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Abstract

In the topological semantics, quantified intuitionistic logic, QH, is
known to be strongly complete not only for the class of all topological
spaces, but also for some particular topological spaces — for example,
for the irrational line, P, and for the rational line, Q, in each case with
a constant countable domain for the quantifiers. Each of P and Q is a
separable zero-dimensional dense-in-itself metrizable space. The main
result of the current paper generalizes these known results: QH is
strongly complete for any zero-dimensional dense-in-itself metrizable
space with a constant domain of cardinality ≤ the space’s weight; con-
sequently, QH is strongly complete for any separable zero-dimensional
dense-in-itself metrizable space with a constant countable domain. We
also prove a result that follows from earlier work of Moerdijk: if we al-
low varying domains for the quantifiers then QH is strongly complete
for any dense-in-itself metrizable space with countable domains.

Keywords: Quantified intuitionistic logic, topological semantics, com-
pleteness.

Assume a countable quantified intuitionistic or modal language without iden-
tity. Rasiowa and Sikorski [20] extend the the McKinsey-Tarski topological
semantics ([13, 14]) for propositional intuitionistic H [propositional modal S4]
to a constant-domain topological semantics for quantified QH [QS4] without
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identity.1 They prove the completeness of QH [QS4] for the class of all topo-
logical spaces, assuming constant domains for the quantifiers, and take up
the question of completeness for particular topological spaces. For example,
they show how to construct a subspace of the irrational line P, for which
QH [QS4] is complete with a constant countable domain. On the negative
side, they show that QS4 is not complete for any Baire space, e.g., R, with
a constant countable domain.2

Subsequent work has improved on the results in [20]. On the negative
side, neither QS4 nor QH is complete for any locally connected space, e.g.,
R, with a constant domain of any cardinality ([10, 21] and below). On the
positive side, Dragalin [2] shows that QH is strongly complete for NN with
a constant countable domain: since NN is homeomorphic to P, QH is also
strongly complete for P, with a constant countable domain.3 By a completely
different argument, Kremer [10] shows that QS4 and consequently QH are
strongly complete for the rational line, Q, with a constant countable domain.

Each of P and Q is a separable zero-dimensional dense-in-itself metrizable
space. The main result of the current paper is that QH is strongly complete
for any zero-dimensional dense-in-itself metrizable space, with a constant
domain of cardinality ≤ the space’s weight.4 A corollary: QH is strongly
complete for any separable zero-dimensional dense-in-itself metrizable space,
with a constant countable domain. This substantially generalizes the above-
mentioned results for P and Q: besides these, the most important separable
dense-in-itself zero-dimensional metrizable space is the Cantor space, C, but

1They note that, in the intuitionistic case, the extension of the topological semantics
to a quantified language goes back to [18], and in the modal case to [19].

2Recall that a Baire space is a topological space where the intersection of any countable
family of dense open sets is dense.

3NN is the set of total functions from N to N, topologized as follows. Suppose that
g : {0, ..., n − 1} → N, for some n ∈ N: let Bg = {f ∈ NN : (∀m < n)(f(m) = g(m))}.
The topology on NN is determined by the base {Bg : (∃n ∈ N)(g : {0, ..., n − 1} → N)}.
It is well-known that NN and P are homeomorphic.

4The weight of a topological space is the minimal cardinality of a basis for the space.
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there are many others.5,6 We leave it open whether we can improve the
result to the claim that QH is strongly complete for every zero-dimensional
dense-in-itself metrizable space, separable or not, with a constant countable
domain, rather than merely a constant domain of cardinality ≤ the weight
of the space.

The semantics in [20] is a constant-domain semantics: at each point in a
topological space, the domain over which the quantifiers range is the same.
This contrasts with the Kripke semantics, where completeness fails unless
we allow varying domains. The semantics we present below is a topological
semantics with varying domains, for which constant-domain models are a
special case: this will be useful even for our constant-domain results. Our
varying-domain semantics is in turn a kind of special case of the sheaf seman-
tics originating in [6] and presented in [16] and elsewhere:7 more precisely,
our semantics is a notational variant of the sheaf semantics restricted to
identity-free languages interpreted over topological spaces rather than the
more general complete Heyting algebras. Thus, a straightforward conse-
quence of the main theorem of [16] is that, in our varying-domain semantics,
QH is complete for any dense-in-itself metrizable space. Here, we improve on
this a bit: QH is strongly complete for any dense-in-itself metrizable space,
with countable domains. Our proof is really not too different from the proof

5Up to homeomorphism, there are 2c separable dense-in-themselves zero-dimensional
metrizable spaces, where c is the cardinality of the continuum. Proof. It follows from
Proposition 1.3.15 in [4] that the separable dense-in-themselves zero-dimensional metriz-
able spaces are, up to homeomorphism, the dense-in-themselves subspaces of C. This gives
us 2c as an upper bound on the cardinality, up to homeomorphism, of the separable dense-
in-themselves zero-dimensional metrizable spaces. Now, as noted in [15], any subset of N
can be identified with a member of C in a natural way, so that any subset of P(N) can
be identified with a subspace of C. In particular, any nonprincipal ultrafilter U on N can
be identified with a subspace of C. Indeed, any such U is a dense-in-itself subspace of C.
Moreover, by Corollary 2 in [15], there are 2c pairwise nonhomemorphic nonprincipal ul-
trafilters on N. Thus, there are at least 2c pairwise nonhomemorphic dense-in-themselves
subspaces of C. And any subspace of C is a separable zero-dimensional metrizable space.
So there are at least 2c pairwise nonhomemorphic separable dense-in-themselves zero-
dimensional metrizable spaces. I am grateful to Henno Brandsma for pointing this out to
me.

6From early on, Cantor space has figured prominently in QH completeness results: [20]
(page 423, footnote 1) cites a annoucement by Beth, in a 1957 colloquium in Amsterdam,
that QH is complete for the family of closed subspaces of C.

7[1] presents a sheaf semantics, and [12] presents a closely related varying-domain topo-
logical semantics, for first-order S4 with identity.
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Table 1: Summary of results for dense-in-themselves metrizable spaces

space domains domain size QH QS4
Q constant countable 3 3 [10]

unrestricted 3 3
varying countable 3 3

unrestricted 3 3

R constant countable 7 7 [20]
unrestricted 7 [10, 21] 7 [10, 21]

varying countable 3 ∗ 7 [12]
unrestricted 3 ∗ —

P constant countable 3 [2] 7 [20]
unrestricted 3 —

varying countable 3 7 [12]
unrestricted 3 —

any constant countable 7 7
unrestricted 7 7

varying countable 3 ∗ 7
unrestricted 3 ∗ —

any 0-d constant countable — 7
unrestricted 3 ∗ —

varying countable 3 ∗ 7
unrestricted 3 ∗ —

any sep 0-d constant countable 3 ∗ 7
unrestricted 3 ∗ —

varying countable 3 ∗ 7
unrestricted 3 ∗ —

In this table, Q is the rational line, R the real line, and P the irrational line. The
notation ‘any’ stands for any dense-in-itself metrizable space; ‘any 0-d’ stands for any zero-
dimensional dense-in-itself metrizable space; and ‘any sep 0-d’ stands for any separable
zero-dimensional dense-in-itself metrizable space. A checkmark, 3, indicates that the
given logic is strongly complete for the given topological space; an exmark, 7, indicates
that the logic is not complete for the given topological space (or at least one such space,
in the case of ‘any’, ‘any 0-d’ and ‘any sep 0-d’); and an em dash, —, indicates that the
questions of completeness and strong completeness remain open. Results proved in the
current paper are marked with an asterisk. Some results are cited: uncited results follow
easily from cited ones.

—————————————————————————————–
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in [16], where the mild improvements to strong completeness and countable
domains could have been achieved with minor ammendments.

The current paper proves results only for QH and not for QS4. There are
some known dissimilarities: QH is strongly complete while QS4 is incomplete
for P and for C with a constant countable domain.8 It remains an open
question whether QS4 is complete for P or for C with a constant uncountable
domain. It remains a further open question whether QS4 is complete for every
zero-dimensional dense-in-itself metrizable space with a constant domain.
Table 1 summarizes some known results as well as some questions we believe
to be open.

1 Preliminaries

Let L be a quantified intuitionistic language with a countable set Var of
variables; disjoint countable sets Predn of n-ary predicate symbols, for each
n ≥ 1; a countable set Names of names; disjoint countable sets Funcn of n-ary
function symbols, for each n ≥ 1; connective &, ∨, → and ∼; quantifiers ∀
and ∃; and parentheses. Let Pred =

⋃
n Predn and Func =

⋃
n Funcn; we

assume that Pred is nonempty. Note that L has no equals sign. If A is a
formula, t is a term, and x is a variable, then [t/x]A is the result of replacing
every free occurrence of x in A with t. We say that t is substitutible for x
in A iff no free occurrence of x in A is in the scope of any bound variable y,
where y occurs in t. Given any set D, D-terms, D-formulas and D-sentences
are terms, formulas and sentences in the language L(D), which is the result
of expanding the language L so that every member of the set D is a name
of L. (Here we assume that D ∩ S = ∅, if S = Var, Pred, Names or Func.)
It will be useful to let Term(D) be the set of closed D-terms. Note that,
given any D-formula A, any variable x ∈ Var and any d ∈ D, the D-formula
[d/x]A is the result of replacing every occurrence of x in A with d. We
reserve the unprefixed expressions ‘formula(s)’ and ‘sentence(s)’ for formulas
and sentences in the original language L.

