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?1. Introduction. In S4 and other modal logics, strict implication (-3) is typically 
defined in terms of necessity (ni) and material implication (D) thus (see Lewis and 
Langford [16]): 

(A -3 B) =ct1 n(A D B). 

It has been argued that -3 better formalises our intuitive notion of implication than 
does D. For if we use -3 we avoid some of the 'fallacies" of material implication. 
For example, though the falsehood of p is enough to guarantee the truth of (p D q), 
it is not enough to guarantee the truth of (p -3 q). 

Relevance logicians have put forward quite different candidates for formalisations 
of implication. They have not done so by defining new connectives in classical 
or modal systems. Rather, they have developed systems of relevance logic, whose 
primitive connectives are typically "classical" &, V and -, together with a "relevant" 
implicational connective, -. (There is good reason not to take relevant negation, 

to be classical. But something like a classical understanding of it is implicit in 
the development of the earlier and stronger relevance systems.) 

Among the better understood of these logics is Anderson and Belnap's R. (The 
locus classicus for R and its cousins is Anderson and Belnap [1].) The pure theory 
of - in R is neither stronger nor weaker than the pure theory of -3 in S4: (p 
((p -- q) - q)) c R while (p -3 ((p -3 q) -3 q)) V S4; and(p -3 (q -3 q)) c S4 
while (p - (q - q)) , R. 

Can relevant implication be defined in S4 or in some other modal logic? Meyer 
[17] gives precise form to a similar question. Noting that -3 is defined above as 
a modalised truth function, Meyer asks whether we can define -* as a modalised 
truth function. For almost all standard relevance logics his answer is 'no'. The 
present paper's main results are that the -> of R cfln be defined in a natural and 
independently motivated extension of S4, with propositional quantifiers and with 
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definite propositional descriptions of the form ipA; and that the -+ of R can- 
not be so defined without the use of definite propositional descriptions. (Ed- 
win Mares suggested that we add definite propositional descriptions to the sys- 
tem.) 

We proceed as follows. ?2 extends S4 to the prepositionally quantified logic 
S47r+. ?3 extends S47r+ to the logic S47r+1P, by adding definite propositional 
descriptions. ?4 generalises Urquhart's [21] semilattice semantics for Ra, the pure 
implicational fragment of R. ?5 gives precise sense to the claim that the connective 
-+ of R, can be defined in S47r+1P or in S47r +. ?6 proves that the -+ of R, can be 
defined in S47r+'P. ?7 proves that -+ cannot be defined in S47r+. ?8 generalises and 
comments on ?7's result. And ?9 concludes with some open problems and some 
methodological remarks. 

?2. S47r+: S4 with propositional quantifiers, Vp and 3p. We assume that we 
have a modal language with a countable set of propositional variables, PV = 
{PI, P2,... }; connectives V, - and D; and propositional quantifiers Vp and 3p. 
We use p, q, r, . . . as meta-linguistic variables ranging over PV, and A, B, C, . . . 
as meta-linguistic variables ranging over formulas. 

Here we extend Kripke's [15] semantics for S4 and its cousins to our proposi- 
tionally quantified language. A frame is a 3-tuple, F = (W, <, wo), where W is a 
set (of possible worlds); < (the accessibility relation) is a binary relation on W; 
and wo (the actual world) E W. Given a frame, a proposition is a subset of W. A 
model is a pair M = (F, V), where F is a frame and V is a function assigning a 
proposition to every propositional variable. Given a model M, a proposition P and 
a propositional variable p, M[P /p] is the model just like M except that it assigns 
P to p. An S4-frame is a frame for which < is reflexive and transitive. And an 
S4-model is a model whose underlying frame is an S4-frame. 

Given a model M and a formula A, the proposition M(A) assigned by M to A is 
defined by the following clauses: 

(i) M(p) =V(p) forp e PV; 
(ii) M((B V C)) = M(B) U M(C); 

(iii) M(--B) = W -M(B); 
(iv) M(LIB) = {w: (Vw' > w)(w' E M(B))}; 
(v) M(VpA)= - {M[P/p](A): P C W}; and 

(vi) M(3pA) = U{M[P/p](A): P C W}. 

