W0 satisfies the finite frame property. So sinceA �∈ W0,
there is some finite purely temporal modelM = 〈Y, g, V 〉 and somey ∈ Y such that
y �|= A. SinceY is finite, we havegm+n+1(y) = gm(y), for somem, n ∈ ω with thegi (y)

distinct fori < m+ n. Choose such anm andn.
Choose a functionf ∈ F with them–n-property and letX be the topological space on

which f acts. Choose anx ∈ X such thatx, f x, ..., f m+nx are all distinct, and such that
f m+n+1x = f mx. DefineV ′ : PV → P(X) as follows:

V ′(p) = { f kx : V(p, gky) = 1}.
And let M ′ = 〈X, f, V ′〉. Claim: f kx ∈ M ′(B) iff gky |= B for all k ∈ ω and formulasB
in the languageL©∗. We prove this by induction on formulas.

Base case: For propositional variablesp: f kx ∈ M ′(p) iff f kx ∈ V ′(p) iff V(p, gky) = 1
iff gky |= p.

Inductive step¬, ∨: standard.

Inductive stepB = ©C: f kx ∈ M ′(©C) iff f k+1x ∈ M ′(C) iff gk+1y |= C (by IH) iff
gkx |= ©C.

Inductive stepB = ∗C: f kx ∈ M ′(∗C) iff (∀n ≥ k)( f nx ∈ M ′(C)) iff (∀n ≥ k)(gny |=
C) (by IH) iff gky |= ∗C.

Thusx �∈ M ′(A) sincey �|= A. So A �∈ DTL©∗
F , as desired. �

Corollary 44. DTL©∗
0 = DTL©∗

H = DTL©∗
M = DTL©∗

A = DTL©∗
R

= DTL©∗
[0,1] =

DTL©∗
R,H = DTL©∗

A,H = DTL©∗
fin = W0, where fin is the class of finite topological spaces.

(Such examples are easily multiplied.)

7. A temporal-over-topological fragment

In this section we axiomatize DTL©∗/�
0 , the temporal-over-topological fragment of

DTL0. Recall that

DTL©∗/�
0 =df {A ∈ DTL0 : A contains no©’s or ∗’s in the scope of�’s}.

For the remainder of this section, we build the scope constraint into the definition of well-
formed formulas.

Let the logic W0/S4 be the logic given by the following axiomatic system:
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0. Classical tautologies

1. S4 axioms for�, for formulasA andB in the languageL� :

1.1 �(A ⊃ B) ⊃ (�A ⊃ �B)

1.2 �A ⊃ A

1.3 �A ⊃ ��A

2. W0 axioms for© and∗:

2.1 ∗(A ⊃ B) ⊃ (∗A ⊃ ∗B)

2.2 ∗A ⊃ A

2.3 ∗A ⊃ ∗∗A

2.4 (©(A∨ B) ≡ (©A∨©B))

2.5 (©¬A ≡ ¬©A)

2.6 (©∗A ≡ ∗©A)

2.7 (∗A ⊃ ©A)

2.8 The induction axiom(A & ∗(A ⊃ ©A) ⊃ ∗A)

3. The rule of modus ponens.

4. The rule of necessitation for each modality: FromA infer ©A. From A infer ∗A.
From A infer �A, if A has no occurrences of© or ∗.

We will say thatA is atheoremiff A ∈ W0/S4 and thatA is consistentiff ¬A �∈ W0/S4.
A W0/S4-theoryis a set of formulas containing all the theorems of W0/S4 and closed under
modus ponens (and hence, under adjunction).A is an S4-theoremiff A has no occurrence
of © or ∗ and A ∈ S4. An S4-theoryis a set of formulas in the languageL� , containing
all the theorems of S4 and closed under modus ponens (and hence, under adjunction). A
W0/S4-theoryT is completeiff for every formulaA either A ∈ T or ¬A ∈ T . A W0/S4-
theoryT is consistentiff some formula is not inT . A set S of formulas isconsistentiff
some theoryT ⊇ S is consistent. A W0/S4-theoryT is ω-closediff, for any formula A,
we have the following: if©n A ∈ T for everyn ∈ ω then∗A ∈ T .