Axiomatizations quantified intuitionistic logic, QH, are easily found on-
line or in the literature. We repeat the axiom schemes and rules as found in
[17]. In the last two axiom schemes, the term t must be substitutible for x
in A:

8The incompleteness is a special case of the incompleteness of QS4 for any Baire space
with a constant countable domain ([20]).
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• Axioms.

– A→ (B → A)

– (A→ B)→ ((A→ (B → C))→ (A→ C))

– A→ (B → (A & B))

– (A & B))→ A

– (A & B))→ B

– A→ (A ∨B)

– B → (A ∨B)

– (A→ C)→ ((B → C)→ (A ∨B)→ C)

– (A→ B)→ ((A→ ∼B)→ ∼A)

– ∼A→ (A→ B)

– ∀xA→ [t/x]A

– [t/x]A→ ∃xA

• Rules of inference.

– Modus Ponens: From A and (A→ B), conclude B.

– ∀-Introduction: From (C → A) conclude (C → ∀xA), where x is
any variable that does not occur free in C.

– ∃-Elimination: From (A → C) conclude (∃xA → C), where x is
any variable that does not occur free in C.

A nonempty finite set Γ of formulas of L is consistent iff the negation of
their conjunction is not a theorem of QH. A possibly infinite nonempty set
Γ is consistent iff every nonempty finite subset is consistent. We follow [7]
in extending the notion of consistency to what they call double theories ([7],
Section 1.1.2), i.e., pairs 〈Γ,∆〉 of sets of formulas. Here’s why. (1) Once
a semantics is on the table, completeness is usually articulated in terms
of validity: if a formula is valid then it is a theorem. (2) In the classical
setting, completeness is strengthened to strong completeness by first restating
completeness in terms of consistency rather than validity: every consistent
formula, and thus every finite consistent set of formulas, is satisfiable. (3)
Strong completeness is then the stronger claim that every consistent set, finite
or infinite, of formulas is satisfiable. Step (2) works in the classical setting
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because the non-theoremhood of a formula A is equivalent to the consistency
of its classical negation, ¬A. But the analog fails in the intuitionistic setting:
(p∨∼p) is not a theorem, even though ∼(p∨∼p) is not consistent. Thus, in
the intuitionistic setting, the claim that every finite consistent set of formulas
is satisfiable is weaker than completeness, i.e., the claim that every valid
formula is a theorem. So this does not generalize to a suitable version of
strong completeness for infinite sets of formulas.

This is fixed by considering pairs 〈Γ,∆〉 of sets of formulas as follows.
A pair 〈Γ,∆〉 of nonempty finite sets of formulas is consistent iff the for-
mula

∧
Γ →

∨
∆ is not a theorem of QH. A pair 〈Γ,∆〉 of possibly infinite

nonempty sets of formulas is consistent iff every pair 〈Γ′,∆′〉 is consistent,
where Γ′ is a finite subset of Γ and ∆′ is a finite subset of ∆. Note that a
set Γ is consistent iff the pair 〈Γ, {⊥}〉 is consistent where ⊥ is any contra-
diction. More importantly, notice that the non-theoremhood of a formula
A is equivalent to the consistency of the pair 〈∅, {A}〉: thus, completeness
can be restated in terms of consistency rather than theoremhood, and can
be appropriately strengthened to strong completeness. See page 10, below.

2 Topological semantics

The topological semantics in [20] is a constant-domain semantics: here we
present a generalization that allows varying domains. Our terminology and
notation are adapted from [7] and [10]. We assume familiarity with the
basics of point-set topology: [3] and [5] are standard references. We will not
distinguish between a topological space and the underlying set, e.g., we will
use R both for the set of real numbers and the topological space consisting
of this set together with the standard topology on it. We will use Int(S) for
the interior of S and Cl(S) for the closure of S.

Given a topological space X, a system of domains is a family, D =
{Dx}x∈X , of nonempty sets indexed by points in X satisfying the follow-
ing condition:

the set Od =df {x ∈ X : d ∈ Dx} is open in X, for every d ∈
⋃
x∈X Dx.

For reasons that will become clear in Section 4, we refer to this condition as
the expanding-domain condition. A predicate topological space is an ordered
pair X = 〈X,D〉, where X is a topological space and D is a system of
domains. We let DX =df

⋃
x∈X Dx. It will be useful, for any DX-sentence A
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to define OA =df X, if no members of DX occur as names in A; and otherwise
OA =df Od1 ∩ . . .∩Odn , where d1, . . . , dn are the members of DX occurring as
names in A. If κ is a cardinal number, we say that X has a constant domain
of cardinality ≤ κ if ∀x ∈ X, Dx = DX and card(DX) ≤ κ. In particular,
we say that X has a constant countable domain iff X has a constant domain
of cardinality ≤ ℵ0. We say that X has countable domains iff every Dx

is countable. We say that X is countable iff X is countable and each Dx is
countable. We say that X is based on X. Where X is a topological space and
D is a single domain, i.e., a nonempty set, we write 〈X,D〉 for the predicate
topological space based on X with D as a constant domain.

A predicate topological model is an ordered triple M = 〈X,D, V 〉, where
X = 〈X,D〉 is a predicate topological space, and

V : Pred ∪ Names ∪ Func→
⋃
n≥1

P(X)DX
n ∪DX ∪ (

⋃
n≥1

DX
DX

n

)

is such that

• V (P)(d1, . . . , dn) ⊆
⋂n
i=1Odi for every P ∈ Predn and d1, . . . , dn ∈ DX;

• V (c) ∈ Dx for every c ∈ Names and x ∈ X;

• V (f)(d1, . . . , dn) ∈ Dx for every x ∈ X, every f ∈ Funcn and every
d1, . . . , dn ∈ Dx; and

• V (P)(d1, . . . , dn) is an open subset of X for every P ∈ Predn and
d1, . . . , dn ∈ DX.

We say that M is based on X.
Suppose that M = 〈X,D, V 〉 is a predicate topological model. First we

define ValM(t) ∈ DX for every closed DX-term t: ValM(d) = d, if d ∈ DX; if
c ∈ Names then ValM(c) = V (c); and if f ∈ Funcn and t1, . . . , tn are closed
DX-terms then ValM(ft1 . . . tn) = V (f)(ValM(t1), . . . ,ValM(tn)). Note that if
x ∈ X and if t is a closed DX-term such that the members of DX occuring
in t as names are all in Dx, then ValM(t) ∈ Dx.

Next, we define ValM(A) ⊆ X, for each DX-sentence A as follows:
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ValM(Pt1 . . . tn) = V (P)(ValM(t1), . . . ,ValM(tn)),
where P ∈ Predn and t1, . . . , tn are DX-terms

ValM(A & B) = ValM(A) ∩ ValM(B)

ValM(A ∨B) = O(A∨B) ∩ (ValM(A) ∪ ValM(B))

ValM(∼A) = O∼A ∩ Int(X − ValM(A))

ValM(A→ B) = O(A→B) ∩ Int((X − ValM(A)) ∪ ValM(B))

ValM(∀xA) = O∀xA ∩ Int(
⋂
d∈DX

((X −Od) ∪ ValM([d/x]A)))

ValM(∃xA) =
⋃
d∈DX

ValM([d/x]A)

It is routine to show that ValM(A) is open for every DX-sentence A, and that
ValM(A) ⊆ OA.

The clause for ValM(∀xA) looks a bit strange, but is forced on us in the
presence of varying domains. With a constant domain D, the clause reduces
to ValM(∀xA) = Int(

⋂
d∈D ValM([d/x]A)), which is fine.9 In the more general

varying-domain case, the clause for ValM(∀xA) becomes more intuitive if we
note that it is equivalent to the following, by design:

x ∈ ValM(∀xA) iff (∃ open O)(x ∈ O and (∀y ∈ O)(∀d ∈ Dy)(y ∈ ValM([d/x]A)))

We note a counterintuitive but harmless consequence of the fact that
ValM(A) ⊆ OA: if there is no x ∈ X such that d, d′ ∈ Dx and if both d
and d′ occur in the DX-sentence A then ValM(A) = ValM(∼A) = Val(A →
A) = OA = ∅. There are workarounds for this, but they are not needed
for either soundness or completeness, which will shortly be defined in terms
of sentences, i.e. sentences in the original language L, and not in terms of
DX-sentences: thus, for example, for any sentence A, ValM(A→ A) = X.

If A is a sentence (i.e., not merely a DX-sentence), we say that M 
 A
(A is valid in M) iff ValM(A) = X. If A is an open formula, then we follow
[7], Section 3.2, in saying that M 
 A iff M 
 ∀A, where ∀A is the universal

9We take the interior of
⋂

d∈D ValM([d/x]A) rather than just
⋂

d∈D ValM([d/x]A), to
ensure that ValM(∀xA) is open.
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closure of A.10 We say that X 
 A iff M 
 A for every M based on X.
We say that X 
 A iff X 
 A for every X based on X. If X is a class of
topological spaces [of predicate topological spaces], then we say that X 
 A
iff X 
 A [X 
 A] for every X ∈ X [X ∈ X]. We say that A is valid in X
[X, X] iff X 
 A [X 
 A, X 
 A]. QH is sound for a class X of [predicate]
topological spaces iff X 
 A, for every formula A ∈ QH; and QH is complete
for a class X of [predicate] topological spaces iff A ∈ QH for every formula
A with X 
 A. If X [X] is a topological space [predicate topological space]
We say that QH is sound or complete for X [X] iff QH is sound or complete
for {X} [{X}].

If Γ is a nonempty set of sentences, we define ValM(Γ) =
⋂
A∈Γ ValM(A).