A is true at the world w iff w E M(A). A is true in the model M if wo E M(A). 
Kripke [15] proves that if A is quantifier-free, then A E S4 if A is true in every 
S4-model. (See Hughes and Cresswell [9] for soundness and completeness theorems 
for K, T, K4, B, S4.2, S5 and others.) 

DEFINITION 1. S47r+ is the set of formulas true in every S4-model. 

Fine [4] defines S47r+ as well as the systems K7r+, T7h+, K47r+, B7r+, S4.27r+, 
and S57r+. These systems are to be distinguished from S47r, K7r, T7r, K47r, B7r, 
S4.27r, and S57r, which result from adding natural quantification axioms and rules 
to the unquantified axiomatisations. (See also Bull [2] on S47r and S57r.) Here are 
some facts about L7r+ and L7r, where L ranges over {S4, K, T, K4, B, S4.2, S5}. 
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(1) LIr+ and LUr are conservative extensions of L, and LUr C LIr+. 
(2) S57r+ = S57r + 3p (p & Vq (q D D(p D q))) and is decidable. See Fine [4] 

and Kaplan [11]. 
(3) Fine and Kripke independently showed that KIr+, TDr+, K47r+, BIr+, 

S4.27r+, and S47r+ are recursively isomorphic to full second order classical logic 
(a slightly weaker result occurs in Fine [4]). The stronger result can be shown by 
simplifying the intuitionistic strategies of Kremer [12], or as noted by Kremer [14], 
by adapting the relevance logic strategies used there. A published proof is given by 
Kaminski and Tiomkin [10]. 

In the terminology of Kremer [ 14], borrowed from Henkin [6], the LU +'s embody 
the primary interpretation of propositional quantifiers relative to Kripke's semantics, 
while the Lir's embody the secondary interpretation. Henceforth we do not concern 
ourselves with the LUr's. It is in an extension of S47r+ that we will define relevant 
implication. 

?3. S47r+'P: S47r+ with definite propositional descriptions. Here we extend the 
semantics for S47r+ to give a semantics for expressions of the form ipA, which are 
to be read as 'the proposition p such that A'. We add the propositional description 
operator ip to the language, together with a grammatical rule: if A is a formula and 
p is a propositional variable, then ipA is a formula. We call such formulas definite 
propositional descriptions. 

A grammatical aside: in the standard treatments of definite individual descrip- 
tions of the form ixA, 1 combines with an individual variable and a formula to form 
a singular term. In the case of definite propositional descriptions, everything is of 
the same logical type: 1 combines with a propositional variable and a formula to 
form aformula. Given its grammatical similarity to Vp and 3p, we can take ip to 
be a new propositional quantifier. 

3.1. A first attempt at a semantics for definite propositional descriptions. In keep- 
ing with ?2's semantics, we want to provide a clause defining M(ipA), for a model M, 
a propositional variable p and a formula A. Our treatment of definite propositional 
descriptions will be Fregean, in the sense of Carnap [3], and motivated by Frege 
[5]: if there is a unique proposition P such that M[P /p] ]= A, then M(lpA) = P; 
otherwise, M(lpA) is some designated proposition. 

To make this precise, we make room for designated propositions in our seman- 
tics. An extended frame (e-frame) is an ordered pair (F, D), where F is a frame, 
and D, the designated proposition, is a subset of W. (F, D) extends F. An ex- 
tended model (e-model) is a 3-tuple N = (F, D, V), where (F, D) is an e-frame 
and (F, V) is a model. (F, D, V) extends (F, V). S4-e-frames and S4-e-models are 
defined in the obvious way. Given an e-model N a proposition P and a propo- 
sitional variable p, N[P /p] is the e-model just like N except that it assigns P to 
P. 

