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Abstract

Dynamic topological logic provides a context for studying the confluence of the topological
semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4
is based on topological spaces rather than Kripke frames. In this semantissinterpreted as
topological interior. Thus S4 can be understood as the logic of topological spaces] eenl be
understood as a topological modality. Topological dynamics studies the asymptotic properties of
continuous maps on topological spaces. Ldyyaamic topological systefye a topological spack
together with a continuous functioh. f can be thought of in temporal terms, moving the points
of the topological space from one moment to the nBxtnamic topological logicsare the logics
of dynamic topological systems, just as S4 is the logic of topological spaces. Dynamic topological
logics are defined for a trimodal language with an S4-ish topological modalitgterior), and two
temporal modalitiesO (next) andx (henceforth), both interpreted using the continuous function
f. In particular,O expressed’s action onX from one moment to the next, andexpresses the
asymptotic behaviour of .
© 2004 Elsevier B.V. All rights reserved.

Keywords:Modal logic; Temporal logic; Topological semantics; Topological dynamics

Dynamic Topological Logic (DTL) provides a context for studying the confluence of
three research areas: the topological semantics for S4, topological dynamics, and temporal
logic.
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In the topological semantics for S4 naodelis a topological spacX together with a
valuation functionV assigning to each propositional variable a subset.o€onjunction
is interpreted as intersection, disjunction as union, and negation as complementation. If we
interpret the necessity connective, as topological interior, the resulting modal logic is
S4. Thus we can think of S4 as a topological logic, or a logic of topological spaces.
Topological dynamicsstudies the asymptotic properties of continuous maps on
topological spaces ZB, p. 118]). Let adynamic topological systelme an ordered pair
(X, f) whereX is a topological space aniis a continuous function oX.3 We can think
of the functionf as moving the points iiX in each discrete unit of timex gets moved to
fx and then tof f x and so on. It is natural to extend S4—the logic of (static) topological
spaces—to a logic of dynamic topological systems, by adding temporal modalities suited
to formalizing the action of on X. In particular, we want to formalize both the transition
from one discrete moment to next, &sacts, moment by moment, on the pointsdnand
the asymptotic behaviour of the functidn
We turn tow-time temporal logic with two future-looking modalitiesext O, and
henceforth «. Suppose that we ignore topological issues and represent discrete moments
as natural numbers. We can takeiaterpretationto be an assignment of a truth value
to each propositional variable at each moment. The Boolean connectives are given their
standard interpretations. As for the modalities, the forn9lA is true at the moment
iff Ais true at the next momemh + 1; and the formulaA is true at the momer iff
A is true at the moment, for eachn > m. Note thatxA is thus equivalent to the infinite
conjunctionA & QA& O?2A & OBA.... We follow [23] in defining the logic WO to be the
set of sentences true at every moment on every interpretatdéd can be axiomatized by
the classical tautologies; S4 axioms ot O(AV B) = (OAVOB)); (O—A=-0OA);
(O*A = «xOA); (xA D OA); the induction axiom(A & x(A D OA) D xA); and the
rules of modus ponens, and necessitationxfor
In this paper, we combine the topological modality and the two temporal modalities, to
define trimodaldynamical topological logicdogics of dynamic topological systems. Let
a dynamic topological moddde an ordered tripléX, f, V), where(X, f) is a dynamic
topological system an¥l is a valuation function assigning to each propositional variable
a subset ofX. If we think of the subsets oK as thepropositions then, as in the static
topological semantics,JP = Int(P), for propositionsP. We interpret the temporal
modalitiesQ andx using the functionf. Suppose that, at momemt, the propositionP
is true at the poinf x, i.e. fx € P. Then afterf has acted ox once,P will be true atx.
In other words, at the next momemt+ 1, the propositiorP is true at the poink. So at

2The topological semantics pre-dates the more well-known Kripke semantics. An interpretation of S4 in the
topology ofR2is given, with a soundness proof, i29). A general topological semantics is given, with soundness
and completeness proofs, ifi]. This work is extended in1[7]. For a general and comprehensive discussion,
see P0). See also]] and [18] for new proofs that S4 is the logic of the closed unit interval.

30ne might put constraints oK, such as being compact or metrizable; andforsuch as being bijective,
surjective, open or a homeomorphism. Of particular interest to topological dynamicists are measure-preserving
functions on compact measure spaces, because of the phenomeecmr@nce SeeSection 5 below.

4sSucha logic was first put forward i26,27] and [19]. [21] credits Dana Scott, Hans Kamp, and Kit Fine with
unpublished axiomatizations and completeness proofs. The first published completeness proof o@ars in [
(a Russian translation o28], which did not appear in print until 1989). See ald&][and [8].
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momentm, the propositionDP is true atx. Thusx € QP iff fx e Piff x € f~(P).
Thus our interpretation of theextmodality: OP = f~1(P). As for %, we understandP
as in the preceding paragraph as an infinite conjuncfo®: OP & O?P & O%P & ...
ThusxP = Np>o f"(P).

Our plan in this paper is as followSection 1 we work with a trimodal language, with
one topological modalityifiterior) and two temporal modalitieséxtandhenceforth. We
give a precise definition adlynamic topological modelsincluding dynamic Alexandrov
modelsthe dynamic topological analogues of Kripke models—and standard definitions of
validity with respect to a model, or a class of models. We give a semantic definition of the
dynamic topological logic generated by a cl&s®f topological spaces and/or a clags
of continuous functions. We also give a precise definition &fagmentof a topological
logic. Sections 25: we consider various specific DTLs, presenting their properties and
axiomatizing some of their next-interior fragmengection 6 we give conditions under
which the purely topological fragment of a DTL is simply S4, and the purely temporal
fragment is simply WOSection 7 we give a sound and complete axiomatization of a DTL
in a trimodal fragment of the language in which the temporal modalities cannot occur in
the scope of a topological modality. (Nikolai Bjorner originally suggested considering this
fragment of the language.)

The current paper is part of a research programme whose first results were announced
in three conference abstract$§1]12], and [L3]. (These results are reproduced and proved
below.) An independent and closely related research programme saw its first results
published in B], and has been further pursued if].[ Reference §] considers two
bimodal logics, S4F and S4C: S4C is the next-interior fragment of our basic trimodal
logic, generated by the class of all dynamic topological systems; and S4F is the next-
interior fragment of the weaker logic generated topological structuresi.e. ordered
pairs (X, f) where X is a topological space andl is a total function,continuous or
not, on X. (Ourdynamic topological systenase theircontinuougopological structures.)
Reference3] provides both S4F and S4C with Hilbert- and Gentzen-style axiomatizations,
cut elimination theorems, both topological and Kripke completeness theorems, and finite
model property theorems. We will comment further 8hds we continue.

Reference §] continues this work. The richest logic i®][ combines the topological
modality with the rich modalities oPropositional Dynamic Logi¢PDL), of which the
above temporal modalities are a special case. The language of standard PDL has both
atomic propositions and atomégctions The atomic actions are combined to produce
composite actions of the forms, o + 8, andax, wherea andg are actions. With each
actiona we have a “necessity” modality] and a “possibility” modality(«), where the
formula [x]A reads “actiona always makes it the case that and the formula(a)A
reads “actione sometimes makes it the case thdt The modality ] is the result
of repeating §] o times, just as the temporal modalityis the result of repeating)

o times. The language irg] is interpreted via a rich notion of a dynamic topological
system: in ], a topological systemis a topological spacX together with a continuous
function f, for each atomic actionx. Reference §] defines a Hilbert-style axiomatic

logic TPDL (Topological Propositional Dynamic Logic), which seundfor the class

of all topological systems; and for the class of all topological systems whose underlying
topological space is an Alexandrov space (Alexandrov spaces are the topological duals of



136 P. Kremer, G. Mints / Annals of Pure and Applied Logic 131 (2005) 133-158

Kripke frames). Referencé] also claims that TDPL i€ompletefor each of these two
classes of topological systems, but this cannot be, g€l 1p D C[ax] p is valid when
the underlying space is an Alexandrov space, but is not valid in generalSéstien 3for
a proof.) We will comment further oré] as we continue.