If Γ and ∆ are nonempty sets of sentences, then ValM(〈Γ,∆〉) = ValM(Γ)−⋃
A∈∆ ValM(A). The pair 〈Γ,∆〉 of nonempty sets of sentences is satisfiable in

X iff ValM(〈Γ,∆〉) 6= ∅ for some model M based on X. If X is a topological
space, then 〈Γ,∆〉 is satisfiable in X iff 〈Γ,∆〉 is satisfiable in some predicate
topological space based on X. If X is a class of topological spaces [predicate
topological spaces], then 〈Γ,∆〉 is satisfiable in X iff 〈Γ,∆〉 is satisfiable in
some X ∈ X [some X ∈ X]. Note that QH is complete for a class X of
[predicate] topological spaces iff every consistent pair 〈Γ,∆〉 is satisfiable in
X, where Γ and ∆ are finite. We say that QH is strongly complete for X iff
every consistent pair of nonempty sets of sentences is satisfiable in X. If X
[X] is a topological space [predicate topological space] We say that QH is
strongly complete for X [X] iff QH is strongly complete for {X} [{X}].11

The foundational results in [20] are not for the topological semantics just
presented, but rather for our semantics restricted to predicate topological
spaces with a constant domain. Accordingly, we say that QH is [strongly]
complete for a topological space X with a constant domain iff QH is [strongly]
complete for 〈X,D〉 for some constant domain D. Similarly, QH is [strongly]
complete for X with a constant domain of cardinality ≤ κ iff QH is [strongly]
complete for 〈X,D〉 for some constant domain D of cardinality ≤ κ.

10An equivalent definition: M 
 A iff OA′ ⊆ ValM(A′) for every DX-instance A′ of A,
where a DX-instance of a formula A is any DX-sentence of the form [d1/x1] . . . [dn/xn]A.

11Here we follow a decision made in [7], in the context of Kripke semantics: for pairs
〈Γ,∆〉, we only define satisfiability when Γ and ∆ are sets of sentences and not when Γ and
∆ are arbitrary sets of formulas. For the latter, we would want the effect of surrounding
the whole pair 〈Γ,∆〉 with an existential quantifier. There are ways of doing this and
getting the desired results, but they introduce distracting complications.
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3 Results

It is routine to show that QH is sound for any class of predicate topological
models. The main QH-completeness result in [20] is that QH is complete for
the class of all predicate topological spaces with constant domains ([20], X,
4.1), indeed with constant countable domains. For our main result, Theorem
3.1, we recall that a metric on a nonempty set X is a function d : X×X → R

such that, for every x, y, z ∈ X, (i) d(x, y) = d(y, x), (ii) d(x, y) ≥ 0, (iii)
d(x, y) = 0 iff x = y, and (iv) d(x, z) ≤ d(x, y) + d(y, z). An open ball
is a subset of X of the form {y : d(x, y) < r}, where x ∈ X and r is a
positive real number: the point x is the centre of {y : d(x, y) < r}, and r is
its radius. A metric space 〈X, d〉 is a nonempty set together with a metric.
And a topological space X is metrizable iff there is a metric d on X such
that the open balls form a basis for its topology. Given a metric d on a
nonempty set X, we identify the metric space 〈X, d〉 with the topological
space whose topology is given by the basis of open balls. We also note that
if x ∈ O ⊆ X where O is open, then there is an open ball B with centre x
such that x ∈ B ⊆ O.

We also recall that a topological space is zero-dimensional iff it has a
basis of clopen sets, i.e., sets that are both closed and open; is dense-in-itself
iff, for no point x is the singleton {x} open; and is separable iff it has a
countable dense subset.

Theorem 3.1. (Main result) QH is strongly complete for any zero-
dimensional dense-in-itself metrizable space, with a constant domain of car-
dinality ≤ the space’s weight, i.e., the minimal cardinality of a basis for the
space.

Corollary 3.2. QH is strongly complete for any separable zero-dimensional
dense-in-itself metrizable space, with a constant countable domain.

We prove Theorem 3.1 in Section 7, below. Corollary 3.2 follows im-
mediately since every separable metrizable space has a countable basis. As
noted in our introductory remarks, Corollary 3.2 substantially generalizes
the known results for P and Q. We leave it open whether QH is strongly
complete for any zero-dimensional dense-in-itself metrizable space, separable
or not, with a constant countable domain.

If we allow varying domains, then we can both remove the requirement
of zero-dimensionality and rely entirely on countable domains:

11



Theorem 3.3. For any dense-in-itself metrizable space X, there is a system
D of countable domains such that QH is strongly complete for the predicate
topological space 〈X,D〉.

As noted in our introductory remarks, Theorem 3.3 more or less follows from
the main result of [16], where the result is stated as simple, i.e., not strong,
completeness and there is no constraint on the size of the domains. See
Section 7, below, for a proof.

It is worth mentioning an incompleteness result in the constant-domain
semantics. A space X is connected if it is not the union of two nonempty
disjoint open sets, and that a subset S ⊆ X is connected (in X) if it is
connected as a subspace of X. Note that an open subset of a space X is
connected iff it is not the union of two nonempty disjoint open sets. A space
is locally connected if it has a basis consisting of connected open sets. Note
that R is locally connected, since it has as a basis the family of open intervals.
Also, R is a dense-in-itself metrizable space. Thus, the following result from
[10] shows that Theorem 3.1 cannot be generalized to all dense-in-themselves
metrizable spaces:

Theorem 3.4. For any locally connected space X, QH is not complete for
X with constant domains; i.e., QH is not complete for the class {〈X,D〉 : D
is a constant domain}.

Proof. Let A be the formula,

∀x(Px ∨ ∃x∼Px) & ∀x(Px ∨ ∼Px)→ (∀xPx ∨ ∃x∼Px),

where P is a unary predicate.12 The proof of Theorem 3.4 in [10] can be
adapted to show that A 6∈ QH and that 〈X,D〉 
 A for any locally connected
space X and any constant domain D. [21] provides two slightly simpler
examples: ∀x(Px ∨ ∼Px) → (∀xPx ∨ ∃x∼Px) (Exercise 8.22) and Markov’s
principle ∀x(Px ∨ ∼Px) & ∼∼∃xPx→ ∃xPx (Exercise 8.23).

4 Kripke semantics

A Kripke frame is an ordered pair 〈X,R〉, where X is a nonempty set and
R ⊆ X × X is a preorder, i.e., a reflexive and transitive relation. As with

12If the language has no unary predicates, then choose some nonunary predicate P′ of
arity, say n, and replace Px in the formula with P′x . . . x, with x occurring n times.
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topological spaces, we will not carefully distinguish a Kripke frame 〈X,R〉
from the underlying set X, often using the notation X ambiguously for each.
We say that r ∈ X is a root of X iff ∀x ∈ X, rRx. We say that X is rooted
iff X has at least one root. Given x ∈ X, R(x) =df {x′ ∈ x : xRx′}.

It is well-known that each Kripke frame can be identified with a topolog-
ical space as follows: given a Kripke frame 〈X,R〉, say that a set S ⊆ X is
open iff (∀x ∈ S)(∀x′ ∈ X)(if xRx′ then x′ ∈ S). It is easy to check that the
open sets form a topology: indeed, X equipped with the resulting topology
is an Alexandrov space, i.e., a topological space in which the arbitrary inter-
section of open sets is open or, equivalently, in which every point has a least
open neighbourhood. Now, given any topological space X, Alexandrov or
not, we can define the specialization preorder RX =df {〈x, y〉 : x ∈ Cl({y})}.
The Alexandrov spaces are exactly those spaces X whose open sets are the
open sets in the Kripke frame 〈X,RX〉. Henceforth, we will simply identify
the Kripke frame 〈X,R〉 with the Alexandrov space X endowed with the
above-defined topology; alternatively, we will simply identify the Alexandrov
space X with the Kripke frame 〈X,RX〉. Note that, in topological terms, r
is a root of an Alexandrov space X iff r is in every nonempty closed subset
of X.

In Section 2 we defined predicate topological spaces. If X is an Alexan-
drov space, then note that the expanding-domain condition on a system
of domains is equivalent to the following – which explains our ‘expanding-
domain’ terminology (see page 7):

for every x, x′ ∈ X, if xRXx
′ then Dx ⊆ Dx′ .

This is precisely the standard expanding-domain condition on Kripke frames.
At this point, the Kripke semantics just becomes a special case of the

topological semantics: it is the topological semantics restricted to Alexandrov
spaces. In particular, suppose that 〈X,D〉 is a predicate topological space,
where X is an Alexandrov space, and that M is a model based on 〈X,D〉.
Define M, x � A, for every x ∈ X and every Dx-sentence A with the following
clauses from standard Kripke semantics:
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M, x 
 Pt1 . . . tn if x ∈ V (P)(ValM(t1), . . . ,ValM(tn)), where P ∈ Predn
M, x 
 (A & B) if M, x 
 A and M, x 
 B
M, x 
 (A ∨B) if M, x 
 A or M, x 
 B

M, x 
 ∼A if for every x′ with xRXx
′, M, x′ 6
 A

M, x 
 (A→ B) if for every x′ with xRXx
′,

if M, x′ 
 A then M, x′ 
 B
M, x 
 ∀xA if for every x′ with xRXx

′,
and for every d ∈ Dx′ , M, x′ 
 [d/x]A

M, x 
 ∃xA if for some d ∈ Dx, M, x 
 [d/x]A

Note that ValM(A) = {x ∈ X : M, x 
 A}, where ValM(A) is defined as on
page 8.