The main result of this section is

Theorem 45. W0/S4= DTL©∗/�
0 .

Proving soundness (W0/S4⊆ DTL©∗/�
0 ) is routine and left to the reader. Proving

completeness (DTL©∗/�
0 ⊆ W0/S4) is a bit tricky. We proceed as follows: we introduce

some notation and terminology; we state six useful lemmas, whose proofs we defer; we
state and prove completeness; and we provide the deferred proofs of the lemmas.

First some notation: #A is shorthand for¬∗¬A. Secondly, some terminology. A
necessitiveis a formula of the form�A. A quasi-necessitiveis a formula of the form
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©n1�A1 & . . . & ©nm�Am, ni ≥ 0. Thedegreeof a quasi-necessitive©n1�A1 &
. . . & ©nm�Am is min(n1, . . . , nm). Given a quasi-necessitiveA = ©n1�A1 & . . . &
©nm�Am, we define the quasi-necessitive↑A =df ©n1+1�A1 & . . . & ©nm+1�Am.
Given a quasi-necessitiveA = ©n1�A1 & . . . & ©nm�Am of degree≥ 1, we define the
quasi-necessitive↓A =df ©n1−1�A1 & . . . & ©nm−1�Am.

Our six useful lemmas areLemmas 46to 51as follows:

Lemma 46. Suppose that(A∨©B) ∈ W0/S4and that A contains no occurrences of©
or ∗. Then A∈ S4or B ∈ W0/S4.

Lemma 47. Suppose that(A ⊃ B) ∈ W0/S4and that B contains no occurrences of© or
∗ and that A is a quasi-necessitive. Then(A ⊃ �B) ∈ W0/S4.

Lemma 48. Suppose that©A ∈ W0/S4. Then A∈ W0/S4.

Lemma 49. If (A & #B) is consistent, then(A & ©nB) is consistent for some n∈ ω.

Lemma 50. If A is consistent then A∈ T for some consistent completeω-closedW0/S4-
theory T .

Lemma 51. (A ⊃ B) ∈ W0/S4iff for every consistent completeω-closedW0/S4-theory
T , if A ∈ T then B∈ T .

Using these lemmas, we can prove completeness.

Theorem 52. DTL©∗/�
0 ⊆ W0/S4.

Proof. It will suffice to define a canonical dynamic topological modelM = 〈X, f, V 〉
validating all and only the theorems of W0/S4. To defineM,

(i) let X be the set of complete consistentω-closed theories;
(ii) given a quasi-necessitiveA, let BA = {u ∈ X : A ∈ u};
(iii) impose the topology onX given by the basis setsBA, whereA is a quasi-necessitive;

theBA form a basis since they are closed under intersection:BA ∩ BC = B(A & C);
(iv) givenu ∈ X, let f u = {A : ©A ∈ u}; and
(v) let V(p) = {u ∈ X : p ∈ u}.

First we check thatM is indeed a dynamic topological model. We will check two things:
(1) f u ∈ X for eachu ∈ X; and (2) f is continuous. For (1), suppose thatu is a complete
consistentω-closed W0/S4-theory. To see thatf u is a theory, first note thatf u contains
every theorem: ifA is a theorem then so is©A; so©A ∈ u; so A ∈ f u. And furthermore
note thatf u is closed under modus ponens:

