A Small Counterexample in Intuitionistic Dynamic Topological Logic

Philip Kremer, Department of Philosophy, University of Toronto

Let \mathcal{L} be an intuitionistic language with a set PV of propositional variables; connectives &, \vee , \rightarrow , and \sim ; and temporal modalities \bigcirc , and *. Let a dynamic topological system be an ordered pair, $\langle X, f \rangle$, where X is a topological space and f is a continuous function on X. Let a dynamic topological model is an ordered triple $M = \langle X, f, V \rangle$ where $\langle X, f \rangle$ is a dynamic topological system and $V: PV \rightarrow \mathcal{P}(X)$ is a valuation function assigning an open subset of X to each propositional variable. V is extended to all formulas as follows:

$$\begin{split} &V(A \vee B) = V(A) \cup V(B); \\ &V(A \& B) = V(A) \cap V(B); \\ &V(\sim\!A) = Int(X - V(A)), \text{ where } Int \text{ is topological interior}; \\ &V(A \to B) = Int((X - V(A)) \cup V(B)); \\ &V(\bigcirc\!A) = f^{-1}(V(A)); \text{ and} \\ &V(*A) = Int(\cap_{n \geq 0} f^{-n}(V(A))). \end{split}$$

In the last clause we take the topological interior of $\cap_{n\geq 0} f^{-n}(V(A))$ in order to ensure that the set V(A) is open for each formula A. We define standard validity relations:

A is validated by
$$M = \langle X, f, V \rangle$$
 $(M \models A)$ iff $V(A) = X$.

A is valid ($\models A$) iff $M \models A$ for every dynamic topological model M.

In ordinary ω -time temporal logic, three principles governing \odot and * are

$$*A \to \bigcirc *A \text{ and } *\bigcirc A \to \bigcirc *A \text{ and } *A \to **A.$$

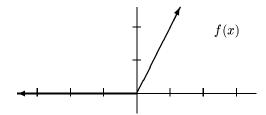
The main point of this note is that

$$\not\models *p \to \bigcirc *p \text{ and } \not\models *\bigcirc p \to \bigcirc *p \text{ and } \not\models *p \to **p.$$

where p is a propositional variable. To see this let $M=\langle\mathbb{R},\ f,\ V\rangle$ where f is defined as follows,

$$f(x) = \begin{cases} 0, & x \le 0 \\ 2x, & x \ge 0 \end{cases}$$

and where V(p) is the open set $(-\infty, 1)$.



Note:

$$V(p) = (-\infty, 1)$$

$$f^{-1}(V(p)) = (-\infty, \frac{1}{2})$$

$$f^{-2}(V(p)) = (-\infty, \frac{1}{4})$$

$$f^{-n}(V(p)) = (-\infty, \frac{1}{2^n})$$

$$\cap_n f^{-n}(V(p)) = (-\infty, 0]$$

$$V(*p) = Int(\cap_{n>0} f^{-n}(V(p))) = (-\infty, 0)$$

$$V(* \cap p) = Int(\cap_{n>1} f^{-n}(V(p))) = (-\infty, 0)$$

$$V(\bigcirc *p) = \emptyset$$

$$V(**p) = \emptyset$$

Thus

$$V(*p \to \bigcirc *p) = (0, \infty) = V(*\bigcirc p \to \bigcirc *p) = V(*p \to **p) \neq \mathbb{R}$$

Thus, as desired,

$$\not\models *p \to \bigcirc *p \text{ and } \not\models *\bigcirc p \to \bigcirc *p \text{ and } \not\models *p \to **p.$$