As we were editing the current paper for publication, we received notice of a
proof, in [9], of the nonaxiomatizabilityof a significant range of DTLs: the DTL of
homeomorphisms, the DTL of homeomorphism$dh(for any fixedn > 1), the DTL of
homeomorphisms on Alexandrov spaces (see below), and the DTL of measure-preserving
homeomorphisms on the unit ball of dimensigrwheren > 2. Referenced] leaves open
the axiomatizability problem of DTLs that are based on continuous functions in general,
rather than homeomorphism. We will comment further @rafs we continue.

1. Basic definitions

We work with a trimodal languagke with a setPV of propositional variables; Boolean
connectivesv and —; and three one-place modalitiés (interior), O (next), andx
(henceforth). We assume that &, and= are defined in terms of and —. We will
sometimes work with fragments df, but always assume that our fragment contains
the Boolean connectives. For example, (hel fragment ofL, denoted a4 O, is the
languagelL without thex modality. We will be particularly interested in themporal-
over-topologicalfragment ofL, denoted as. ©*/H: in this fragment we have all three
modalities, but neithef) nor* can occur in the scope of an occurrencélofe usep, q,

r as metavariables ov@&V andA, B, C as metavariables over formulas.

Definition 1. A topological modelis an ordered pairM = (X,V), where X is a
topological space and : PV — P(X). For each formulaB in the languagd.", we
defineM (B), the subset assigned ¥ to B as follows:

M(p) =V (p),
M(AV B) = M(A) UM(B),
M(=B) = X — M(B), and
M(OB) = Int(M(B)).
We define standard validity relations:
M = Biff M(B) = X.
X = Biff M = B for every modeM = (X, V).
Bisvalid (&= B) iff X = B for every topological spack.

Definition 2. A Kripke frameis an ordered paifW, R) whereW is a non-empty set and
Ris a reflexive and transitive relation oM.

Definition 3. Given a Kripke framgW, R), a subset of W is openiff Sis closed under
R: for everyx,y € W, if x € SandxRytheny € S. The family of open sets forms
a topology. Thus, for every Kripke fram@®V, R), we define a dual topological space by
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imposing that topology on the sét. Note that, in these spaces, the intersection of arbitrary
open sets is open: thus they #iexandrowspaces, as defined presently.

Definition 4. An Alexandrov spacds a topological space in which the intersection
of arbitrary open sets is open. Alexandrov spaces were first introduce@]bgee
also @].°

Definition 5. Given any topological spac¥, define the relatiorRx on X as follows:
xRxy iff x € Cl{y}, the topological closure ofy}. Rx is reflexive and transitive, so
(X, Rx) is a Kripke frame.

Theorem 6. If X is an Alexandrov space, then a subset Y of X is openin X iff Y is open
in the Kripke framg X, Rx). Thus, if X is an Alexandrov space, then the topological space
that is the dual of the Kripke framgX, Rx) is X itself.

Proof. Suppose thaK is an Alexandrov space and C X. (=) Suppose thaY is open
in X. To see that is closed undeRy, suppose that € Y andx Rxy. Thenx € Cl{y},
SO every open set containigalso containg. Thusy € Y. (<) Suppose thaY is closed
underRx. To show thaty is open in the topological spact, it suffices to show that the
setZ = X — Y is closed. And for this it suffices to show th@t(Z) € Z. Suppose that
z € Cl(Z) butthatz ¢ Z. Thenz € Y. Let O, = N{O : O € X andO is open and
z € 0O}. Oz is open sinceX is an Alexandrov space. So sinzes cl(Z) there is some
w € ZN Oz. Sow is in every open set containiry Soz € Cl{w}. SozRxw. Sow € Y
sinceY is closed undeRx. Butw € Z = X — Y, a contradiction. [J

Remark 7. Thus Kripke frames are, in effect, Alexandrov spaces, and vice versa.

Remark 8. If X is not an Alexandrov space, thefineed not be the topological space
dual to the Kripke framéX, Ry ). For example, consider the real liftewith the standard
topology. Note that the relatioRy is simply the identity relationi(x, x) : x € R}. So in

the Kripke frame(R, Rg), every subset oR is open. So the topological space that is the
dual of (R, Rg) is not the topological space that we started with: the new topological space
is R with the discrete topology rather than the standard topology.

Definition 9. An Alexandrov modeis a topological modeM = (X, V) whereX is an
Alexandrov space. This is equivalent to the usual definition iifipke model, given the
duality of Alexandrov spaces and Kripke frames.

Theorem 10 (McKinsey—Tarski—Kripke).Suppose that X is a dense-in-itself metric
space and A is a formula in the languag€' LThen the following are equivalent:

() AcsS4
(i) = A.
(i) X = A.

5 Alexandrov spaces are the D-topological space$pflhe work in [6] motivated us to discuss Alexandrov
spaces.
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(iv) R = A.
(v) Y = A for every finite topological space Y.
(vi) Y = A for every Alexandrov space Y.

Proof. The equivalence of (i)—(v) is due tdT]. For the completeness of S4 in the real
line, see the streamlined proofs df and [18]. The equivalence of (i) and (vi) is due, in
effect, to [L4]. O

Remark 11. Thus not only does the topological interpretationldf give a semantics

for S4, but also S4 is the topological logic of a host of particular topological spaces, for
example the real lindR; the closed unit intervalp, 1]; and any other dense-in-itself metric
space. Sd_U is expressively weak—unable, for example, to distinguish betiieand

[0, 1] despite their topological dissimilarities.

Definition 12. A dynamic topological systefDTS) is an ordered paitX, f), whereX
is a topological space anflis a continuous function oX. (This terminology is adapted
from [5] and [7].) A dynamic topological mod€DTM) is an ordered triplévl = (X, f, V)
where(X, f)isa DTS andV assigns a subset of to eachp € PV. For each formuld
we defineM (B), the subset assigned b to B, by the clauses in Definition 1.1 plus the
following:

M(OB) = f~1(B); and

M(*B) = mnzo f_n(B)
Definition 13. A dynamic Alexandrov systeis an ordered paifX, f) where X is an
Alexandrov space and is a continuous function oX. The continuity off is equivalent

to its monotonicityin the following sense: ifx Rxy then (fx)Rx(fy).6 An dynamic
Alexandrov modek a DTM (X, f, V) whereX is an Alexandrov space.

Definition 14. Suppose thaM = (X, f, V) is a DTM. We define standard validity
relations:

M & Biff M(B) = X.

(X, f) = Biff M = B for every modeM = (X, f, V).
X | Biff (X, f) = B for every continuous functiof.
Bisvalid (&= B) iff X = B for every topological spack.

Definition 15. Suppose thaf is a class of functions so that eathe F is a continuous
function on some topological space. Suppose thas a class of topological spaces. We
define three more validity relations:

7T, F E Biff, forevery f € Fand everyX € 7, if f is a continuous function on
X then(X, f) = B.

6 The monotonicity condition characterizes t@ntinuousKripke frames of 8J.
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F = Biff, for every topological spac& and everyf € F, if f is a continuous
function onX then(X, f) = B.

7T = Biff X = B for every topological spack € 7.

Here we assume that in specifying a particular continuous function, we specify both the
function itself as a set of ordered pairs, and the topological space on which we are taking
it to act.

We are now ready to define varioDgnamic Topological Logi¢or DTLs.

Definition 16. For any class7 of topological spaces and any clagsof continuous
functions, we define

DTLy 7 ={A:T.F = A}
DTLy = {A: 7 = Al
DTLf = {A: F = A}.