(A ⊃ B) ∈ f u andA ∈ f u

⇒ ©(A ⊃ B) ∈ u and©A ∈ u

⇒ (©A ⊃ ©B) ∈ u and©A ∈ u

⇒ ©B ∈ u

⇒ B ∈ f u.
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To see thatf u is complete, note that for any formulaA we have©A ∈ u or¬©A ∈ u;
so ©A ∈ u or ©¬A ∈ u; so A ∈ f u or ¬A ∈ f u. To see thatf u is consistent,
suppose not. Then for some formulaA ∈ f u, we have¬A ∈ W0/S4. But then©A ∈ u and
©¬A ∈ W0/S4, so©A ∈ u and¬©A ∈ W0/S4. This would makeu itself inconsistent.
To see thatf u is ω-closed, fix a formulaA and suppose that©n A ∈ f u for everyn. Then
©n+1A ∈ u for everyn. So∗©A ∈ u by theω-closure ofu. So©∗A ∈ u. So∗A ∈ f u.
So f u is anω-closed complete consistent theory. Thus (1) is proved:f u ∈ X for each
u ∈ X.

For (2), i.e. the continuity off , it suffices to note thatf −1(BA) = B↑A. SoM is indeed
a dynamic topological model.

We now prove that, for each formulaA and eachx ∈ X, we have :

x ∈ M(A) iff A ∈ x. (∗)

We proceed by induction.

Base case:A ∈ PV. Note:x ∈ M(A) iff x ∈ V(A) iff A ∈ x, by the definition ofV .

Inductive stepA = ¬B. Note:x ∈ M(A) iff x �∈ M(B) iff B �∈ x (by IH) iff A ∈ x, by the
completeness of the theoryx.

Inductive stepA = B ∨ C. Note: x ∈ M(A) iff x ∈ M(B) or x ∈ M(C) iff B ∈ x or
C ∈ x (by IH) iff A ∈ x. The (⇒) direction of this last ‘iff’ follows from the fact thatx is
a W0/S4-theory. The (⇐) direction follows from the completeness of the theoryx.

Inductive stepA = ©C. Note:x ∈ M(A) iff f x ∈ M(C) iff C ∈ f x (by IH) iff A ∈ x,
by the definition off .

Inductive stepA = ∗C. Note:x ∈ M(∗C) iff (∀n ∈ ω)( f nx ∈ M(C)) iff (∀n ∈ ω)(C ∈
f nx) (by IH) iff (∀n ∈ ω)(©nC ∈ x) (by the definition off ) iff ∗C ∈ x (by theω-closure
of x).

Inductive stepA = �C. We consider both directions of the biconditional separately. (⇒)
Suppose thatx ∈ M(�C) = Int(M(C)). Then for some basis setBD , whereD is a quasi-
necessitive, we havex ∈ BD ⊆ M(C). So D ∈ x. Moreover, for everyy ∈ X, if D ∈ y
theny ∈ M(C), in which caseC ∈ y, by IH. So(D ⊃ C) ∈ W0/S4, byLemma 51. So
(D ⊃ �C) ∈ W0/S4, byLemma 47. So�C ∈ x, as desired. (⇐) Suppose that�C ∈ x. It
suffices to show thatx ∈ B�C ⊆ M(C) in order to show thatx ∈ Int(M(C)) = M(�C).
x ∈ B�C is given by the definition ofB�C. For B�C ⊆ M(C), suppose thaty ∈ B�C.
Then�C ∈ y. SoC ∈ y as desired.

Having proved (∗), the last step in the Completeness proof is to note that, ifA �∈ W0/S4,
then, byLemma 50, for somey ∈ X we haveA �∈ y. So y �∈ M(A). SoM �|= A. So A �∈
DTL©∗/�. �

Now it remains to proveLemmas 46to 51.

Proof of Lemma 46. The proof is semantic. Let abirelational modelbe a quartuple
M = 〈W, S, R, V 〉 whereW is a non-empty set (of possible worlds);S andR are binary
relations onW; andV assigns to each possible world a complete consistent S4-theory in
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the languageL� . Given a birelational modelM = 〈W, S, R, V 〉, we define thevalidation
relation|= between worlds and formulas as follows:

w |= C iff C ∈ V(w), if C is in the languageL�;
w |= ¬C iff w �|= C;
w |= (C ∨ D) iff w |= C or w |= D;
w |= ©C iff for every w′ ∈ W, if wSw′ thenw′ |= C; and

w |= ∗C iff for every w′ ∈ W, if wRw′ thenw′ |= C.