The following theorem, here transposed to Alexandrov spaces rather than
Kripke frames, is well-known (see, e.g., [7], Theorem 6.2.25) and will be
extremely useful:

Lemma 4.1. QH is strongly complete for the class of countable rooted pred-
icate spaces 〈X,D〉 where X is Alexandrov.13

5 Satisfiability transferring maps

In propositional modal logic, p-morphisms are standard tools for transferring
satisfiability and hence completeness from one Kripke frame or model to
another. In the topological setting, propositional p-morphisms generalize
to surjective interior maps. In particular, a function from one topological
space to another is continuous iff the preimage of every open set is open,
is open iff the image of every open set is open, and is an interior map iff
it is continuous and open. In the propositional setting, surjective interior
maps preserve [strong] completeness backwards in the following sense: if
ϕ : X → Y is a surjective interior map and H is [strongly] complete for Y
then H is [strongly] complete for X. The reason is that surjective interior
maps preserve satisfiability backwards in the following sense: if ϕ : X → Y
is a surjective interior map and the pair 〈Γ,∆〉 of sentences is satisfiable in
Y then 〈Γ,∆〉 is satisfiable in X.

[7] extends the notion of a p-morphism between Kripke frames to the no-
tion of a predicate p-morphism between predicate Kripke frames (i.e., Kripke

13[7] states this theorem for languages without function symbols, but the result extends
to languages with function symbols.
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frames equipped with a domain at each world). An obvious strategy is to gen-
eralize the definition in [7] to predicate topological spaces. But this won’t
quite do. In Section 6, below, we define a topological space 2≤ω, the in-
finite binary tree with limits, and we show that QH is strongly complete
for 2≤ω. For every dense-in-itself space X, [9] defines a continuous function
fX : X → 2≤ω, and we would like to make use of fX to transfer strong
completeness from 2≤ω back to X – even though fX sometimes fails to be an
interior map. We will define a new notion of a quasi-interior map between
topological spaces, which will induce a notion of a quasi-p-morphism between
predicate topological spaces and also between predicate topological models.

For any topological space X and any S ⊆ X, define the openure of S,
Op(S) as the intersection of all open supersets of S: Op(S) =df

⋂
{O ⊆

X : O is open and S ⊆ O}.14 Say that S is openish iff Op(S) is open and
Op(S)∩O ⊆ Op(S∩O) whenever O ⊆ X is open.15 Note that every open set
is openish, but not vice-versa. Say that a function between topological spaces
is openish iff the image of every open set is openish, and is a quasi-interior
map iff it is continuous and openish.

Definition 5.1. Suppose that X = 〈X,D〉 and X′ = 〈X ′, D′〉 are predicate
topological spaces, and that M = 〈X,D, V 〉 and M′ = 〈X ′, D′, V ′〉 are pred-
icate topological models based on X and X′, respectively.

(i) A predicate quasi-p-morphism from X to X′ is an ordered pair ϕ =
〈ϕ0, ϕ1〉, such that

1. ϕ0 : X → X ′ is a quasi-interior map;

2. ϕ1 = (ϕ1x)x∈X is a family of functions indexed by the members of X;

3. every ϕ1x : Dx → D′ϕ0(x) is a surjective map; and

4. for every x ∈ X and every d ∈ Dx, there is an open set Ox
d ⊆ Od,

such that x ∈ Ox
d and for every y ∈ Ox

d , ϕ1y(d) = ϕ1x(d). We can
stipulate that Ox

d is the largest such open set. For any x ∈ X and any
Dx-sentence A, we define Ox

A = Ox
d1
∩ . . .∩Ox

dn
, where d1, . . . , dn are the

members of Dx occurring as names in A. If there are no such members,
then Ox

A = X.

14Thanks to Kenny Easwaran for suggesting the terminology ‘openure’ by analogy with
‘closure’: Cl(S) =

⋂
{C ⊆ X : C is closed and S ⊆ C}.

15Thanks to Hasko von Kriegstein for suggesting ‘openish’ for this notion.
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(ii) A predicate quasi-p-morphism from M to M′ is a predicate quasi-
p-morphism from X to X′ such that, for every x ∈ X, for every P ∈ Predn
(n ≥ 1), for every c ∈ Names, for every f ∈ Funcn (n ≥ 1), and for every
d1, . . . , dn ∈ Dx,

5. x ∈ V (P)(d1 . . . dn) iff ϕ0(x) ∈ V ′(P)(ϕ1x(d1) . . . ϕ1x(dn));

6. ϕ1x(V (c)) = V ′(c); and

7. ϕ1x(V (f)(d1, . . . , dn)) = V ′(f)(ϕ1x(d1), . . . , ϕ1x(dn)).

(iii) We say that a predicate quasi-p-morphism ϕ = 〈ϕ0, ϕ1〉 from one
predicate topological space [model] to another is a predicate p-morphism iff
ϕ0 is a surjective interior map, rather than merely a quasi-interior map.

The following lemma, copied almost verbatim from [10], is standard and
its proof routine.

Lemma 5.2. If ϕ = 〈ϕ0, ϕ1〉 is a predicate quasi-p-morphism from M =
〈X,D, V 〉 to M′ = 〈X ′, D′, V ′〉, then for every DX-term t,

for every x ∈ X, if t is a Dx-term, then
ϕ1x(ValM(t)) = ValM′(ϕ1x · t),

where ϕ1x · t is the D′ϕ0(x)-term obtained from the Dx-term t by replacing
every occurrence in t of every d ∈ Dx with ϕ1x(d).

The statement of the following lemma is also copied almost verbatim
from [10] (transposed to the intuitionistic case). Its proof follows the proof
of Lemma 5.3 in [10] closely, except that we will require more care since we
are working with quasi -p-morphisms, rather than p-morphisms, and since
both the domain and range are predicate topological spaces with varying
domains.

Lemma 5.3. If ϕ = 〈ϕ0, ϕ1〉 is a predicate quasi-p-morphism from M =
〈X,D, V 〉 to M′ = 〈X ′, D′, V ′〉, then for every DX-sentence A,

for every x ∈ X, if A is a Dx-sentence then
x ∈ ValM(A) iff ϕ0(x) ∈ ValM′(ϕ1x · A),

where ϕ1x · A is the Dϕ0(x)-sentence obtained from the Dx-sentence A by
replacing every occurrence in A of every d ∈ Dx with ϕ1x(d).
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Proof. We prove this by strong induction on the complexity of A, i.e., the
number of quantifier- or connective-occurrences in B. As an inductive hy-
pothesis (IH), suppose that for every DX-sentence B of complexity strictly
less than the complexity of A, and every x ∈ X, if B is a Dx-sentence, then
x ∈ ValM(B) iff ϕ0(x) ∈ ValM′(ϕ1x · B). We will verify four cases: (1) A is
atomic, (2) A = (B → C), (3) A = ∃xB, and (4) A = ∀xB.

Case (1): A is of the form Pt1 . . . tn, where P ∈ Predn and t1 . . . tn
are DX-terms. Note: x ∈ ValM(A) iff x ∈ V (P)(ValM(t1), . . . ,ValM(tn))
iff ϕ0(x) ∈ V ′(P)(ϕ1x(ValM(t1)) . . . ϕ1x(ValM(tn))) (by the definition of a
quasi-p-morphism) iff ϕ0(x) ∈ V ′(P)(ValM′(ϕ1x · t1) . . .ValM′(ϕ1x · tn)) (by
Lemma 5.2) iff ϕ0(x) ∈ ValM′(ϕ1x · A)

Case (2): A = B → C. Choose any x ∈ X and assume that A is a
Dx-sentence. We want to show that x ∈ ValM(B → C) iff ϕ0(x) ∈ ValM′(ϕ1x·
(B → C)). It is worth recalling here that ValM′(ϕ1x ·(B → C)) = ValM′(ϕ1x ·
B → ϕ1x · C) = Int((X ′ − ValM′(ϕ1x · B)) ∪ ValM′(ϕ1x · C)). We consider
each direction of the biconditional separately.

(⇒) Assume that x ∈ ValM(B → C). Let O = ValM(B → C) ∩ Ox
(B→C)

(see Definition 5.1, (i), (4)). Note that O is open, so that ϕ0[O] is openish.
Thus Op(ϕ0[O]) is open. Also, ϕ0(x) ∈ ϕ0[O] ⊆ Op(ϕ0[O]). To show that
ϕ0(x) ∈ Int((X ′ − ValM′(ϕ1x · B)) ∪ ValM′(ϕ1x · C)), it suffices to show
that Op(ϕ0[O]) ∩ ValM′(ϕ1x · B) ⊆ ValM′(ϕ1x · C). Given the definition of
openish and given that ValM′(ϕ1x ·B) is open in X ′, it suffices to show that
Op(ϕ0[O]∩ValM′(ϕ1x ·B)) ⊆ ValM′(ϕ1x ·C). And given that ValM′(ϕ1x ·C)
is open in X ′, it suffices to show that ϕ0[O]∩ValM′(ϕ1x ·B) ⊆ ValM′(ϕ1x ·C).

So suppose that y ∈ ϕ0[O]∩ValM′(ϕ1x ·B). Then y = ϕ0(z) for some z ∈
O. So z ∈ ValM(B → C) and ϕ1z(d) = ϕ1x(d), for every d occurring in B or
in C. Thus ϕ1z ·B = ϕ1x ·B and ϕ1z ·C = ϕ1x ·C. Thus ϕ0(z) ∈ ValM′(ϕ1z ·B),
since y ∈ ValM′(ϕ1x ·B). Also, B is a Dz-sentence. So, by (IH), z ∈ ValM(B).
So z ∈ ValM(C), since z ∈ ValM(B → C). So ϕ0(z) ∈ ValM′(ϕ1z · C), by
(IH). So y ∈ ValM′(ϕ1x · C), as desired.