Given a particular DTL, we will also be interested infitagments

Definition 17. If D is a dynamic topological logic, then thpairely topologicalfragment

of D is the fragment expressible in the languddé, that is, the set of formulas in™
belonging toD. The purely temporalfragment ofD is the fragment expressible in the
language.©*. Thenext-interiorfragment ofD is the fragment expressible in the language
LOH, We denote these logics 887 andDO* andDCY, respectively. Theemporal-over-
topologicalfragment ofD is the fragment expressible in the language*’™. We denote
this logic asDO*/H,

Our research plan is to consider the properties of various DTLs and their fragments,
particularly those determined by interesting classes of topological spaces or continuous
functions or both. The next four sections specify four DTLs: the DTL of all dynamic
topological systems, DT4. the DTL of Alexandrov spaces, DTL; the DTL of
homeomorphisms, DTi; and the DTL of measure-preserving functions on the closed
unit interval, DTLy,. The second of these in nonaxiomatizab®)([and the question of
the axiomatizability of the other three is still open. Below, we axiomatize some interesting
fragments. We also begin the process of investigating the expressive resources of the
trimodal languagé. and its fragments by comparing various DTLs and their fragments.
Along these lines, we hope eventually to prove or disprove analogues to the McKinsey—
Tarski—KripkeTheorem 10above.

2. BasicDTL
Our most basic DTL is the following:

DTLo = {A: = Al

It is not known whether DT} is axiomatizable. In this section, we give]’s
axiomatization of its next-interior fragment, and i8ection 7 we axiomatize its
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temporal-over-topological fragmeng]fs logic S4C in the language©U is given by the
following axioms,

the classical tautologies

S4 axioms for],

(O(Av B)=(OAvV(OB)),
(O—-A=-0OA), and

(OOA > OOA) (the axiom of continuity);

and the rules of modus ponens, and necessitation for @o#md . We will use S4C

both for this axiomatization and for the set of all formulas derivable from the axioms by
the inference rules. As it turns out, this axiomatization is both sound and complete with
respect to the class of all dynamic topological models, as well as the class of all dynamic
Alexandrov models (seleefinition 13. Soundness is easy to establish: in our terminology,

soundness amounts to the claim that SgI(DTLg)D and S4CcC DTL?D. [3] prove
completeness with respect to both classes of models—in our terminologﬁ?%‘l;LSAC

and DTL%D C S4C—as well as the finite model propert] §ives a simpler proof of the
completeness result; we reproduce that proof here.

First we define some standard notiosis atheoremiff A € S4C. A is consistentff
—A ¢ SAC. Atheoryis a set of formulas in the languagé™ containing all the theorems
of S4C and closed under modus ponens. A thdoiig completeff for every formula A
eitherA € T or—A € T. AtheoryT is consistentff some formulais not il . A setS of
formulas isconsistentff some theoryT D Sis consistent.

Theorem 18 ([3] and [6]). S4C =DTLy~ = DTLY".

Proof. Given soundness and the obvious fact that @F’L - DTL%D, it suffices to
construct a canonical dynamic Alexandrov molte(seeDefinition 13 such thatM = A
iff A e S4C, for every formulaA in the language. ©OU. In fact, given soundness, it will
suffice to show that iM = AthenA € S4C.

Define a Kripke framé X, R) and a functionf on X as follows:

X = {x : x is a complete consistent thedry
x Ryiff for every formulaA, if A € x thenA € y; and
fx={A: OAex}.

Note thatR is reflexive sincg[JA > A) € S4C and transitive sincgJA > OOA) €
S4C. We can takeX to be an Alexandrov space, as Definition 2 by imposing the
following topology on it: a subseY of X is openiff Y is closed undelR: for every
X,y € X, if xRyandx € Y theny € Y.

Now we show thatf is continuous. It suffices to show thdt is monotonein the
following sensex Ry = (fx)R(fy). So suppose thatRy. To see that fx)R(fy),
supposé]A € fx. ThenQOA € x. SoOQOA € x, since(QOUA > OOA) € S4C.
So(OA e y.SoA e fy, as desired.
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Thus(X, f) is a dynamic Alexandrov system. Defigp) = {x € X : p € x}. Then
M = (X, f, V) isadynamic Alexandrov model. By a standard induction on the complexity
of the formulaA, we havex € M(A) iff A € x, for everyx € X.
To show that ifM = AthenA e S4C, suppose that ¢ S4C. Then—-A is consistent.
By a standard argument, every consistent formula is a member of some complete consistent
theory. So—A ¢ x, for somex € X. Sox € M(A). SOM £ A, as desired. (J

Theorem 1&uggests the following conjecture:

Conjecture19. DTLo can be axiomatized, in the trimodal language, by combining the
axioms ofWO0 and S4C with the rules of modus ponens and necessitation for all three
modalities.

Theorem 18s partially analogous to the McKinsey—Tarski—Kripkieeorem 1Gor the
languagel. OU: for every formulaA of LOY, we haveA € SAC iff = Aiff Y = Afor
every Alexandrov spac¥. The next theorem, however, reveals a disanalogy: it is not the
case thatA € SACIiffR = A.

Theorem 20. DTLS™ ¢ DTLE™, andDTLo ¢ DTLg.

Proof. Clearly DTL(()DD C DTL%D, and DTly € DTLg. So it suffice to show that

DTI._]I%ID z DTL(?D. Consider the following formul&, wherep andq are propositional
variables:

Op > OCUpP) v (Og 5 HUOY).
We will show thatA e DTLY" — DTLS".

We first show thatA ¢ DTLOOD. LetM = (X, f, V), where

X ={0,1,2};
the open sets ag X, and{2};
f(2=f(1)=0andf(0) =1; and
V(p) = {0, 1}, andV(q) = {1}.
Note the following:
V(Op) = X; soV(EOp) = X.
V@dp) =@; soV(O<oOp) = 9.
ThusV OO p D> O0dp) = 4.
Meanwhile,V (OQq) = {0}; soV(OQOQq) = 9.
ThusV(Oq > 009) = {1, 2}.
ThusV (A) = {1, 2} # X.
ThusM (= A.
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We now show thah € DTL%D. Suppose not. Then there is some dynamic topological

modelM’ = (R, f’, V') and some& € R such thax ¢ V'(A). Thus,

(i) x € V'{@Op). So there is an open intervalsuch thatx € | < V'(Op). So
f'(x) e (1) € V'(p).

(i) x & V/(OoOp). So f/(x) & ClInt(V'(p))).

(i) x € V'(OQ). So f'(x) e V(q).

(iv) x ¢ V'([AOQ). So there is somg € | such thaty ¢ V/(Oq). Thus f'(y) € V'(q).
Thus f/(x) # f’(y). Thusf’(l) is not a singleton set.

Since f’(1) is not a singleton set and sintes an open intervalf’(l) is either an open
interval, a closed interval, or a semi-closed interval, i.e. an interval of the ffariv) or
(a, b]. In any casef’(l) € Cl(Int(f’(1))). And since from (i) we have’(l) € V'(p),
we also have

f'(x) e £'(1) € Cl(Int(f'(1))) < Cl(nt(V'(p))).
But this contradicts (ii). O

Remark 21. Theorem 20was discovered independently by4], with a different
counterexample.

Conjecture 22. DTL]%D = S4C+ (OOA D O0OA) v (OB > OOB)).

3. TheDTL of Alexandrov spaces

Of particular interest is the clas$ of dynamic Alexandrov models (s&efinition 13,
since these are the models based on Alexandrov spaces, which are, in effect, Kripke frames
(seeRemark §. The fact that DTl C DTL 4 follows from (x) and (), below:

xOp D Oxp) € DTLo ()
(+0p D Oxp) € DTL 4. )

(1) follows from the fact that, in an Alexandrov space, the intersection of arbitrary open sets
is open. To seex, letM = (R, f, V) where f (x) = 2x andV (p) = (-1, 1). Note that
M{Op) = (-1,1),so f"(M@Op)) = (-1/2",1/2"). ThusM (xOp) = {0}. Similarly,
M(xp) = {0}. SOM(xp) = ¥. SOM = (x0p D O*p).

By Theorem 18 above, DTI.?AD = DTL(%)D = S4C. And byCorollary 44 below,

DTL?* = DTLSD* = WO. So any differences between DJLand DTl should arise
from the interaction o and(:

Conjecture23. DTL 4 = DTLo + (x0Op D Oxp).

Remark 24. We do not know whether DT} is axiomatizable.