Given an e-model N and a formula A, the proposition, N(A), assigned by N to 
A is defined by the following clauses: 

(i)-(vii) as in ?2, with 'M' everywhere replaced by 'N'; and 
(viii) If there is a unique proposition P such that wo E N[P /p] (A) then N(lpA) = 

P. Otherwise N(lpA) = D. 
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If there is a unique proposition P such that wo E N[P /p](A), then ipA is a proper 
description. Otherwise it is improper. If N is an e-model, then the formula A is true 
at the world w iff w E N(A). A is true in the e-model N iffwo E N(A). 

3.2. A problem and a solution. We seem to have added to S4n+ a rich theory 
of definite propositional descriptions. But it is actually quite impoverished. The 
problem is made clear in Theorem 2. 

THEOREM 2. Suppose that N = (W, <, wo, D, V) is an S4-e-model. Then either 
(V w E W) (wo < w) or (Vp e PV) (VA) (zpA is improper). 

PROOF. Suppose that N - (W, <, wo, D, V) is an S4-e-model and that for some 
w E W, wo $ w. Assume that ipA is proper. So there is a unique proposition, 
P, such that w0 E N[P/p](A). Let P' = PU{w} and P" = P-{w}. By induc- 
tion on the complexity of formulas we have the following: (VB)(VN' = (W, <, 
wo,D,V'))(Vw > wo)(w E N'[P/p](B) iffw E (N'[P'/p](B) nN'[P"/p](B))). 
So w0 is in both N[P' /p](A) and N[P" /p](A). This contradicts our assumption 
that ipA is proper, since P' = P". -d 

The upshot is that, in most S4-e-models, all definite propositional descriptions 
are improper. The problem can be diagnosed so as to lead to a revision of ?3.1's 
semantics. Suppose that F = (W, <, wo) is a frame in which some world w a w0. 
Suppose that (F, D) is an e-frame extending F. Finally, suppose that P and Q are 
distinct subsets of W, such that (Vw > wo)(w e P iff w E Q). The root of the 
problem is this: 

No S4-e-model based on the e-frame F can distinguish between P and Q. 

The reason for this is that no S4-e-model can tell what is going on at worlds 
inaccessible to w0. 

This is made precise in Theorem 3. 

THEOREM 3. Suppose that (F, D), P and Q are as above; that p and q are distinct 
propositional variables; that formulas A and B are the same except that free occur- 
rences of p in one might be replaced by free occurrences of q in the other; and that 
N = (F, D, V) is an S4-e-model, where V(p) = P and V(q) Q. Then N k= A i/f 
N = B. 

PROOF. By induction on the complexity of A. - 

Our solution is to "identify" propositions that, like P and Q, do not differ with 
respect to worlds accessible to w0. This does not affect clauses (i)-(vii) of the 
definition of N(A) (?3.1) since these clauses are not sensitive to criteria of identity. 
Clause (viii) is affected. Suppose that at least one proposition "satisfies" A, where 
A is thought of as a function of p. On the old understanding, ipA is improper iff 
there are two distinct propositions satisfying A. On the new understanding, ipA is 
improper iff there are two non-identified propositions satisfying A. 

There is one more thing to iron out: if ipA is proper, we still might have several 
candidates for N(lpA), although all of these candidates are identified. We resolve 
this by choosing the smallest of these candidates. ?3.3 makes this precise. 

3.3. The semantics for ip. Suppose F = (W, <, wo) is a frame, (F, D) is an e- 
frame, and N = (F, D, V) is an e-model. Wo =df {w E W: wo < w}. Propositions 
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P and Q are equivalent (P -o Q) iff (Pn WO) = (Q n WO). The clauses that 
determine N(A), the proposition assigned by N to the formula A, are 

(i)-(vii) as in ?3.1; and 
(viii) Suppose that there is a proposition P such that wo E N[P /p](A) and for 

every proposition Q, if wo E N[Q /p](A) then Q -0 P. Then N(lpA) = 

P n Wo. Otherwise N(lpA) = D. 

Truth at a world and in an e-model are defined as in ?3.1. 

DEFINITION 4. S47r +'P is the set of formulas true in every S4-e-model. 