(⇐) Assume that ϕ0(x) ∈ ValM′(ϕ1x·(B → C)). Note that ϕ0
−1[ValM′(ϕ1x·

(B → C))] is open, since ϕ0 is continuous. Let O = ϕ0
−1[ValM′(ϕ1x · (B →

C))] ∩ Ox
(B→C). Note that x ∈ O. To show that x ∈ ValM(B → C) =

Int((X − ValM(B)) − ValM(C)), it suffices to show that O ∩ ValM(B) ⊆
ValM(C). So suppose that z ∈ O ∩ ValM(B). Then, since z ∈ O, we
have ϕ0(z) ∈ ValM′(ϕ1x · (B → C)) = ValM′(ϕ1x · B → ϕ1x · C), and
ϕ1z(d) = ϕ1x(d), for every d occurring in B or in C. Thus ϕ1z · B = ϕ1x · B
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and ϕ1z ·C = ϕ1x ·C. Thus ϕ0(z) ∈ ValM′(ϕ1z ·B → ϕ1z ·C). Also, since z ∈
ValM(B), by (IH) we have ϕ0(z) ∈ ValM′(ϕ1z ·B). So ϕ0(z) ∈ ValM′(ϕ1z ·C).
So, again by (IH), z ∈ ValM(C), as desired.

Case (3): A = ∃xB. Choose any x ∈ X and assume that A is a
Dx-sentence. Note

x ∈ ValM(A) iff (∃d ∈ DX)(x ∈ ValM([d/x]B))
iff∗ (∃d ∈ Dx)(x ∈ ValM([d/x]B))
iff (∃d ∈ Dx)(ϕ0(x) ∈ ValM(ϕ1x · [d/x]B)) (by IH)
iff (∃d ∈ Dx)(ϕ0(x) ∈ ValM([ϕ1x(d)/x](ϕ1x ·B)))
iff† (∃d′ ∈ D′ϕ0(x))(ϕ0(x) ∈ ValM([d′/x](ϕ1x ·B)))
iff∗∗ (∃d′ ∈ D′X′)(ϕ0(x) ∈ ValM([d′/x](ϕ1x ·B)))
iff ϕ0(x) ∈ ValM′(ϕ1x · A).

Some remarks about the flagged iff’s. The right-to-left direction of iff∗

is obvious, since Dx ⊆ DX. The argument for the left-to-right direction
of iff∗ depends on whether x is free in B: supposing that x is free B, if
x ∈ ValM([d/x]B) where d ∈ DX, then d ∈ Dx since x ∈ ValM([d/x]B) ⊆
O[d/x]B ⊆ Od; supposing that x is not free in B, if d ∈ DX, then the
DX-sentence [d/x]B is just the Dx-sentence B, which is the Dx-sentence
[d′/x]B for any d′ ∈ Dx. For the left-to-right direction of iff†, note that
(∀d ∈ Dx)(ϕ1x(d) ∈ D′ϕ0(x)); for the right-to-left direction, recall that ϕ1x :
Dx → D′ϕ0(x) is surjective. The biconditional flagged as iff∗∗ is similar to iff∗.

Case (4): A = ∀xB. Choose any x ∈ X and assume that A is a
Dx-sentence. We want to show that x ∈ ValM(∀xB) iff ϕ0(x) ∈ ValM′(ϕ1x ·
∀xB). We consider each direction of the biconditional separately.

(⇒) Assume that x ∈ ValM(∀xB). Let O = ValM(∀xB) ∩ Ox
∀xB (see

Definition 5.1, (i), (4)). Note that O is open in X. We will first show,

(∀y ∈ ϕ0[O])(∀d ∈ D′y)(y ∈ ValM′([d/x](ϕ1x ·B))) (∗)

Note that we will not be done after showing (∗), since ϕ0[O] might not be
open, though it is certainly openish.

To see (∗), choose y ∈ ϕ0[O] and d ∈ D′y. Note that y = ϕ0(z), for some
z ∈ O; and d = ϕ1z(d0), for some d0 ∈ Dz. Note that z ∈ ValM(∀xB), since
z ∈ O. So z ∈ ValM([d0/x]B). So, by (IH), ϕ0(z) ∈ ValM′(ϕ1z · ([d0/x]B)).
So y ∈ ValM′([ϕ1z(d0)/x](ϕ1z · B)). So y ∈ ValM′([d/x](ϕ1z · B)). Also,
z ∈ Ox

∀xB. So ϕ1z(d) = ϕ1x(d), for every d ∈ DX that occurs as a name in B.
So ϕ1z ·B = ϕ1x ·B. So y ∈ ValM′([d/x](ϕ1x ·B)), as desired.
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For any d ∈ D′X′ , let O′d = {y ∈ X ′ : d ∈ Dy}. Recall that O′d
is open. Given (∗), (∀d ∈ D′X′)(∀y ∈ ϕ0[O] ∩ O′d)(y ∈ ValM′([d/x](ϕ1x ·
B))). So, (∀d ∈ D′X′)(ϕ0[O] ∩ O′d ⊆ ValM′([d/x](ϕ1x · B))). So (∀d ∈
D′X′)(Op(ϕ0[O] ∩ O′d) ⊆ ValM′([d/x](ϕ1x · B))), since ValM′([d/x](ϕ1x · B))
is open. Also, Op(ϕ0[O]) ∩ O′d ⊆ Op(ϕ0[O] ∩ O′d), since ϕ0[O] is openish
and O′d is open. So (∀d ∈ D′X′)(Op(ϕ0[O]) ∩ O′d ⊆ ValM′([d/x](ϕ1x · B))).
So (∀d ∈ D′X′)(∀y ∈ Op(ϕ0[O]) ∩ O′d)(y ∈ ValM′([d/x](ϕ1x · B))). So (∀y ∈
Op(ϕ0[O]))(∀d ∈ D′y)(y ∈ ValM′([d/x](ϕ1x · B))). Now Op(ϕ0[O]) is open
since ϕ0[O] is openish. And ϕ0(x) ∈ Op(ϕ0[O]). So ϕ0(x) ∈ ValM′(∀x(ϕ1x ·
B)). So ϕ0(x) ∈ ValM′(ϕ1x · ∀xB), as desired.

(⇐) Assume that ϕ0(x) ∈ ValM′(ϕ1x · ∀xB). Note that ϕ0
−1[ValM′(ϕ1x ·

∀xB)] is open, since ϕ0 is continuous. Let O = ϕ0
−1[ValM′(ϕ1x ·∀xB)]∩Ox

∀xB.
Note that x ∈ O and O is open in X. To show that x ∈ ValM(∀xB), it suffices
to show

(∀z ∈ O)(∀d ∈ Dz)(z ∈ ValM′([d/x]B))

So suppose that z ∈ O and d ∈ Dz. Then, since z ∈ O, we have ϕ0(z) ∈
ValM′(ϕ1x · ∀xB), and ϕ1z(d) = ϕ1x(d), for every d occurring in ∀xB. Thus
ϕ1z · ∀xB = ϕ1x · ∀xB. Thus ϕ0(z) ∈ ValM′(ϕ1z · ∀xB) = ValM′(∀x(ϕ1z ·B)).
So ϕ0(z) ∈ ValM′([ϕ1z(d)/x](ϕ1z · B)) = ValM′(ϕ1z · [d/x]B). So by (IH) we
have z ∈ ValM([d/x]B), as desired.

In the propositional case, surjective interior maps transfer strong com-
pleteness from the target topological space back to the source, by transferring
satisfiability from the target back to the source. Our quasi-p-morphisms are
based on quasi-interior maps, and we make no assumption of surjectivity of
these maps: this endangers the nice satisfiability-transfering property. But
there’s a way out. Suppose that X = 〈X,D〉 is a predicate topological space
and that Y ⊆ X. Then we say that a pair 〈Γ,∆〉 of sentences is satisfi-
able in X = 〈X,D〉 by way of Y iff there is a predicate topological model
M = 〈X,D, V 〉 such that ValM(〈Γ,∆〉) ∩ Y 6= ∅.

Now we can state a satisfiability-transferring corollary to Lemma 5.3. The
simplest satisfiability-transferring result is available when the language L has
no names and no function symbols: these introduce complications that we
will attend to shortly.

Corollary 5.4. Suppose that the language L has no names and no function
symbols. Suppose that ϕ = 〈ϕ0, ϕ1〉 is a predicate quasi-p-morphism from
X = 〈X,D〉 to X′ = 〈X ′, D′〉. And suppose that the pair 〈Γ,∆〉 of sentences
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is satisfiable in X′ = 〈X ′, D′〉 by way of ϕ0[X]. Then 〈Γ,∆〉 is satisfiable in
X.

Proof. We want to show that there is a predicate topological model M =
〈X,D, V 〉 such that ValM(〈Γ,∆〉) 6= ∅. Since 〈Γ,∆〉 is satisfiable in X′ =
〈X ′, D′〉 by way of ϕ0[X], there is a predicate topological model M′ =
〈X ′, D′, V ′〉 such that ValM′(〈Γ,∆〉) ∩ ϕ0[X] 6= ∅.

Define the valuation V for the predicate topological space 〈X,D〉 as fol-
lows: V (P)(d1 . . . dn) = {x ∈ X : ϕ0(x) ∈ V ′(P)(ϕ1x(d1) . . . ϕ1x(dn))}, for
d1, . . . , dn ∈

⋃
x∈X Dx. And let M = 〈X,D, V 〉. Note that ϕ = 〈ϕ0, ϕ1〉 is a

predicate quasi-p-morphism from M to M′. Choose any y ∈ ValM′(〈Γ,∆〉)∩
ϕ0[X]. Since y ∈ ϕ0[X], there is some x ∈ X such that ϕ0(x) = y. Note that
no members of Dx occur in any of the sentences in Γ∪∆, since these are sets
of sentences in the original language L. So ϕ1x ·A = A, for every A ∈ Γ∪∆.
So, by Lemma 5.3, x ∈ ValM(〈Γ,∆〉). So ValM(〈Γ,∆〉) 6= ∅, as desired.