4. The DTL of homeomorphisms

Of particular interest is the clags of homeomorphisms (continuous bijections with
continuous inverses). Intuitively, we keep tracktiwhe with f. Although our temporal
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modalities are forward-looking, it seems natural to keep track of time with functions that
canlook in both directions (i.e. that are bijective) and that are continuous in both directions.
Despite the fact that our temporal modalities are forward-looking, restricting our attention
to the classH makes a difference that can be expressed in our trimodal propositional
language. In particular we have)@nd (), below:

(OOp > Op) ¢ DTLo. (%)
(OOp > O0p) € DTLy. (M

(1) follows from the fact thatint(f ~1(S)) < f~1(Int(S)) where S is a subset of a
topological spac&X on which f is a homeomorphism. To seg(letM = (X, f, V) where
X = {0, 1} with open setd, {0}, and{0, 1}; and wheref (0) = f(1) = 1 andV (p) = {1}.
The functionf is continuous and hendd is a DTM. Also note thaM (OO p) = {0, 1}
andM(OQ0Op) = ¥, soM = (OOp > OOp).’

As mentioned above 9] presents a proof that DL is not axiomatizable. We do,
however, have an axiomatization of its next-interior fragment. Define the logio S4
in the languageLC" by adding the following axiom to S4C, defined Bection 2
above:

(OOA D QUA).

It turns out that S&) = DTL%D. What is more,;Theorem 25extends this to give an
analogue to the McKinsey—Tarski—KripkK&aeorem 10

Theorem 25. 40 = DTLY)” = DTLY,, = DTLG ,, = DTLY, = DTLY" =
o0 _p7 09 _ prLOC
DTLY,) =DTLG;, o =DTLY.

Proof 8 The claim that S@) < DTLgD is just a version of soundness, which is proved as
usual. Given this, the following inclusion relations are obvious:

S40 € DTLR” € DTLY,” < DTLYY,
s40 < DTLS" ¢ DTLY < DTLSS,
s40 ¢ DTLY” € DTLY” € DTLG,

(0,11, H
oo oo oo
SAO cDTLy ™ € DTLg 0 S DTL G

s40 < DTLY” < DTLY' < DTLYY,

7 [3] notes that the axiom scheme&(O A > OO A) characterizes topological structures witpenfunctions,
i.e. functions that map open sets to open sets; and that this axiom scheme togethgbwith > OOA)
characterizes topological structures with continuans open functionsTheorem 25below, strengthens this,
by showing, in effect, that these two axiom schemes not only characterize the dynamic topological systems
whose functions are continuous and open, but also the dynamic topological systems whose functions are
homeomorphisms, i.e. continuous and open bijections.

8 Viadimir Rybakov helped us with this proof.
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So it suffices to show, for every formukin the languagé. O™:

if [0,1], H = AthenR, H = A,
if R, H = AthenA e S40), and
if A, H = AthenA e S40.

SeeTheorems 2633 and34, respectively. O
Theorem 26. If [0, 1], H &= AthenR, H = A.

Proof. Suppose thaR, H = A. Let M = (R, f,V) be a model wheref is a
homeomorphism of® and whereM (& A. Sincef is a homeomorphism dR, f is either
strictly increasing or strictly decreasing. (In fact, as we show in the pro®hebrem 33
we can takef to be f (x) = x+1. But we will continue with the more general case for now,
since we have not yet showrheorem 33 Choose some strictly increasing continuous
one—one functioh from R onto the open intervdD, 1). Define f’ on[0, 1] as follows:

f'x) =hfh™1(x)if0 < x < 1;

f/(x) = x if f is strictly increasing and either=0orx = 1;

f/(x) = 1 — x if f is strictly decreasing and eithgr= 0 orx = 1.
And defineV'(p) = {x € (0,1) : h~1(x) € V(p)}.

f’ is one—one and ontof’ is also continuous. For iff is strictly increasing
thenlimy_of’(x) = 0 andlimy_1f’(xX) = 1; and if f is strictly decreasing then
limy—of/(x) = Landlimx_1f’(x) = 0. SoM’ = ([0, 1], f’, V') is a dynamic topological
model.

Notice that(0, 1) N M’(B) = {x € (0,1) : h~1(x) € M(B)}, for every formulaB.
The proof of this is a routine induction on formulas. B&(A) # [0, 1]. For otherwise we
would haveM (A) = R, which is false. S¢0, 1], H ¥ A, as desired. [

Before we provéheorems 32nd34, we give some definitions and lemmas.

Definition 27. Given a formulaB, let g(B) be the result of pushing all the occurrences of
O to the atomic formulas. For examplg(O(QOQO(p v Oq) v O—r)) = OOp Vv

OOOg) v —=OQOr). To be more precise, defiggB) inductively as follows:
gO"B)y=Q"B, if Be PV,
9(O"-B) = —~g(O"B),
9(0O"(B v C)) =g(O"B) v g(O"C), and
9(O"UB) = 0g(O"B).
Definition 28. A near-atomis a formula of the fornO" p wherep € PV.

Definition 29. A formula is simpleiff it is built up from near-atoms using the Boolean
connectives andl. Simple formulas are the formulas in the rangegof

Convention 30. We will take S4 to be formulated by its standard axioms and rules,
for a language whose formulas are just the simple formulas, treating the near-atoms as
indivisible atomic formulas. We also slightly restate the definitioriogfological model
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Definition 1: A topological model now becomes an ordered pllir= (X, V), whereX

is a topological space and assigns a subset of to each near-aton®)" p rather than
to each propositional variable. Mimicking Definition 1, for eachsimpleformula B, we
defineM(B), the subset assigned ¥ to B as follows:

M(Q"p) = V(O"p),
M(AV B) = M(A) U M(B),
M(=B) = X — M(B), and
M(OB) = Int(M(B)).
As in Definition 1, we define standard validity relations:
M & B iff M(B) = X.
X = Biff M = B for every modeM = (X, V).
Bisvalid (&= B) iff X = B for every topological spack.
The McKinsey—Tarski—Kripk& heorem 10still holds: Suppose thaX is a dense-in-
itself metric space and is a simple formula. Then the following are equivalentXix $4;

(i) = A (i) X = A (iv) R = A; (V) Y = Afor every finite topological spacg; and
(vi) Y = Afor every Alexandrov spaceé.

Lemma3l. B € S40) iff g(B) € S4iff g(B) € S40.

Proof. By a standard induction on the proof Bfin S40), we can show that iB € S40
theng(B) € S4. Itis obvious that if§(B) € S4 theng(B) € S40). Finally, if g(B) € S40
thenB € S40), since(B = g(B)) € S40O. O

Lemma 32. For every formula B, ¢B) € S4iff (0, 1) = g(B) where(0, 1) is the open
unitinterval.

Proof. This follows from the McKinsey—Tarski—KripkEheorem 1GandLemma 31 O
Theorem 33. If R, H = A then Ae S40.

Proof. Suppose thaf\ ¢ S40). Then, byLemmas 31and32, for some topological model
M = ((0,1),V), we haveM } g(A). Let M’ be the dynamic topological model
(R, f,V’), wherefx = x + 1 andV’(p) = {x € R: for some natural numben,
x—m € V(QO"p)}. f is a homeomorphism. We will be done if we can show that
M’ & A. For this, it suffices to show thal” = g(A), because ofemma 31and because
of soundness. And for this it suffices to show that for every simple forrBuleve have
M(B) = (0, 1) n M’(B). We show this by induction on the constructiongf

Base caseB is a near-atom, say)" p. Note the following:
x € (0,1) N M'(B)
= X € (0,1) andx € M'(Q"p)
= X € (0,1) andx +n e M’'(p)
= x e (0,1) andx +n e V/'(p)]
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= x € (0,1) and, for somen, x + n—me V(O™p)

= m=n, sincex € (0,1) andx +n—me V(QO"p) € (0,1)
= X € (0,1) andx € V(QO"p)

= xeV(B)

= X € M(B).

Conversely,

X € M(B)

= xeV(B)

= x € (0,1) andx € V(QO"p)

= x € (0,1) and, for somen, x +n—me V(QO"p)
= xe (0,1 andx +neV'(p

= x € (0,1) andx +n e M’(p)

= x € (0,1) andx € M'(QO"p)

= x € (0,1) N M'(B).