Note that there is no conflict between the first clause and the second two clauses, since for
any complete consistent S4-theoryT and any formulasC andD in the languageL� , we
have both

¬C ∈ T iff C �∈ T, and

C ∨ D ∈ T iff C ∈ T or D ∈ T.

We now define the canonical birelational modelM = 〈W, S, R, V 〉 as follows:

W = {w : w is a complete consistent W0/S4-theory};
wSw′ iff for every C, if ©C ∈ w thenC ∈ w′;
wRw′ iff for every C, if ∗C ∈ w thenC ∈ w′; and

V(w) = {C : C ∈ w andC is in the languageL�}.
Note that, for anyw ∈ W and any formulaC, we haveC ∈ w iff w |= C. In particular,
every theorem of W0/S4 is true in every world in the canonical model.

To prove the main statement of the lemma, we will prove that(A∨©B) �∈ W0/S4 on
the following three assumptions:A contains no occurrences of© or ∗; A �∈ S4; andB �∈
W0/S4. Choosew0 ∈ W such thatB �∈ w0. And choose a complete consistent S4-theory
T such that¬A ∈ T ; this can be done sinceA �∈ S4. Now define a new birelational model
M ′ = 〈W′, S′, R′, V ′〉 as follows:

W′ = W ∪ {w1}, wherew1 is some new world not inW;
S′ = S∪ {〈w1, w0〉};
R′ = R∪ {〈w1, w1〉} ∪ {〈w1, w〉 : w0Rw};
V ′(w) = V(w), for each worldw ∈ W; and

V ′(w1) = T.

We will use |=′ for the validation relation in the birelational modelM ′. Note that for
every formulaC and everyw ∈ W, w |=′ C iff w |= C. In particular, ifC ∈ W0/S4 then
w |=′ C for everyw ∈ W. We also claim that ifC ∈ W0/S4 thenw1 |=′ C. This is easily
proved by induction on the length of proof in W0/S4. But note thatw1 �|=′ (A∨©B). So
(A∨©B) �∈ W0/S4, as desired.�
Proof of Lemma 47. If A is of degree 0, then the result follows from the necessitation
rule and the S4 axioms for�. Otherwise,A ≡ (C & D) ∈ W0/S4, whereC is a
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quasi-necessitive of degree≥ 1 and D is a quasi-necessitive of degree 0. Note that
(¬C ≡ ©¬↓C) ∈ W0/S4. Note thatD is in the languageL� and that(D ≡ �D) ∈ S4.

Since(A ⊃ B) ∈ W0/S4, we have((C & D) ⊃ B) ∈ W0/S4. So(¬C ∨ (D ⊃ B)) ∈
W0/S4. So(©¬↓C ∨ (D ⊃ B)) ∈ W0/S4. So¬↓C ∈ W0/S4 or(D ⊃ B) ∈ S4, by
Lemma 46. So©¬↓C ∈ W0/S4 or�(D ⊃ B) ∈ S4, by the rule of necessitation for©
for W0/S4 and the rule of necessitation for� for S4. So©¬↓C ∈ W0/S4 or(D ⊃ �B) ∈
S4, by the S4 axioms. So(©¬↓C ∨ (D ⊃ �B)) ∈ W0/S4. So(¬C ∨ (D ⊃ �B)) ∈
W0/S4. So((C & D) ⊃ �B) ∈ W0/S4. So(A ⊃ �B) ∈ W0/S4, as desired.�

Proof of Lemma 48. Suppose that©A ∈ W0/S4. Then(p∨©A) ∈ W0/S4 wherep is
any propositional variable. But thenA ∈ W0/S4, sincep �∈ S4 and byLemma 47. �

We defer the proof ofLemma 49until after the proof ofLemma 51.