When the language has names or function symbols, then this simple proof
of Corollary 5.4 fails: it is not so easy to proceed as in the second paragraph
of the proof, where we define the valuation V for the predicate topological
space 〈X,D〉 so that ϕ = 〈ϕ0, ϕ1〉 is a predicate quasi-p-morphism from M
to M′. Indeed, we do not know whether such a valuation can, in general, be
defined.

We adopt a solution to this problem from [10], updated and corrected in
[11], and updated futher to handle varying domains. Suppose that 〈X,D〉
is a predicate topological space. We define new system, D†, of domains for
X, closely related to the system D. First, let L† be a language just like L,
except that every name c ∈ Names [function symbol f ∈ Func] is replaced by
a name c† [function symbol f†].16 For any nonempty set S, define Term†(S)
as the set of terms in the language L†(S), i.e, the language L† expanded with
the members of S as names. And let D†x = Term†(Dx), for every x ∈ X.

To ensure that D† is indeed a system of domains, we check that it sat-
isfies the expanding-domain condition (see page 7): we check that the set
O†t = {x ∈ X : t ∈ D†x} is an open subset of X, for every t ∈ D†X† =⋃
y∈X Term†(Dy). We fix y ∈ X, and show by induction on t ∈ Term†(Dy)

that O†t is open. If t = d ∈ Dy, then O†t = Od, which is open in X. If t = c†

where c ∈ Names, then O†t = X. For the inductive step, assume that each of

16A detail: none of the new names or function symbols should already occur in the
syntax of L(DX), where DX =

⋃
x∈X Dx.
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O†t1 , . . . , O
†

tn is open, where t1, . . . , tn ∈ Term†(Dy); and consider O†f†t1...tn ,
where f ∈ Funcn. Note that O†f†t1...tn = O†t1 ∩ . . .∩O†tn , which is open in X.

Let X† = 〈X,D†〉. It will be useful to note two facts about D†: (i) since L
and therefore L† have at most countably many names and function symbols,
card(D†x) = max(ℵ0, card(Dx)), for every x ∈ X. (ii) If Dx = Dy for every
x, y ∈ X, then D†x = D†y for every x, y ∈ X.

Corollary 5.5. Suppose that ϕ = 〈ϕ0, ϕ1〉 is a predicate quasi-p-morphism
from X = 〈X,D〉 to X′ = 〈X ′, D′〉. And suppose that the pair 〈Γ,∆〉 of
sentences is satisfiable in X′ = 〈X ′, D′〉 by way of ϕ0[X]. Then 〈Γ,∆〉 is
satisfiable in X† = 〈X,D†〉.

Proof. First (to fix notation), since ϕ = 〈ϕ0, ϕ1〉 is a predicate quasi-p-
morphism from X = 〈X,D〉 to X′ = 〈X ′, D′〉, we have the following: for
every x ∈ X and every d ∈ Dx, there is an open set Ox

d ⊆ Od, such that
x ∈ Ox

d and for every y ∈ Ox
d , ϕ1y(d) = ϕ1x(d).

We want to show that there is a predicate topological model M† =
〈X,D†, V †〉 such that ValM†(〈Γ,∆〉) 6= ∅. Since 〈Γ,∆〉 is satisfiable in
X′ = 〈X ′, D′〉 by way of ϕ0[X], there is a predicate topological model
M′ = 〈X ′, D′, V ′〉 such that ValM′(〈Γ,∆〉) ∩ ϕ0[X] 6= ∅.

We now define, for each x ∈ X, a function ϕ†1x : D†x → D′ϕ0(x). That

is, we will define a function ϕ†1x : Term†(Dx) → D′ϕ0(x), recursively on
the structure of terms in the language L†(Dx) as follows. First, ϕ†1x(d) =
ϕ1x(d), if d ∈ Dx. Second, ϕ†1x(c

†) = V ′(c), if c ∈ Names. And third,
ϕ†1x(f†t1 . . . tn) = V ′(f)(ϕ†1x(t1), . . . , ϕ†1x(tn)), if f ∈ Funcn and t1, . . . , tn ∈
Term†(Dx). We claim that ϕ† = 〈ϕ0, ϕ

†
1〉 is a quasi-p-morphism from X† to

X′. It suffices to show that the family {ϕ†1x}x∈X of functions satisfy Clauses
(i)(3) and (i)(4) in Definition 5.1.

Clause (i)(3) We want to show that every ϕ†1x : D†x → D′ϕ0(x) is a
surjective map. Note that Dx ⊆ D†x, and that ϕ†1x agrees with ϕ1x on Dx.
Also note that ϕ1x : Dx → D′ϕ0(x) is surjective.

Clause (i)(4) We want to show that for every x ∈ X and every d ∈ D†x,
there is an open set O†

x
d ⊆ Od, such that x ∈ O†

x
d and for every y ∈ O†

x
d,

ϕ†1y(d) = ϕ†1x(d). Fix x ∈ X. We will show by induction that, for every

t ∈ Term†(Dx), there is an open set O†
x
t ⊆ O†t, such that x ∈ O†

x
t and

for every y ∈ O†
x
t , ϕ†1y(t) = ϕ†1x(t). If t = d ∈ Dx, then it will suffice

to let O†
x
t = Od, and if t = c† where c ∈ Names, then it will suffice to let

O†
x
t = X. For the inductive step, suppose that, for each i = 1, . . . , n, we
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have an open set O†
x
ti
⊆ O†ti , such that x ∈ O†

x
ti

and for every y ∈ O†
x
ti

,
ϕ†1y(ti) = ϕ†1x(ti). And consider f†t1 . . . tn, where f ∈ Funcn. If we let

O†
x
f†t1...tn = O†

x
t1
∩ . . . ∩ O†xtn , then note that x ∈ O†

x
f†t1...tn and for every

y ∈ O†xf†t1...tn , ϕ†1y(f†t1 . . . tn) = ϕ†1x(f†t1 . . . tn).
Now we define a valuation V † for X† = 〈X,D†〉:

• V †(P)(t1 . . . tn) = {x ∈ X : ϕ0(x) ∈ V ′(P)(ϕ†1x(t1) . . . ϕ†1x(tn))}, for
t1, . . . , tn ∈ D†X† ;

• V †(c) = c†; and

• V (f)(t1, . . . , tn) = f†t1 . . . tn, for t1, . . . , tn ∈ D†X† .

Note that ϕ† = 〈ϕ0, ϕ
†
1〉 satisfies Clauses (ii)(5)-(ii)(7) of Definition 5.1. So

ϕ† is a quasi-p-morphism from M† = 〈X,D†, V †〉 to M′ = 〈X ′, D′, V ′〉.
Recall that ValM′(〈Γ,∆〉) ∩ ϕ0[X] 6= ∅. Choose any y ∈ ValM′(〈Γ,∆〉) ∩

ϕ0[X]. Since y ∈ ϕ0[X], there is some x ∈ X such that ϕ0(x) = y. Note
that no members of D†x occur in any of the sentences in Γ ∪∆, since these
are sets of sentences in the original language L. So ϕ1x · A = A, for every
A ∈ Γ ∪∆. So, by Lemma 5.3, x ∈ ValM†(〈Γ,∆〉). So ValM†(〈Γ,∆〉) 6= ∅, as
desired.

6 The infinite binary tree [with limits]

For each n ≥ 0, let 2n be the set of binary sequences (sequences of 0’s and
1’s) of length n. Let 2<ω =df

⋃∞
n=0 2n, i.e., 2<ω is the set of finite binary

sequences. Let 2ω be the set of infinite binary sequences of order type ω.
And let 2≤ω =df 2<ω ∪ 2ω. We use Λ for the the empty binary sequence, i.e.,
the binary sequence of length 0. We use italic b, b′, etc., to range over 2<ω;
bold b,b′, etc., to range over 2ω; and bold-italic b, b′, etc., to range over 2≤ω.
If b ∈ 2<ω and b ∈ 2≤ω, then we write bab for b concatenated with b. We
write b0 and b1 for ba〈0〉 and ba〈1〉. For any b ∈ 2<ω, we write |b| for the
length of b. Given any b ∈ 2ω and any n ∈ N, the finite binary sequence b|n
is the initial segment of length n of b. Thus b|0 = Λ and |b|n| = n. Given
b ∈ 2<ω and b ∈ 2≤ω, we say b ≤ b iff b is an initial segment of b and b < b
iff both b ≤ b and b 6= b. We will also use ‘≤’ for ≤ restricted to 2<ω.

We now impose topologies on 2<ω and on 2≤ω:
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• 2<ω. We identify 2<ω with the infinite binary tree, i.e., the countable
rooted Kripke frame 〈2<ω,≤〉. For each b ∈ 2<ω, let ≤(b) =df {b′ ∈
2<ω : b ≤ b′}. Note that the family {≤(b) : b ∈ 2<ω} is a basis for the
Alexandrov topology on 2<ω induced by ≤. We also identify 2<ω with
the resulting Alexandrov space.

• 2≤ω. For any b ∈ 2<ω, define ≤+(b) =df {b′ ∈ 2≤ω : b ≤ b′}. (Note
that ≤+(b) ) ≤(b).) And take as a basis of our topology on 2≤ω the
family {≤+(b) : b ∈ 2<ω}. We call 2≤ω, with this topology, the infinite
binary tree with limits.17 Unlike 2<ω, 2≤ω is not an Alexandrov space.
For example, for any b ∈ 2ω the intersection of the open sets of the
form ≤+(b|n), n ∈ N, is not open. Indeed

⋂
n∈N≤+(b|n) = {b}.