Inductive steB = C v D. M(C v D) = M(C) UM(D) = ((0,1) n M’(C)) U ((0, 1) N
M’(D)) = (0,1) N M’/(C v D).

Inductive stepB = —C. M(=C) = (0,1) — M(C) = (0,1) — ((0,1) n M'(C)) =
0,1) — (RN M'(C)) = (0,1) n M'(=C).

Inductive stepB = OOC. M(dC) = Int(M(C)) = Int((0,1) N M’(C)) = Int((0, 1)) N
Int(M’(C)) = (0, 1) n M (OC). O

Theorem 34. If A, H = Athen Ae S40.

Proof. Suppose tha’A ¢ S40). Theng(A) ¢ S4. So there is a Kripke modé&ll =
(W, R, V) (where(W, R) is a Kripke frame) such tha¥l -~ g(A). Now define a dynamic
topological modeM’ = (X, f, V') as follows:

X = {{w,n) : w € Wandn is an intege,

(w, )R (w’, m) iff wRw’ andn = m,

Y C X is openiff Y is closed under the relatidr’,
f(w,n) = (w,n+ 1), and

(w,n)y e V'(p) iff w e VQ"p).

X is a topological space, if we take the topology agensets as defined directly
above. In fact,X is an Alexandrov space (sé2efinition 4). f is both continuous and
open sincew, n)R (w’, m) iff f{(w,n)R f{(w’,m). And f is clearly one—one and onto.
SoM’ = (X, f, V') is a dynamic Alexandrov model, with a homeomorphism. We will
be done if we can show thd’ = A. For this, it suffices to show tha’ (= g(A), because
of Lemma 31and because of soundness. And for this it suffices to show that for every
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simple formulaB and everyw € W we havew € M(B) iff (w, 0) € M’(B). We show this
by induction on the construction &.

Base caseB is a near-atom, say)"p. Then(w,0) € M’(B) iff (w,0) € M’ (QO"p)
iff fM(w,0) € M'(p) iff (w,n) € M'(p)iff (w,n) € V'(p)iff w € V(Q"p) iff
w € M(Q"p) iff w € M(B).

Inductive stepB = C v D. (w, 0) € M’(C v D) iff (w,0) € M’(C) or (w,0) € M’/(D)
iff we M(C)orw e M(D) iff we M(C v D).

Inductive stepB = —C. (w,0) € M/'(=C) iff (w,0) ¢ M'(C) iff w ¢ M(C) iff
w e M(=C).

Inductive ste@B = (IC. (w, 0) € M’ (C) iff (Vw’)(VYn)(if (w, O)R'(w’, n) then{w’, n) €
M’(C)) iff (Yw')(if (wRw’ then(w’, 0) € M’(C)) iff (Yw')(if wRw’ thenw’ € M(C)) iff
we M{IC). O

GivenTheorem 250ne might conjecture that

DTLy =DTLr % =DTLjg 13, x =DTL4gx =
DTLp = DTLR 0 = DTLj0,11,0 = DTL 4.0.

But [24] defines a formulaA € DTLr »y — DTLy. Moreover, the example at the
beginning ofSection 3shows that

(+0p D Oxp) € DTL4 4 —DTL.
Nonetheless, we propose the following:

Conjecture35. (i) DTLy = DTLe. (i) DTLry = DTLjoyn = DTlpo =
DTL o150 (iii) DTL 49 = DTL 4. 0.

5. Recurrenceand theDTL of measure-preserving continuousfunctionson the closed
unit interval

A central motivation for this study is the phenomenon of recurrence in measure
theory and topological dynamics, and the possibility of expressing this phenomenon in
the framework of propositional logic. In fact, wean express recurrence in our trimodal
language.

Suppose thaf is a function on a seX. Say that a poink € Sis recurrent(for ) if
f"(x) € Sfor somen > 1. Letu be the Lebesgue measure defined on (some) subsets of
the closed unit intervalQ, 1]. If «(S) exists forS C [0, 1], we say thatS is measurable
We say that a functiori on [0, 1] is measure-preserviniff 1(f~1(S)) = u(S) for every
measurables C [0, 1]. Consider the following (non-essential) extension of the Poacar”
recurrence theorem di, 1] (see R9)):

Theorem 36. If f is a measure-preserving continuous function[0nl] then the set of
recurrent points of a non-empty open set 30, 1] is dense in S.
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In order to express recurrence in our trimodal language, define the possibility connective
<& as—[—, and the possibility connective # as—. These represent topological closure
and “some time in the future”, respectively. lret be the formula,

(Lp > O#HIP).
Let (X, f) be any dynamic topological system. Note th4t f) = reciff
vV openO C X : O C Cl{x : there is am > 1 such thatf "x € O}. (%)

By Theorem 36(x) is true whenX = [0, 1] and f is any measure-preserving continuous
function on [0, 1]. Thus, byTheorem 36 ([0, 1], f) & rec when f is any measure-
preserving continuous function ¢, 1]. So, in some sensecexpresses the phenomenon
of recurrence.

Thus the class\ of measure-preserving functions on e 1] is of interest. As we
have just shown,

(OA D OSO#OA) € DTL .
Conjecture37. DTLaq = DTLo,11 + (HA D CO#IA).

6. Purely topological and purely temporal fragmentsof DTLs

In work on DTL, we foresee that most of the action will be in the interaction between the
topological modality [J) and the temporal modalitie§ andx). As it turns out, temporal
differences often do not affect purely topological issues [Eesorem 33 Furthermore,
the purely topological fragments and the purely temporal fragments of DTLs will often
coincide with previously studied logics (s€heorems 3@nd43).

Theorem 38. Suppose thatl is a class of topological spaces arnf is a class of
continuous functions. Also suppose that for everyeX7, there is an f € F with
dom(f) = X. ThenDTLZ , = DTLZ. Thus temporal differences do not affect purely
topological issues.

Theorem 39. Suppose thaf is a class of topological spaces and that either

(i) every topological space is iA,

(i) ReT,
(i) some dense-in-itself metric space ifin

(iv) every finite topological space is 1A, or

(v) every Alexandrov space is 1.
ThenDTLS =S4
Proof. This follows from the McKinsey—Tarski—KripkEheorem 10 [

O _ O _ o _ O _ O _ o _ o _

Corollary 40. DTLg = DTLy =DTL3, =DTL; =DTLR =DTL,, =DTLg 4, =
DTLJD4 o= DTLY =S4 where fin is the class of finite topological spad&sich examples

s 11 —fin
are easily multiplied.
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Definition 41. Suppose thatf is a continuous function and tha¢ = dom(f). For
m,n € o, f has them-n-propertyiff there is somex € X such thatx, fx, ..., f™"x
are all distinct andf ™"™1x = f™x. f has thew-propertyiff there is somex € X such
thatx, fx, f2x, ... are all distinct. Suppose thatis a class of continuous functions.is
rich iff either (i) 7 contains some function with the-property or (i) for eachm, n € w,
F contains some function with the-n-property.

Remark 42. The following classes of functions are rich:
(i) the classH of homeomorphisms;
(ii) the classO of open continuous functions (a functionapeniff the image of every
open set is open);
(iii) the classM of measure-preserving continuous functiong@ri]; and
(iv) the class of functions on finite topological spaces with the discrete topology.

For (i) and (ii) it suffices to find a homeomorphism Brwith the w-property, for example

fx = x + 1. For (iii), the following function is continuous, measure-preserving, and has
the w-property: f (x) = 1 — 2x for x € [0, ] and f (x) = 2x — 1 forx € [3, 1]. To see
that f is measure-preserving consider a8®yc [0, 1]. Note thatu(f ~1(S) N [0, %]) =
n(f~HS9) N3, 1) = 3u(S), sou(f~X(S)) = 1(S). To see thatf has thew-property,

let x = +/2 — 1. Note thatf"(x) is of the formz + 2"v/2, wherez is an integer, so

x, fx, f2x, ... are all distinct. For (iv), we fixm andn and define a function with the—
n—property in the given class. L&t be the sef0,1,2,...,m+n}andletfx = x + 1 if

X <m+nandletf(m+n) =m.

Theorem 43. Suppose thaF is arich class of continuous functions. THB'rﬁL%* = WO.