We can analogously define K7r+'P, TTr+'P, K47r+'P, B7r+'P, S4.27r+'P, and 
S57r+'P. To define K7r+1P, K47r+'P, T7r+"P and B7r+'P, we alter the definition 
of Wo, since the accessibility relation is no longer both reflexive and transitive. 
First we define w <? w', in three steps: (1) w <o w' if w = w'; (2) w ?n+l w' 
iff (]w")(w <n W" and w" < w'); and (3) w <?, w' iff (n)(w <n w"). Then 

Wo =df {W E W: wo <? W}. Below are some facts about LDr+'P, where L ranges 
over {K, T, K4, B, S4, S4.2, S5}. 

(1) The following formulas are valid in LDr+'P in the present sense, but not in the 
sense of ?3.1: 

(ipVqWo(p D q) D A); (A D ipVqW(q D p)); 

(A _ ip (A p)); ip(p& Vq(q D LI(p D q))). 

(2) Lr +'P is a conservative extension ofL7r+. If L =A S5 then Lr +'P is recursively 
isomorphic to full second order classical logic. Conjecture: S57r+'P is decidable. 

(3) ipA is true at a world w E Wo iff either w E P n Wo where P is the unique 
proposition, modulo -o, such that w0 E N[P /p](A); or there is no unique propo- 
sition P such that wo E N[P /p](A), and w E D. This raises two related points. (i) 
Like W, ip is intensional: the truth, at the world w, of ipA depends on the truth, as 
p ranges over the propositions, of A at other worlds. This is not so for Vp and 3p. 
In some sense, ip is even more intensional than O: unlike oA, the truth at w of ipA 
may depend upon the truth of A at worlds that are inaccessible to w. (ii) There is 
a de re-de dicto issue here. Whether ipA is true at the world w depends in part on 
whether ipA is properfrom the point of view of the actual world not from the point 
of view of w. In other words, ignoring, for the moment the designated proposition, 
IpA is true at world w iff de re, i.e., at the actual world wo, IpA is proper and de 
dicto, i.e., at the world w, IpA is true. 

(4) L7r+'P is not closed under the rule of necessitation, though L and L7r+ are. 
Consider the minimally true formula: A = ip(p &Vq(q D El(p D q))). A e LDr+'P 

but MA ' L7r+'P. The reason: if N is an e-model then N(A) n WO {wo}. 

?4. A generalised semantics for R,. We assume that we have a relevance language 
with the set, PV, of propositional variables, and with a binary connective, -). (It is 
convenient to have the same set PV as for our modal language.) R, is defined and 
axiomatised in Anderson and Belnap [1]. 

Urquhart [21] presents a semilattice semantics for R,. A semilattice with 0 is a 
3-tuple L = (L, o, 0) where L is a set; 0 e L; and o is a binary operator on L that is 
commutative, associative and for which (V u e L) (0 o u = u o u = u). A consequence 
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model (c-model) is a semilattice with 0 together with a function V : PV -) 9 (L). 
The proposition M(A) assigned by the model M = (L, o, 0, V) to the formula A is 
defined by the following clauses: 

(i) M(p) V(p) for each p E PV; 
(ii) M(B , C) = {u E L: (Vv E L)(v E M(B) =- uov E M(C))}. 

Given a c-model M, the formula A is true at the point u iffu E M(A). A is true in 
the c-model M if A is true at 0. Urquhart [21] proves that A E Ro if A is true in 
every c-model. 

We can generalist this semantics so that we can interpret formulas of the language 
of Ra in the S4-e-frames of ?3. (An analogous generalization to that given below 
can be given for the S4-frames and S4-models of ?2, rather than the S4-e-frames 
and S4-e-models of ?3. Theorem 6, below, goes through in either case.) In order to 
so interpret these formulas, we must provide a clause defining N(B -, C) in terms 
of N(B) and N(C), where N is an S4-e-model. First, some definitions. 