Lemma 6.1. There is a system D† of countable domains such that QH is
strongly complete for the predicate topological space 〈2<ω, D†〉.

Proof. Let S0, S1, S2, . . . be a sequence of countably infinite sets such that
S0 ⊆ S1 ⊆ S2 ⊆ . . . and such that Sn+1 − Sn is itself countably infinite for
any n ∈ N. Let D be the system of domains defined as follows: for any
b ∈ 2<ω, Db = S|b|. Note that X = 〈2<ω, D〉 is a predicate topological space
with countable domains, as is X† = 〈2<ω, D†〉. We will show that QH is
strongly complete for X†.

Let 〈Γ,∆〉 be a consistent pair of sentences. By Lemma 4.1, there is a
countable Alexandrov space X ′, a system D′ of countable domains and a
valuation V ′ on X′ = 〈X ′, D′〉, such that 〈Γ,∆〉 is satisfiable in X′. As noted
in Lemma 3.3 of [9], any countable rooted Alexandrov space is the image of
2<ω under some interior map.18 So there’s an interior map ϕ0 from 2<ω onto
X ′. And, since ϕ0 is surjective, 〈Γ,∆〉 is satisfiable in X′ by way of ϕ0[2<ω].

The fact that ϕ0 is continuous means that if b ≤ b′, then ϕ0(b)RX′ϕ0(b′),
where RX′ is the specialization preorder on X ′. Thus, if b ≤ b′, then D′ϕ0(b) ⊆
D′ϕ0(b′). So D′ϕ0(b) ⊆ D′ϕ0(b0) and D′ϕ0(b) ⊆ D′ϕ0(b1). Now we will define
functions ϕ1b for each b ∈ 2<ω. Let ϕ1Λ : DΛ → D′ϕ0(Λ) be any surjective
function. Suppose that ϕ1b : Db → D′ϕ0(b) is defined for some b ∈ 2<ω. Recall

17As noted in [9], the topology defined on 2≤ω is the Scott topology as defined, for
example, in [8], p. 104.

18In [9], this is stated for Kripke frames instead of Alexandrov spaces. The proof in
[9] is incorrect, but a correct proof appears in [10]: see Claim (ii.b) in the proof there of
Lemma 6.2.
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that Db = S|b|, that Db0 = Db1 = S|b|+1. Let ϕ1(b0) [ϕ1(b1)] be any surjective
function from Db0 to D′ϕ0(b0) [Db1 to D′ϕ0(b1)] that extends ϕ1b.

It is routine to show that ϕ = 〈ϕ0, ϕ1〉 is a p-morphism from X to X′.
So by Corollary 5.5, 〈Γ,∆〉 is satisfiable in X† = 〈2<ω, D†〉. Also note that,
since each Dx is countably infinite, so is each D†x.

Corollary 6.2. There is a system D≤ω of countable domains such that QH
is strongly complete for 〈2≤ω, D≤ω〉 by way of 2<ω.

Proof. By Lemma 6.1, there is some system D of countable domains such
that QH is strongly complete for X = 〈2<ω, D〉. First we define a new system
D≤ω of countable domains for the topological space 2≤ω: If b ∈ 2<ω, then
let D≤ωb = Db; and if b ∈ 2ω, then let D≤ωb =

⋃
n∈NDb|n . Note that D≤ω

satisfies the expanding domain condition. Let X≤ω = 〈2≤ω, D≤ω〉. Note that
DX≤ω = DX. We will show that QH is strongly complete for X≤ω by way of
2<ω.

Suppose that 〈Γ,∆〉 is a consistent pair of nonempty sets of sentences.
Then there is a valuation V such that ValM(〈Γ,∆〉) 6= ∅, where M =
〈2<ω, D, V 〉. We define a new valuation V ≤ω for 〈2≤ω, D≤ω〉, as follows –
here d1, . . . , dn ∈ DX≤ω = DX:

• V ≤ω(P)(d1 . . . dn)
= V (P)(d1 . . . dn) ∪ {b ∈ 2ω : (∃n ∈ N)(b|n ∈ V (P)(d1 . . . dn))};

• V ≤ω(c) = V (c); and

• V ≤ω(f)(d1, . . . , dn) = V (f)(d1, . . . , dn).

It is easy to check that V ≤ω(P)(d1 . . . dn) =
⋃
b∈V (P)(d1...dn)≤+(b), so that

V ≤ω(P)(d1 . . . dn) is, as desired, open in 2≤ω. It is also routine to prove that

• ValM≤ω(t) = ValM(t) for every DX≤ω -term t, and

• ValM≤ω(A) = ValM(A) ∪ {b ∈ 2ω : (∃n ∈ N)(b|n ∈ ValM(A))} for
every DX≤ω -sentence A.

Thus ValM≤ω(〈Γ,∆〉)∩2<ω = ValM(〈Γ,∆〉) 6= ∅. So QH is strongly complete
for X≤ω by way of 2<ω.

Remark 6.3. The analogous claim fails for QS4: QS4 is not complete for any
Baire space with countable domains, even with varying countable domains
([12]), and 2≤ω is a Baire space. It is an open question whether QS4 is
complete for 2≤ω with no constraint on the size of the domains.
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7 Proving the main results

For each dense-in-itself metrizable space X, [9] constructs a continuous func-
tion fX : X → 2≤ω. We will not review the construction in the current
paper. Rather, in Section 8 we will cull enough information from [9] to prove
that the function fX is openish and therefore a quasi-interior map, and that
2<ω ⊆ fX [X].19 This gives us a fairly straightforward proof of Theorem 3.3.

Proof of Theorem 3.3. Suppose that X is a dense-in-itself metrizable space.
By Corollary 6.2, there is a system D≤ω of countable domains for 2≤ω such
that QH is strongly complete for 〈2≤ω, D≤ω〉 by way of 2<ω. Thus, QH is
also strongly complete for 〈2≤ω, D≤ω〉 by way of fX [X], since 2<ω ⊆ fX [X].
We now define a system D of countable domains for X and a predicate
quasi-p-morphism from 〈X,D〉 to 〈2≤ω, D≤ω〉.

The system of domains. For each x ∈ X, let Dx = D≤ωfX(x). Clearly
each Dx is countable. We have to check that, for each d ∈

⋃
x∈X Dx, the set

Od = {x ∈ X : d ∈ Dx} is open in X. Given that fX is continuous, it suffices
to show that Od = fX

−1[O′d], where Od = {b ∈ 2≤ω : d ∈ Db}. Note x ∈ Od

iff d ∈ Dx iff d ∈ D≤ωfX(x) iff fX(x) ∈ O′d iff x ∈ fX−1[O′d].
The quasi-p-morphism. Let ϕ = 〈fX , ϕ1〉, where, for each x ∈ X, the

function ϕ1x : D≤ωx → DfX(x) is simply the identity map. It is easy to check
that ϕ is a predicate quasi-p-morphism from 〈X,D〉 to 〈2≤ω, D≤ω〉.

Given Corollary 5.5, we are done: any consistent pair 〈Γ,∆〉 is satisfiable
in 〈2≤ω, D≤ω〉 by way of fX [X] and therefore satisfiable in 〈X,D†〉 – recall
that each D†x is countable since each Dx is.

The proof of Theorem 3.1 is somewhat more involved.

Proof of Theorem 3.1. Suppose that X is a zero-dimensional dense-in-itself
metrizable space of weight κ. Note that X has a basis of cardinality κ and
also a basis of clopen sets: therefore, by Theorem 1.1.15 in [5], X has a basis
of cardinality κ of clopen sets.20 We will use this fact below.

19The construction of fX depends on a number of decisions made along the way, includ-
ing the choice of a metric d on X, so there are actually many such fX .

20I owe this reference both to Henno Brandsma and an anonymous poster, NS, on the
electronic bulletin board ‘Ask a Topologist’. The theorem in [5] states that, if X is a
topological space of weight κ, then for any basis B for X there is a basis B′ ⊆ B of
cardinality κ.
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By Lemma 6.2, there is a system D of countable domains for 2≤ω such that
QH is strongly complete for X = 〈2≤ω, D〉 by way of 2<ω. So, by Corollary
5.5, it suffices to specify a constant domain D′ of cardinality κ; and a quasi-
p-morphism ϕ = 〈ϕ0, ϕ1〉 from X′ = 〈X,D′〉 to X such that 2<ω ⊆ ϕ0[X].
Before we begin, we note the following: if b ∈ 2<ω and b′ ∈ 2≤ω and b ≤ b′,
then Db ⊆ Db′ , since ≤+(b) is the smallest subset of 2≤ω with b as a member.
In particular, DΛ ⊆ Db for every b ∈ 2≤ω. It will be useful to choose a
d0 ∈ DΛ.