Proof of Lemma 50. We will prove the lemma on the assumption that the language is
countable. First note thatLemma 49implies that if, for everyn, (A ⊃ ©nB) ∈ W0/S4,
then (A ⊃ ∗B) ∈ W0/S4. Now suppose thatA is consistent. LetS1 = {A}, which
is a consistentω-closed set of formulas. Enumerate all the formulas asA1, . . . , An, . . ..
Assume that the setSn of formulas has been defined and is finite. IfAn is of the form¬∗B
andSn ∪ {An} is consistent, choose the firstm so that¬©mB is consistent withSn ∪ {An}
and letSn+1 = Sn∪{An,¬©mB}. Otherwise, ifAn is not of that form but is consistent with
Sn, let Sn+1 = Sn ∪{An}. If An is of the form∗B andSn ∪{An} is inconsistent, choose the
first m so that¬©mB is consistent withSn ∪ {¬An} and letSn+1 = Sn ∪ {¬An,¬©mB}.
Otherwise, ifAn is not of that form but is inconsistent withSn, let Sn+1 = Sn ∪ {¬An}.
ThenS= ∪n Sn is a complete consistentω-closed theory withA ∈ S. �

Proof of Lemma 51. (⇒) This direction follows from the definition of “W0/S4-theory”.
(⇐) Suppose(A ⊃ B) �∈ W0/S4. Then¬(A & ¬B) �∈ W0/S4. So byLemma 50,
(A & ¬B) ∈ T for some consistent completeω-closed W0/S4-theoryT . So A ∈ T and
B �∈ T . So it is not the case that for every consistent completeω-closed W0/S4-theoryT ,
if A ∈ T thenB ∈ T . �

Now it remains to proveLemma 49. First, some stage setting. A finite setΦ of formulas
is closediff it is closed under subformulas and∗C ∈ Φ ⇒ ©∗C ∈ Φ, for every formula
C. Given a closed setΦ of formulas, aΦ-atom (often we just sayatom) is a setα of
signed formulas, i.e. ordered pairs of the form+C = 〈+, C〉 or −C = 〈−, C〉, where
C ∈ Φ. An atomα is asubatomof an atomβ iff α ⊆ β. An atomα is Φ-complete(we
often just saycomplete) iff, for eachC ∈ Φ, either+C ∈ α or −C ∈ α. An atomα is
closediff the set {C : ±C ∈ α} is closed. Note that everyΦ-complete atom is closed,
but not vice versa. For example, suppose thatΦ = {p,©p, ∗p,©∗p}; then the atom
α = {+p,−©p} is closed but notΦ-complete.

An atom isconsistentiff the corresponding formula is consistent, i.e. its negation is
not a theorem of W0/S4. The formula corresponding to{+A,−B, −C}, for example, is
A & ¬B & ¬C. We will not distinguish atoms from their corresponding formulas.

Given an atomα, α© =df the set of signed formulas inα of the form±©A; andαS4 =df
the set of signed formulas inα containing no temporal modalities.
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Given a closed setΦ of formulas, we define some relations onΦ-complete consistent
Φ-atoms:

Rαβ iff (α & #β) is consistent;
Snαβ iff (α & ©nβ) is consistent;
Sαβ iff S1αβ; and

Snαβ iff Sαα1, . . . , Sαn−1β, for someα1, . . . , αn−1.

Before we proveLemma 49, we first state and proveLemma 53to Lemma 56.

Lemma 53. Suppose thatΦ is a closed set of formulas and thatα is a closed consistent
Φ-atom. Then the following is a theorem ofW0/S4:

(αS4 & α©) ⊃ α.