DEFINITION 5. Suppose that N = (W, <, wo, V) is an e-model. The set of upper 
bounds ofu E W andv E Wis ub(u,v) =df {w E W: u < wandv < w}. The set 
of least upper bounds of u E W and v E W is lub(u, v) =df {w E ub(u,v): (Vw' E 
ub(u, v)) (w < w')}. The ternary relation Ruvw on W is defined as follows: 

Ruvw iff u, v, w E Wo and either [(Vx, y E Wo)(3! z E lub(x, y)) and 
w E lub(u, v)] or [-(Vx, y E WO)(3! z E lub(x, y)) and w E ub(u, v)]. 

The binary operator, -, on SD (W) is defined as follows, for P, Q C W: 

(P -) Q) =df {U E Wo: (Vv, w E Wo)((v E P and Ruvw) => w E Q)}. 

(Routley and Meyer [18] make similar use of a ternary relation.) 
Given an S4-e-model N and a formula A in the language of Ra, the proposition 

N(A) assigned by N to A is defined by the following clauses: 
(i) N(p) V(p) for each p E PV; 

(ii) N(A B) = (N(A) -3 N(B)). 
Truth at a world and in an e-model are defined as in ?3.1. 

THEOREM 6 (Soundness and completeness). A E Ra ifA is true in every S4-e- 
model. 

PROOF. (=m ): By induction on the length of proof of A. (a): The canonical 
c-model provided by Urquhart [21] is an S4-e-model, if we take 0 to be the actual 
world; if we define < so that u < v iffu = (u o v); and if we let D be any proposition. 
So if A ' Rh, then A is false in some S4-e-model. -1 

The fact that the formulas of Ra can be interpreted in our S4-e-frames allows us 
in ?6, below, to define -) in terms of -, V, LI, Vp, 3p and ip. 

?5. Defining one logic's connectives in another logic. Here we make precise the 
claim that we have defined one logic's connectives in another logic. ?5.1 specifies 
what it is to define a new connective in a given logic. ?5.2 partially specifies what it is 
for that new connective to be "the same as" a particular connective from a different 
logic. 
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5.1. Defining new connectives. Consider the following "definitions" of new con- 
nectives, in the language of quantified modal logic: 

(A D B) =df (-A V B); 

(A -3 B)=df El (A D B). 

A=dfVpE(A D p). 

These definitions can be thought of as specifications of functions on the space of 
formulas. On this interpretation the functions &, D, -3 and @ are meta-linguistic 
entities, not new pieces of the object-language's vocabulary. 

Not every function on the space of formulas intuitively counts as a connective. 
Consider the function that takes all formulas with an odd number of propositional 
variables to P1 and that takes all formulas with an even number of propositional 
variables to P2. We would hardly think of this function as a connective. Definition 
8, below, characterises those functions that are connective-like. Theorem 9 provides 
an alternate characterization of connective-like functions. 

DEFINITION 7. Suppose that A and B1, ..., Bn are formulas in some proposi- 
tional language that might or might not have propositional quantifiers, and that 
q, . .., qn are distinct propositional variables. Then A[B1 /q 1, . . ., Bn/qn] is the 
result of simultaneously replacing the free occurrences of the qi's in A by the Bi's. 
We assume that there is some systematic way of replacing the bound variables 
of A so that any free occurrence of a propositional variable in Bi is also free in 
A[B1/q1,... , Bnlqn]. 

DEFINITION 8. Suppose that F is an n-ary function on the space of formulas of 
some propositional language. F is connective-like iff for all distinct propositional 
variables q1, ..., qn and all formulas B1, ..., Bn, F(B,.. ., B) = F(ql, , qn) 

[BI /ql, ... * Bnlqn]- 

THEOREM 9. Suppose that F is an n-ary function on the space offormulas of some 
propositional language. Then F is connective-like iff there are distinct propositional 
variables q , . . . , qn, and there is aformula A all of whosefree propositional variables 
are among the qi andfor which, for allformulas B1, ..., Bn, we have F(B1,... , Bn) 
A[Bl/q1,... ,Bn/qn4 

THEOREM 10 (Composability theorem). If F is a connective-like n-ary function 
and G1, ..., Gn are connective-like m-ary functions, then the m-ary function F(Gi, 
.. ., Gn) is connective-like. 