Let D′ = {〈b, α, d〉 : b ∈ 2<ω, α ∈ κ and d ∈ Db}. Note that card(D′) = κ.
Our predicate quasi-p-morphism is ϕ = 〈ϕ0, ϕ1〉, where ϕ0 = fX and where
the family ϕ1 = {ϕ1x}x∈X of functions is defined shortly, after some stage-
setting.21

Note that, for any b ∈ 2<ω, the set ≤+(b) is open in 2≤ω. So, since
ϕ0 is continuous, the set ϕ0

−1[≤+(b)] is open in X. Since X has a basis of
cardinality κ of clopen sets, we can express ϕ0

−1[≤+(b)] as a union of κ many
clopen sets Ob

α as follows:

ϕ0
−1[≤+(b)] =

⋃
α∈κ

Ob
α

For each x ∈ X, we define ϕ1x : D′ → D as follows:

ϕ1x(〈b, α, d〉) =

{
d if x ∈ Ob

α

d0 if x 6∈ Ob
α

We have to check that ϕ = 〈ϕ0, ϕ1〉 is indeed a quasi-p-morphism from
X′ = 〈X,D′〉 to X such that 2<ω ⊆ ϕ0[X]. We already know that ϕ0 is
a quasi-interior map with 2<ω ⊆ ϕ0[X]. So we have to check that the ϕ1x

satisfy Items (3) and (4) in Definition 5.1.
Item (3). First we check that ϕ1x : D′ → Dϕ0(x). So suppose 〈b, α, d〉 ∈

D′. If x 6∈ Ob
α, then ϕ1x(〈b, α, d〉) = d0 ∈ DΛ ⊆ Dϕ0(x). On the other

hand, suppose that x ∈ Ob
α. Then ϕ0(x) ∈ ϕ0[Ob

α] ⊆ ϕ0[≤+(b)]. So ϕ0(x) ∈
≤+(b). So b ≤ ϕ0(x). Also, d ∈ Db since 〈b, α, d〉 ∈ D′. So ϕ1x(〈b, α, d〉) =
d ∈ Db ⊆ Dϕ0(x), as desired. Next we check that ϕ1x : D′ → Dϕ0(x) is
surjective. Suppose that d ∈ Dϕ0(x). Clearly ϕ0(x) ∈ ≤+(ϕ0(x)). So x ∈
ϕ0
−1[≤+(ϕ0(x))]. So, x ∈ Oϕ0(x)

α for some α ∈ κ. So ϕ1x(〈ϕ0(x), α, d〉) = d,
which suffices.

21From this point on, we generalize but otherwise closely follow part of the proof of
Lemma 5.1 in [11].
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Item (4). Choose 〈b, α, d〉 ∈ D′ and x ∈ X. We want to show that there is
an open set Ox

〈b,α,d〉 ⊆ O〈b,α,d〉 = X, such that both x ∈ Ox
〈b,α,d〉 and for every

y ∈ Ox
〈b,α,d〉, ϕ1y(〈b, α, d〉) = ϕ1x(〈b, α, d〉). If x ∈ Ob

α, let Ox
〈b,α,d〉 = Ob

α. Then

note that x ∈ Ox
〈b,α,d〉, and for every y ∈ Ox

〈b,α,d〉, we have ϕ1y(〈b, α, d〉) = d =

ϕ1x(〈b, α, d〉). On the other hand, if x 6∈ Ob
α, then let Ox

〈b,α,d〉 = X−Ob
α. Note

that Ox
〈b,α,d〉 is open, since Ob

α is clopen. Also note that x ∈ Ox
〈b,α,d〉, and for

every y ∈ Ox
〈b,α,d〉, we have ϕ1y(〈b, α, d〉) = d0 = ϕ1x(〈b, α, d〉), as desired.

8 Properties of fX

Fix a dense-in-itself metrizable space X, and a metric d on X so that the
open balls are a basis for the topology on X. For any point x ∈ X and any
set S ⊆ X, define d(x, S) = inf {d(x, y) : y ∈ S}.

At the beginning of Section 7, we promised to cull enough information
from [9] to prove that fX is openish and therefore a quasi-interior map, and
that 2<ω ⊆ fX [X]. Section 7 of [9] shows that there are

• nonempty open sets Ob ⊆ X, for each b ∈ 2<ω, with b < b′ ⇒ Ob′ ( Ob,

• other nonempty sets Xb ( Ob, for each b ∈ 2<ω, and

• possibly empty sets Xb =
⋂
nOb|n , for each b ∈ 2ω.

such that

Lemma 8.1. 1. d(x,Xb) ≤ 1/(|b|+ 1), for every b ∈ 2<ω and x ∈ Ob;

2. (∀b, b′ ∈ 2<ω)(if b ≤ b′ then Cl(Xb) ⊆ Cl(Xb′)); and

3. the family {Xb : b ∈ 2≤ω} is pairwise disjoint and X =
⋃

b∈2≤ω Xb.

Proof. Item (1) follows from the definition in [9] of the Ob and Xb, when
b ∈ 2<ω, as well as the ε-clause in Lemma 7.1 of [9]. Item (2) is Lemma 7.7
of [9]. Item (3) is noted immediately before the statement in [9] of Lemma
7.8.

[9] defines the function fX : X → 2≤ω as follows: fX(x) is the unique
b ∈ 2≤ω with x ∈ Xb. Lemma 7.9 of [9] states that fX is continuous. To see
that 2<ω ⊆ fX [X], it suffices to note that Xb is nonempty, for each b ∈ 2<ω.
Our remaining task is to show that fX is openish, i.e., that the set fX [O] is
openish in 2≤ω for every open O ⊆ X. In aid of this, we note:
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Lemma 8.2. Suppose S ⊆ 2≤ω is such that

1. S ∩ 2<ω is open in 2<ω; and

2. ∀b ∈ S ∩ 2ω, ∃n ∈ N, b|n ∈ S.

Then S is openish in 2≤ω.

Proof. First, we show that, for any set O open in 2≤ω,

S ∩O ⊆
⋃

b∈S∩O∩2<ω

≤+(b). (1)

Proof of (1). Suppose that b ∈ S ∩ O. If b ∈ 2<ω, then note that b ∈
≤+(b) ⊆

⋃
b∈S∩O∩2<ω ≤+(b). If b ∈ 2ω, then, since S satisfies Condition (2),

∃n ∈ N, b|n ∈ S. Also ∃m ∈ N, b|m ∈ O, since b ∈ O and O is open. Let
k = max(m,n). Since S satisfies Condition (1) and since O is open in 2≤ω,
b|k ∈ S ∩O ∩ 2<ω. So b ∈ ≤+(b|k) ⊆

⋃
b∈S∩O∩2<ω ≤+(b).

Given (1) and the fact that
⋃
b∈S∩O∩2<ω ≤+(b) is open,

Op(S ∩O) ⊆
⋃

b∈S∩O∩2<ω

≤+(b). (2)

Now we show that ⋃
b∈S∩O∩2<ω

≤+(b) ⊆ Op(S ∩O) (3)

Note that, for any b ∈ S ∩ O ∩ 2<ω, the smallest open set with b as a
member is ≤+(b). So, for any b ∈ S ∩ O ∩ 2<ω, ≤+(b) ⊆ Op(S ∩ O). So⋃
b∈S∩O∩2<ω ≤+(b) ⊆ Op(S ∩O), as desired. Given (2) and (3), we have

Op(S ∩O) =
⋃

b∈S∩O∩2<ω

≤+(b). (4)

And given (4), Op(S) is open, since Op(S ∩O) is open for any open set O.
It remains to show that Op(S) ∩ O ⊆ Op(S ∩ O), for any set O open

in 2≤ω. So choose any b ∈ Op(S) ∩ O. By (4) in the special case where
O = 2≤ω, we have b ∈ ≤+(b′) for some b′ ∈ S ∩ 2<ω. Also, since b ∈ O and
O is open, we have b ∈ ≤+(b′′) ⊆ O for some b′′ ∈ O ∩ 2<ω. Since b′ ≤ b and
b′′ ≤ b, we have either b′′ ≤ b′ or b′ ≤ b′′. Let b∗ be the greater of b′ and b′′:
so b′, b′′ ≤ b∗ ≤ b. Since b′′ ≤ b∗, we have b∗ ∈ ≤+(b′′) ⊆ O. And since both
b′ ≤ b∗ and S satisfies Condition (1) in the statement of the Lemma, we have
b∗ ∈ S. So b∗ ∈ S ∩ O ∩ 2<ω and b ∈ ≤+(b∗). So b ∈ Op(S ∩ O), by (4), as
desired.
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Given Lemma 8.2, it suffices to show

Lemma 8.3. For every open O ⊆ X,

1. fX [O] ∩ 2<ω is open in 2<ω; and

2. ∀b ∈ fX [O] ∩ 2ω, ∃n ∈ N, b|n ∈ fX [O].

Proof. Item (1). Choose b ∈ fX [O] ∩ 2<ω and b′ ∈ 2<ω with b ≤ b′. We
want to show that b′ ∈ fX [O]. Since b ∈ fX [O], there is some x ∈ O such
that fX(x) = b. Note that x ∈ Xb, since fX(x) = b. By Lemma 8.1 (2),
x ∈ O ∩Xb ⊆ O ∩ Cl(Xb) ⊆ O ∩ Cl(Xb′). So there is some y ∈ O ∩X ′b. So
there is some y ∈ O with fX(y) = b′. So b′ ∈ fX [O], as desired.

Item (2). Choose b ∈ fX [O] ∩ 2ω. Since b ∈ fX [O], there is some x ∈ O
such that fX(x) = b. Note that x ∈ Xb =

⋂
nOb|n , since fX(x) = b. Choose

any open ball B = {y : d(x, y) < r} with centre x such that B ⊆ O. And
choose any n ∈ N such that n > 1/r. Since x ∈

⋂
nOb|n , we have x ∈ Ob|n .

By Lemma 8.1 (1), d(x,Xb|n) ≤ 1/(n+1). So d(x,Xb|n) < 1/n ≤ r. So there
is some y ∈ Xb|n ∩B ⊆ Xb|n ∩O. So y ∈ O and f(y) = b|n. So b|n ∈ fX [O],
as desired.

Acknowledgements Thanks to an anonymous referee for extremely helpful
suggestions and to the editors of the RSL for their patience.
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