Proof. Recall the axiomatization of WO given in the introduction. To show that &/0
DTL%*, it suffices to show that this axiomatization is sound for @f‘L To show that

DTL%* C WO, we consider two cases.

Case 1.F contains a function with the-property. Suppose th@ ¢ WO whereA s in the
language. O*. Then there is some infinite purely temporal model falsifyigo be more
precise, let amnfinite purely temporal moddde a functionv : PV x w — {0, 1}, where
PV is the set of propositional variables; where the natural numbers represent discrete
moments in time; and where 0 and 1 represent falsity and truth. Given an infinite purely
temporal modeV, we definen = B, for eachn € »w and each formul® in the language
LO* as follows:n = piff V(p,n) = 1;n = —-Biff n = B;n= (BvC)iff n = B
orn =EC;nkE OBIiff n+ 1 B; andn = B iff m = B for everym > n. The
completeness theorem for WO tells us that sidc& WO, there is some infinite purely
temporal modeV such that G A. Choose such ¥.

SinceF contains a function with the-property, we can choose a topological spxce
and a functionf € F and anx € X, such that the points, fx, ffx, fffx,... are all
distinct. Choose a functiod’ : PV — X such thatf¥x e V/(p) iff V(p,k) = 1, for
everyk € w. And defineM = (X, T, V'). By a standard induction on formulas, it can be
shown thatfkx € M(B) iff k = B for all formulasB in the languagé.©* and allk € w.

Thusx j= Asince Of= A. S0A ¢ DTLS", as desired.
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Case 2F contains a function with thevn-property for everyn, n € w. Suppose thaf ¢
WO whereA s in the languagé ©*. Let afinite purely temporal modéie an ordered triple
M = (Y, g, V) whereY is a finite setyg is a function onY; andV : PV x Y — {0, 1}.
Given a finite purely temporal mod®l = (Y, g, V), we definey &= B, for eachy € Y
and each formul® in the languagd.©* as follows:y = piff V(p,y) = 1;y = =B
iffy=ByE(BVvOIiffyEBory = CykE OBIff g(y) = B; andy = *B iff
g"(y) = B for everyn > 0.

Reference 21] proves that WO satisfies the finite frame property. So siAcg WO,
there is some finite purely temporal moddl = (Y, g, V) and somey € Y such that
y b= A. SinceY is finite, we haveg™"t1(y) = gM(y), for somem, n € w with theg' (y)
distinct fori < m+ n. Choose such am andn.

Choose a functiorf € F with them-n-property and leX be the topological space on
which f acts. Choose ar € X such thai, fx, ..., f™x are all distinct, and such that
fmintly — fMx. DefineV’ : PV — P(X) as follows:

V/(p) = {F4x: V(p, gy) = 1).
And letM’ = (X, f, V’). Claim: fkx € M/(B) iff gky = B for all k € w and formulasB
in the languagé.©*. We prove this by induction on formulas.
Base case: For propositional variabfesf Xx € M’(p) iff f¥x e V/(p)iff V(p, g¢y) = 1
iff g*y k= p.
Inductive step-, v: standard.
Inductive stepB = OC: fkx € M'(OC) iff fkt1x e M/(C) iff g¢tly = C (by IH) iff
gx = OC.
Inductive stepB = xC: fkx € M/(xC) iff (¥n > k)(f"x € M’(C)) iff (vn > k)(g"y =
C) (by IH) iff gy = *C.
Thusx ¢ M/(A) sincey = A. S0A ¢ DTLS*, as desired. O

O _ O _ O _ O _ O* _ O* _
Corollary 44. DTLy" = DTLy; = DTLy, =DTL; = DTLy = DTLpy =
DTLI%;{ = DTL%*H = DTL%* = WO, where fin is the class of finite topological spaces.
(Such examples are easily multipligd.

7. A temporal-over-topological fragment

In this section we axiomatize DF*/"

DTLo. Recall that

, the temporal-over-topological fragment of

DTLOO*/D =df {A € DTLo : A contains no()’s or *'s in the scope ofJ's}.

For the remainder of this section, we build the scope constraint into the definition of well-
formed formulas.
Let the logic WO/S4 be the logic given by the following axiomatic system:
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0. Classical tautologies

1. S4 axioms foE], for formulasA andB in the languagé.":
1.1 O(AD B) > (OA > OB)
1.20AD A
1.3 0ADO0OA
2. WO axioms for0D andsx:
2.1 *(AD B) D (xAD %B)
22 xAD A
2.3 *A D xxA
24 (O(Av B)=(OAVv(OB)
2.5 (O—~A=-0OA)
2.6 (OxA=x0OA
2.7 *A > OA)
2.8 The induction axiondA & x(A D> OA) D *A)
3. The rule of modus ponens.

4. The rule of necessitation for each modality: Fréminfer OA. From A infer xA.
From A infer A, if A has no occurrences @) or x.

We will say thatA is atheoreniff A € WO0/S4 and thaA is consistentff —A ¢ WO0/S4.
A WO0/S4+heoryis a set of formulas containing all the theorems of W0/S4 and closed under
modus ponens (and hence, under adjunctidriy. an S4theoremff A has no occurrence
of O orx and A € S4. An S4theoryis a set of formulas in the languagé’, containing
all the theorems of S4 and closed under modus ponens (and hence, under adjunction). A
WO0/S4-theoryT is completdff for every formulaA eitherA € T or—A € T. A W0/S4-
theoryT is consisteniff some formula is not inT. A set S of formulas isconsisteniff
some theoryT D Sis consistent. A W0/S4-theor¥ is w-closediff, for any formula A,
we have the following: ifD"A € T for everyn € w thenxA e T.

The main result of this section is

Theorem 45. W0/S4= DTLS*/".

Proving soundness (W0/S4 DTLSD*/D) is routine and left to the reader. Proving

completeness (mg?*/ﬂ C WO0/S4) is a bit tricky. We proceed as follows: we introduce
some notation and terminology; we state six useful lemmas, whose proofs we defer; we
state and prove completeness; and we provide the deferred proofs of the lemmas.

First some notation: & is shorthand for-x—A. Secondly, some terminology. A
necessitivas a formula of the fornCTJA. A quasi-necessitivés a formula of the form
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OMOAL & ... & O™OAmR, nj > 0. Thedegreeof a quasi-necessitive)™A; &
... & O™OAR is min(ny, ..., ny). Given a quasi-necessitive = OMOA; & ... &
O™ Ay, we define the quasi-necessitiy =q¢r OMT10A; & ... & O™ HOAR.
Given a quasi-necessitive = OMOA; & ... & O™OAn of degree> 1, we define the
guasi-necessitivg A =gt O™ 10AL & ... & Q" 10An.

Our six useful lemmas alsemmas 480 51 as follows:

Lemma 46. Suppose thatA v OB) € WO0/S4and that A contains no occurrences(f
or x. Then Ae S4or B € W0/S4

Lemma 47. Suppose thatA > B) € W0/S4and that B contains no occurrences@©for
x and that A is a quasi-necessitive. Then> (0B) € W0/S4

Lemma 48. Suppose thaD A € W0/S4 Then Ac W0/S4
Lemma49. If (A & #B) is consistent, thenA & (O"B) is consistent for some @ .

Lemma50. If Ais consistentthen & T for some consistent completeclosedWO0/S4
theory T.

Lemma5l. (A D B) € WO/S4iff for every consistent complete closedW0/S4theory
T,ifAecTthenBeT.

Using these lemmas, we can prove completeness.