Proof. List the members ofα − (αS4∪ α©) as±C1, . . . ,±Cn so that ifi < j thenCi is
not a subformula ofCj . Defineα0 = α andαm+1 = αm−{±Cm+1}, for m = 0, . . . , n−1.
Soαn = (αS4∪ α©). Notice also that eachαm is closed and consistent. Now it suffices to
show that(αm+1 ⊃ αm) ∈ W0/S4, for eachm = 0, . . . , n − 1. We consider five cases.

Case 1.αm+1 = αm −{+(D & E)}. Sinceαm is closed and consistent,+D and+E are in
αm+1. So(αm+1 ⊃ αm) = (αm+1 ⊃ αm+1 & D & E) ∈ W0/S4.

Case 2.αm+1 = αm − {−(D & E)}. Sinceαm is closed and consistent, either−D or−E
is in αm+1. Assume that it is−D. So(αm+1 ⊃ αm) = (αm+1 ⊃ αm+1 & ¬(D & E)) ∈
W0/S4, since(¬D ⊃ ¬(D & E)) ∈ W0/S4.

Case 3.αm+1 = αm − {±¬D}. Sinceαm is closed and consistent,∓D ∈ αm+1. So
(αm+1 ⊃ αm) = (αm+1 ⊃ αm+1 & ± ¬D) ∈ W0/S4, since(∓D ⊃ ±¬D) ∈ W0/S4.

Case 4.αm+1 = αm − {+∗D}. Sinceαm is closed and consistent and since(∗D ⊃
D & ©∗D) ∈ W0/S4, both+D and+©∗D are inαm+1. So(αm+1 ⊃ αm) = (αm+1 ⊃
αm+1 & ∗D) ∈ W0/S4, since(D & ©∗D ⊃ ∗D) ∈ W0/S4.

Case 5.αm+1 = αm − {−∗D}. Sinceαm is closed and consistent and since(¬∗D ⊃
¬(D & ©∗D)) ∈ W0/S4, either−D or −©∗D is in αm+1. Let E be D or ©∗D,
whichever is appropriate. Then(αm+1 ⊃ αm) = (αm+1 ⊃ αm+1 & ¬∗D) ∈ W0/S4,
since(¬E ⊃ ¬∗D) ∈ W0/S4.

(Lemma 53is inspired by [8].) �

Lemma 54. Suppose thatΦ is a closed set of formulas and that Sn and Sn are defined as
above. Then for any n∈ ω and anyΦ-complete consistentΦ-atomsα andβ, if Snαβ then
Snαβ.

Proof. By induction onn. The cases forn = 0 and n = 1 are obvious. For the
inductive step, suppose thatSn+1αβ. Then for some atomδ, we haveSαδ andSnδβ, so,
by IH, we haveSnδβ. Assume that¬Sn+1αβ. So(α ⊃ ¬©n+1β) ∈ W0/S4. Recall that
(αS4 & α© ⊃ α) ∈ W0/S4 byLemma 53. So (αS4 & α© ⊃ ¬©n+1β) ∈ W0/S4. So,
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(¬αS4∨ (α© ⊃ ¬©n+1β)) ∈ W0/S4. Sinceα is consistent, so isαS4, so¬αS4 �∈ S4. So,
by Lemma 46, we have

(α© ⊃ ¬©n+1β) ∈ W0/S4. (∗)

Now recall that(α & ©δ) is consistent. We claim that, in fact,(©δ ⊃ α©) ∈ W0/S4.
To see this, first note thatC ∈ Φ for every signed formula±©C ∈ α©, sinceα is a
Φ-atom. So, for every signed formula±©C ∈ α©, either+C or −C is in δ. Sinceα

is consistent with©δ, we have (1)+©C ∈ α© iff +C ∈ δ; and (2)−©C ∈ α© iff
−C ∈ δ. So for every signed formula±©C ∈ α©, we have(©δ ⊃ ±©C) ∈ W0/S4.
And so(©δ ⊃ α©) ∈ W0/S4.