In ?6 we will define -? in S47r+'P. This will implicitly rely on the composability 
theorem. 

5.2. Identifying connectives across logics. Suppose F is a binary connective-like 
function on the space of formulas in the language of S4ir+'P and that F is intended 
to represent -*. Given this intention, F induces the following one-one map, G, from 
formulas of the relevance language to formulas of the modal language: 

G(p) = p, for propositional variables, p; and 

G(A - B) = F(G(A), G(B)). 
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Intuitively, the formula A in the language of R, is identified with the formula G(A) 
in the language of S47r+'P. And the function F succeeds in representing -) iff 

A E Ra if G(A) E S47r+'P. 

Definitions 11 and 12 generalist these intuitions. 

DEFINITION 11. Suppose that L and L' are propositional logics, with or without 
propositional quantifiers, formulated for languages with the set, PV, of propo- 
sitional variables. Suppose that the only primitive connective of L is the n-ary 
connective *. Let the L-formulas (L'-formulas) be the formulas in the language of 
L (L'). Suppose that F is an n-ary function on the space of L'-formulas. Let G be 
that function from L-formulas to L'-formulas for which 

G(p) = p, for p E PV; and 

G(* (BI ... , Bn)) = F(G(BI),... , G(Bn)) 

F succeeds in representing the * of L in L' if for every L-formula A, A E L iff 
G(A) c L'. 

DEFINITION 12. Suppose that L, L' and * are as in Definition 11. The * of L is 
definable in L' iff there is an n-ary function on the space of L'-formulas that succeeds 
in representing the * of L in L'. 

We can now give a precise statement of our main results: 

THEOREM 13. The - of R, is definable in S47r+'P. (See ?6.) 

THEOREM 14. The - of Ra is not definable in S47r+. (See ?7.) 

?6. Theorem 13: defining relevant implication in S47r+'P. 
6.1. Table 1: preliminary definitions of connectives. Tables 1 and 2 define a host 

of connectives in the language of S47r +'P. The headings of the last two columns of 
Table 1 require some explanation. 

Given an S4-e-model N and a formula A, we can think of A as playing two 
semantic roles: it names the proposition N(A); and it makes a claim about the 
model. For example, the formula clu(-p V q) names N(lI(--p V q)). Furthermore 
it says that (N(p) n Wo) c (N(q) n Wo). For, for any S4-e-model N, N l= 
cl (-p V q) iff (N(p) n Wo) c (N(q) n Wo). Kremer [14] takes advantage of the 
same ideas. 

In light of ?4.2, we take A and B to name the same proposition if they name 
equivalent propositions. Given an equivalence class {P, Q, R, . . . } of propositions, 
it is useful to focus on a particular representative of that class, namely P n Wo(= 
Q nWO = R n Wo ... ). Henceforth, we think of the formula A as naming not 
N(A), but No(A) = N(A) n Wo. 

Finally, the table's blank entries are those of no particular interest. 
6.2. Table 2: further definitions of connectives. Table 2 omits the fourth column 

of Table 1. In Table 2, we use the following abbreviations, where * is any n + 1-place 
connective: 
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TABLE 1. Preliminary definitions of connectives. 

Definiendum Definiens What the definiens says: What the definiens names: 
N F definiens if No (definiens) = 

(A & B) (AVB) N#=AandN#=B No(A) n No(B) 
oA EIA (3 w c Wo)(w c No(A)) {w E Wo:3 w' > w) 

(w' e No(A))} 
F Vpp 0 
T 3pp Wo 

TABLE 2. Further definitions of connectives. 