Theorem 52. DTLS*/™ < wors4

Proof. It will suffice to define a canonical dynamic topological modiél = (X, f, V)
validating all and only the theorems of W0/S4. To defiie

(i) let X be the set of complete consistesttlosed theories;
(i) given a quasi-necessitivR, letBap ={u e X : A€ u};
(iii) impose the topology ofX given by the basis seBa, whereA is a quasi-necessitive;
the B a form a basis since they are closed under intersecBam Bc = Ba & ¢);
(iv) givenu € X, let fu={A: OAeu}; and
(v) letV(p)={ue X: peu}
First we check thai is indeed a dynamic topological model. We will check two things:
(1) fu e X foreachu € X; and (2)f is continuous. For (1), suppose thais a complete
consistentv-closed WO0/S4-theory. To see thhti is a theory, first note thatu contains

every theorem: ifA is a theorem then so §A; soOA € u; so A € fu. And furthermore
note thatf u is closed under modus ponens:

(ADB)e fuandAe fu

= O(AD>B)euandQAecu
= (OAD>D0OB)euandQAcu
= (OBeu

= Be fu.
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To see thaff u is complete, note that for any formufawe haveD A € uor—QA € u;
SOOA e uor(O—A € u;so A € fuor—-A e fu. To see thatfu is consistent,
suppose not. Then for some formllae fu, we have-A € WO0/S4. ButtherD A € uand
O—A € W0/S4, saOA € uand—OA € WO0/S4. This would make itself inconsistent.
To see thaff u is w-closed, fix a formulaA and suppose tha)" A € fu for everyn. Then
O™1A e ufor everyn. SoxOA € u by thew-closure ofu. SoO*A € u. SoxA € fu.
So fu is anw-closed complete consistent theory. Thus (1) is proviad:e X for each
ue X.

For (2), i.e. the continuity of , it suffices to note that ~1(Ba) = Bya-SoM isindeed
a dynamic topological model.

We now prove that, for each formukaand eactx € X, we have :

x € M(A) iff Ae x. (*)
We proceed by induction.
Base caseA € PV. Note:x € M(A) iff x € V(A) iff A € X, by the definition ofV.

Inductive stepA = —B. Note:x € M(A) iff x ¢ M(B) iff B ¢ x (by IH) iff A € X, by the
completeness of the theoxy

Inductive stepA = B v C. Note:x € M(A) iff x € M(B)orx € M(C) iff B € x or
C € x (by IH) iff A € x. The ) direction of this last ‘iff’ follows from the fact thax is
a WO0/S4-theory. The«) direction follows from the completeness of the therry

Inductive stepA = OC. Note:x € M(A) iff fx e M(C) iff C € fx (by IH) iff A € x,
by the definition off .

Inductive stepA = *C. Note:x € M(xC) iff (Yn € w)(f"x € M(C)) iff (Vn € w)(C €
f'x) (by IH) iff (vn € w)(Q"C € x) (by the definition off ) iff *C € x (by thew-closure
of x).

Inductive stepA = CJC. We consider both directions of the biconditional separatedy). (
Suppose that € M(OC) = Int(M(C)). Then for some basis sBp, whereD is a quasi-
necessitive, we have € Bp € M(C). SoD € x. Moreover, for every € X, if D € y
theny € M(C), in which caseC € y, by IH. So(D > C) € W0/S4, byLemma 51 So
(D > OC) € W0/S4, byLemma 47 SolJC € X, as desired.4) Suppose thdflC € x. It
suffices to show that € Boc € M(C) in order to show thax € Int(M(C)) = M(OC).
X € Bpc is given by the definition oBgc. ForBoc € M(C), suppose thay € Bc.
ThenC € y. SoC € y as desired.

Having proved+#), the last step in the Completeness proof is to note that gfW0/S4,
then, byLemma 50 for somey € X we haveA ¢ y. Soy ¢ M(A). SOM = A. SOA ¢
DTLO¥H. O

Now it remains to provéemmas 460 51

Proof of Lemma 46. The proof is semantic. Let hirelational modelbe a quartuple
M = (W, S, R, V) whereW is a non-empty set (of possible world§andR are binary
relations onW; andV assigns to each possible world a complete consistent S4-theory in
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the languagé.". Given a birelational modeM = (W, S, R, V), we define thevalidation
relationl= between worlds and formulas as follows:

w = Ciff C e V(w), if Cisinthe IanguageD;
w E —Ciff w & C;
wkECvVvDIffwECorw = D;
w = QC iff for every w’ e W, if wSw’ thenw’ = C; and
w = «C iff for everyw’ e W, if wRw' thenw’ = C.
Note that there is no conflict between the first clause and the second two clauses, since for

any complete consistent S4-thediyand any formula€ andD in the languagé.™, we
have both

-CeTiff C¢gT, and
CvDeTiffCeTorDeT.

We now define the canonical birelational modigél= (W, S, R, V) as follows:

W = {w : w is a complete consistent W0/S4-thery
wSw’ iff for every C, if OC € w thenC € w';

wRuw' iff for every C, if *C € w thenC € w’; and
V(w) = {C : C € w andC is in the languagé."}.

Note that, for anyw € W and any formulaC, we haveC € w iff w = C. In particular,
every theorem of W0/S4 is true in every world in the canonical model.

To prove the main statement of the lemma, we will prove that OB) ¢ W0/S4 on
the following three assumptiong contains no occurrences @ or x; A ¢ S4; andB ¢
WO0/S4. Choosevg € W such thatB ¢ wp. And choose a complete consistent S4-theory
T such that-A € T; this can be done sincg ¢ S4. Now define a new birelational model
M =(W, S, R, V') as follows:

W = WU {w;}, wherew; is some new world not ifaV;

S = SU {(w1, wo)}:

R = RU {(w1, w1)} U {(w1, w) : woRw};

V/(w) = V (w), foreach worldw € W; and

V/(wy) =T.

We will use =’ for the validation relation in the birelational mod&l’. Note that for

every formulaC and everyw € W, w =’ C iff w = C. In particular, ifC € W0/S4 then
w =’ C for everyw € W. We also claim that i € W0/S4 therw; =’ C. This is easily

proved by induction on the length of proof in W0/S4. But note that=’ (Av OB). So
(Av OB) ¢ W0/S4, as desired.(d

Proof of Lemma47. If A is of degree 0, then the result follows from the necessitation
rule and the S4 axioms fdrl. Otherwise,A = (C & D) € WO0/S4, whereC is a
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quasi-necessitive of degree 1 and D is a quasi-necessitive of degree 0. Note that

(=C = O—/C) € W0/S4. Note thaD is in the languagé™ and that D = [ID) € S4.
Since(A D B) € WO0/S4, we havé(C & D) D B) € W0/S4. So(—C v (D D B)) €

WO0/S4. So(O—|C v (D > B)) € WO0/S4. So—|C € WO0/S4 or(D > B) € S4, by

Lemma 46 SoO—|C € WO0/S4 orJ(D > B) € S4, by the rule of necessitation fop

for W0/S4 and the rule of necessitation fofor S4. SoO—|C € W0/S4 or(D > [OB) €

S4, by the S4 axioms. S@—|C v (D > 0OB)) € W0/S4. So(—C v (D > 0B)) €

WO0/S4. So((C & D) D 0OB) € W0/S4. So(A D [OB) € W0/S4, as desired.d

Proof of Lemma 48. Suppose thaDA € WO0/S4. Thenpv OA) € W0/S4 wherep is
any propositional variable. But thelh € WO0/S4, sincep ¢ S4 and bybemma 47 O

We defer the proof ofemma 49until after the proof oL.emma 51

Proof of Lemma 50. We will prove the lemma on the assumption that the language is
countable. First note thatemma 49 mplies that if, for everyn, (A > O"B) € WO0/S4,
then (A O xB) € WO0/S4. Now suppose thah is consistent. LetS = {A}, which
is a consistent-closed set of formulas. Enumerate all the formulag\gs. . ., A, .. ..
Assume that the s&, of formulas has been defined and is finiteAlf is of the form—xB
and$, U {An} is consistent, choose the firstso that—=()™B is consistent withs, U { An}
and letS,;1 = SSU{An, =OMB)}. Otherwise, ifA, is not of that form but is consistent with
S letSi41 = STU{AR}. If Ay is of the form«B andS, U { An} is inconsistent, choose the
first m so that=(Q™B is consistent witls, U {—=An} and letS11 = $§ U {=An, ~O™B}.
Otherwise, ifA, is not of that form but is inconsistent with,, let S,+1 = $§ U {—An}.
ThenS = Uy §, is a complete consisteatclosed theory withtA e S, [

Proof of Lemma 51. (=) This direction follows from the definition of “W0/S4-theory”.
(<) Suppose(A D B) ¢ WO0/S4. Then—(A & —B) ¢ WO0/S4. So byLemma 50
(A& —B) € T for some consistent compleigclosed W0/S4-theorf. SoA € T and
B ¢ T. So itis not the case that for every consistent completdosed WO0/S4-theory,

if AcTthenBeT. O

Now it remains to provéemma 49First, some stage setting. A finite s&bf formulas
is closediff it is closed under subformulas an®C € & = O*C € @, for every formula
C. Given a closed se® of formulas, a®-atom (often we just sayaton) is a seta of
signed formulasi.e. ordered pairs of the formC = (+,C) or —C = (—, C), where
C € ¢. An atoma is asubatomof an atomg iff « € B. An atome is ¢-completeg(we
often just saycompletg iff, for eachC € &, either+C € « or —C € «. An atomu is
closediff the set{C : +C € «} is closed. Note that everg-complete atom is closed,
but not vice versa. For example, suppose that= {p, Op, *p, O=*p}; then the atom
a = {+p, —Op} is closed but notb-complete.