So, by (∗), (©δ ⊃ ¬©n+1β) ∈ W0/S4. So©(δ ⊃ ¬©nβ) ∈ W0/S4. So(δ ⊃
¬©nβ) ∈ W0/S4 byLemma 47. But this contradictsSnδβ. �

Lemma 55. Suppose thatΦ is a closed set of formulas and that R and Sn are defined as
above. Also suppose thatα andβ are Φ-complete consistentΦ-atoms. Then if Rαβ then
Snαβ for some n∈ ω.

Proof. We adapt the third clause of the proof of Lemma 1 of [10]. Suppose that¬Snαβ

for everyn ∈ ω. We want to show that¬Rαβ. Note thatβ �∈ Y, whereY = {δ : δ is a
Φ-complete consistentΦ-atom andSnαδ for somen ∈ ω}. We claim, for everyΦ-complete
consistentΦ-atomδ,

if δ ∈ Y then(δ ⊃ ©∨Y) ∈ W0/S4. (∗)

To see (∗), suppose thatδ ∈ Y is aΦ-complete consistentΦ-atom. LetZ = {γ : γ is aΦ-
complete consistentΦ-atom and(δ & ©γ ) is consistent}. ThenZ ⊆ Y. So(∨Z ⊃ ∨Y) ∈
W0/S4. So(©∨Z ⊃ ©∨Y) ∈ W0/S4. Furthermore,(δ ⊃ ©∨Z) ∈ W0/S4, sinceZ
containsall theγ such that(δ & ©γ ) is consistent. So(δ ⊃ ©∨Y) ∈ W0/S4, as desired.

Given (∗), (∨Y ⊃ ©∨Y) ∈ W0/S4. So, by the induction axiom,(∨Y ⊃ ∗∨Y) ∈
W0/S4. Clearlyα ∈ Y. So (α ⊃ ∨Y) ∈ W0/S4. So(α ⊃ ∗∨Y) ∈ W0/S4. We also
claim that(∨Y ⊃ ¬β) ∈ W0/S4. The reason for this is thatβ �∈ Y, in which caseβ is
inconsistent with everyδ ∈ Y. So(∗∨Y ⊃ ∗¬β) ∈ W0/S4. So(α ⊃ ∗¬β) ∈ W0/S4. So
¬(α & #β) ∈ W0/S4. So¬Rαβ, as desired. �

Lemma 56. Suppose thatΦ is a closed set of formulas and thatα and β are complete
consistentΦ-atoms. Then if(α & #β) is consistent, then(α & ©nβ) is consistent for some
n ∈ ω.

Proof. This is an immediate corollary toLemmas 54and55. �

Proof of Lemma 49. Suppose that(A & #B) is consistent. LetΦ be the smallest closed
set of formulas such that(A & #B) ∈ Φ. Let Φ = {A1, . . . , Am} where theAi are all
distinct andA1 = (A & #B). Defineα1 = {+A1} and for eachn = 2, . . . , m, define
αn = αn−1 ∪ {+An} if An is consistent withαn−1, andαn = αn−1 ∪ {−An} otherwise.
And let α = αm. Thenα is a complete consistentΦ-atom such that+(A & #B) ∈ α. So
(α & #B) is consistent. Also note that+A ∈ α.
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Let Φ = {B1, . . . , Bm} where theBi are all distinct andB1 = B. Defineβ1 = {+B1}
and for eachn = 2, . . . , m, defineβn = βn−1∪{+Bn} if (α & #(βn−1 & B)) is consistent,
andβn = βn−1 ∪ {−Bn} otherwise. And letβ = βm. Thenβ is a complete consistent
Φ-atom such that+B ∈ β and (α & #β) is consistent. So byLemma 56, (α & ©nβ)

is consistent for somen ∈ ω. But then(A & ©nB) is consistent since+A ∈ α and
+B ∈ β. �
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