An atom isconsisteniff the corresponding formula is consistent, i.e. its negation is
not a theorem of W0/S4. The formula corresponding+t®, —B, —C}, for example, is
A & —B & —C. We will not distinguish atoms from their corresponding formulas.

Given an atona, o =gt the set of signed formulas inof the form+=O A; andass =gt
the set of signhed formulas in containing no temporal modalities.
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Given a closed seb of formulas, we define some relations @acomplete consistent
¢-atoms:

Rap iff (o & #p) is consistent

S iff (« & O"B) is consistent

Sop iff SeB; and

S'ap iff Swas, ..., Sen_18, for somews, ..., an_1.

Before we prove.emma 49 we first state and provseemma 530 Lemma 56

Lemma 53. Suppose that is a closed set of formulas and thatis a closed consistent
¢-atom. Then the following is a theorem \6f0/S4:

(@s4& ap) D a.

Proof. List the members ok — (assU o) as£Cy, ..., =Cp so thatifi < j thenC;j is
not a subformula of;. Defineag = o andomy1 = om —{£Cmya1}, form=0,...,n—-1.
Soan = (as4U ). Notice also that eadl, is closed and consistent. Now it suffices to
show thatlomy1 D am) € WO/S4, foreachm =0, ..., n — 1. We consider five cases.

Case lomy1 = am — {+(D & E)}. Sinceay, is closed and consistent,D and+E are in
odm+1- SO(OlmJ,.]_ D C(m) = (Olm_l,.]_ D Om+1 & D& E) e WO0/SA4.

Case 2am+1 = am — {—(D & E)}. Sincean, is closed and consistent, eitheD or —E
is in omy1. Assume that it is-D. So(am+1 O am) = (@m+1 D am+1 & (D & E)) €
WO0/S4, sincé—D D> —(D & E)) € WO0/S4.

Case 3.am+1 = am — {£—D}. Sincean, is closed and consistent;D € amy1. SO
(0me1 D am) = (@ms+1 D amy1 & +=—D) € WO0/S4, sincgFD D £—D) € W0/S4.

Case 4ami1 = am — {+=*D}. Sincean is closed and consistent and singdD >
D & O*D) € W0/S4, both+D and+OxD are inam+1. SO(@m+1 D om) = (dme1 D
amr1 & *D) € WO0/S4, sincgD & OxD > D) € W0/S4.

Case 5o0my1 = am — {—+*D}. Sincean, is closed and consistent and singexD D
—(D & (OxD)) € WO0/S4, either—D or —Ox*D is in amy1. Let E be D or Ox*D,
whichever is appropriate. Thelams1 O am) = (@m+1 D amr1 & —xD) € WO0/S4,
since(—E > —xD) € WO0/S4.

(Lemma 53s inspired by 8].) O

Lemma 54. Suppose tha is a closed set of formulas and that 8nd $ are defined as
above. Then for any & @ and any®-complete consister®-atomse and g, if S8 then

Sap.

Proof. By induction onn. The cases fon = 0 andn = 1 are obvious. For the
inductive step, suppose thattlas. Then for some ators, we haveSus and S"sg, so,

by IH, we haveS,88. Assume that-S,11¢8. So (e D =O™1B) € W0/S4. Recall that
(asa & a0y D a) € WO0/S4 byLemma 53 So (asgq & 0y D -O™1p) e WO/S4. So,
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(masaV (e D —~O"18)) € W0/S4. Sincer is consistent, So i@s4, SO—ass & S4. So,
by Lemma 46 we have

(@ D -O™18) e W0/S4 (%)

Now recall that(e & (O98) is consistent. We claim that, in fagt)s D ao) € W0/S4.
To see this, first note th&@ < & for every signed formulacOC ¢ ey sincex is a
¢-atom. So, for every signed formutaQOC € ey, either4+-C or —C is in §. Sincea
is consistent withD3, we have (IH+QOC € a0y iff +C € §;and (2)—-OC € a0y iff
—C € 4. So for every signed formul&(OC € ary, we have(Oé D £(OC) € WO0/S4.
And so(O8 D ao) € W0/S4.

So, by &), (08 > =Q™18) € W0/S4. SoO( > —Q"B) € WO0/S4. So(s >
-0O"B) € W0/S4 byLemma 47 But this contradict§,68. O

Lemma55. Suppose thad is a closed set of formulas and that R anftié8e defined as
above. Also suppose thatand 8 are ¢-complete consistenk-atoms. Then if RS then
SaB for some ne w.

Proof. We adapt the third clause of the proof of Lemma 1 1d][ Suppose thatS"«

for everyn € w. We want to show that Re8. Note thatg ¢ Y, whereY = {§ : §isa
d-complete consister-atom ands "« for somen € w}. We claim, for everyd-complete
consistent-atoms,

if 8 € Y then(s D OVY) e W0/S4 (*)

To see §), suppose that € Y is a $-complete consistenk-atom. LetZ = {y : y isa ®-
complete consistenk-atom and§ & Oy) is consisterit ThenZ C Y. So(vZ D VvY) €
WO0/S4. So(OvZ D OVvY) € WO0/S4. Furthermoregid D OVvZ) € WO0/S4, sinceZ
containsall they such thats & Oy) is consistent. S& > OVY) € WO0/S4, as desired.

Given ), (VY D QVY) € WO0/S4. So, by the induction axionlyY > *VvY) €
WO0/S4. Clearlye € Y. So(a D VvY) € WO/S4. So(a@ D *vY) € W0/S4. We also
claim that(vY > —8) € WO0/S4. The reason for this is thAt & Y, in which cases is
inconsistent with every € Y. So(xvY D *x—f8) € W0/S4. So(a D *—B) € W0/S4. So
—(ax & #B) € W0O/S4. So—Rap, as desired. O

Lemma56. Suppose that is a closed set of formulas and thatand g are complete
consistenip-atoms. Then ifoe & #8) is consistent, thefw & (O"B) is consistent for some
neow.

Proof. This is an immediate corollary toemmas 54nd55. [

Proof of Lemma 49. Suppose thatA & #B) is consistent. Letd be the smallest closed
set of formulas such thatA & #B) € &. Let & = {As, ..., An} where theA; are all
distinct andA; = (A & #B). Definea; = {+A1} and for eaclh = 2, ..., m, define
an = apn—1 U {+An} if Ay is consistent withw,_1, anden, = an—1 U {—An} otherwise.
And lete = om. Thena is a complete consister-atom such that-(A & #B) € «. So
(a & #B) is consistent. Also note thatA € «.
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Let & = {By, ..., Bn} where theB; are all distinct and3; = B. Defines1 = {+B1}
and foreacm = 2, ..., m, defineBn = Bn_1U{+Bn} if (¢ & #(Bn—1 & B)) is consistent,
andBn = Bn-1 U {—Bp} otherwise. And let8 = Bm. Theng is a complete consistent
¢-atom such that-B € B8 and (« & #p) is consistent. So bemma 56 (¢ & O"B)
is consistent for soma € w. But then(A & (Q"B) is consistent since-A € « and
+Bep. O
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