Definiendum Definiens What the definiens says: N = 
definiens if 

(A D B) (-A V B) if N # A then N # B 

(A -= B) ((A DB)&(B D A)) N # Aiff N B 
(A -3 B) L(A DB) No(A) C No(B) 
(A =B) ((A -3 B) &(B -3 A)) No (A) =No (B) 
(A eB) (--A -3 F)&(A -3 B)& No(A) {w} where w e 

Vp (-((p&A) -3 F) D (A -3 No(B) 
p)) 

(A < B) (A E T)&(B E T)&(A -3 No(A) {w} and No(B) 
oB) {w'}, where w < w' 

C ub(A,B) (A < C)&(B < C) No(A) = {w},No(B) = {w/}, 
and No(C) {w"} where 
w" e ub(w,w') 

Club(A,B) C ub(A,B) &Vp(pub(A,B)D No(A) = {w},No(B) = {w/}, 
C < p) and No(C) {w"} where 

w" e lub(w,w') 
R(A,B,C) [(Vp E T) (Vq E T) (3rlub No(A) = {w}, No(B) = {w }, 

(p,q)) (Vslub(p,q)) (s = and No(C) = {w"} where 
r)& Club(A,B)] V [-i(Vp e Rww'w" 
T) (Vq E T) (3rlub(p,q)) 
(Vslub(p,q)) (s r) & 
C ub(A,B)] 

C#(A,B) (Vp E T)(p e C V Vq(Vr e No(C) = (No(A) - No(B)) 
A)(R(p,r,q) D q c B)) 

(A - B) ip(po(A, B)) 
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(3p * (All ... ,A,))B abbreviates 3p(p * (Ai,... ,A,)&B); and 

(Vp * (All ... I A,))B abbreviates Vp (p * (Al1,.. A,) D B), 

where D is defined in the first row. 
6.3. The definition of relevant implication. The last row of Table 2 gives the defini- 

tion of relevant implication. That this definition succeeds is indicated in Corollary 
16, from which Theorem 13 (?5.3) follows immediately. 

LEMMA 15. If N is any e-frame and if A and B are formulas in the language of 
S47r+'P, then No(A -) B) = (No(A) -) No(B)). 

PROOF. By a straightforward appeal to the definitions in Tables 1 and 2. -1 

COROLLARY 16. The binary function -) (on formulas in the language of S47r+'P) 

defined in Table 2 succeeds in representing the -) of Ra in S47r+'P. 

?7. Theorem 14: Relevant implication is not definable in S47r+. Theorem 14 (?5.3) 
is a corollary to Lemma 19, below. 

LEMMA 17. If A E S47r+ then, for every S4-model, A is true at every world. 

LEMMA 18. Suppose that M is a model; p is a propositional variable; A and B are 
S47r+-formulas; and M(A) = P. Then M[P/Pp](B) = M(B[A/p]). 

LEMMA 19. Suppose that * is a binary connective-like function on the space of 
S47r+-formulas, such thatfor every propositional variable, p, (p * p) E S47r+. Then, 
for any distinct propositional variables p and q, ((p * p) * (q * q)) E S47r+. 

PROOF. Suppose that p and q are distinct variables. Let M = (W, <, wo, V) be an 
S4-model. We will show that ((p * p) * (q * q)) is true in M. Choose propositional 
variables r and s that are distinct and distinct from p and q. Let M' = M[W /s] and 
M" = M[W/s][W/r]. By Lemma 17, M(q * q) = M'(p * p) = M"(r * r) = W. 
By Lemma l8,M"(r*r) = M"(r*s) M'((p* p)*s) = M((p* p)*(q*q)). So 
M((p * p) * (q * q)) =W. So ((p* p) *(q * q)) is true in M. - 

PROOF OF THEOREM 14 (?5.3). If - is definable in S47r+ then ((p -3 p) -3 (q 3 

-q)) E S47r+, since (p 1 p) E Ra. But ((p - p) - (q - q)) f Rae. 

?8. Generalising Theorem 14. Given the generality of the proof of Lemma 19 we 
can generalise Theorem 14: a broad range of relevant and nearly relevant -)'s are 
not definable in any of a broad range of prepositionally quantified modal logics 
(Theorem 20). 

Suppose that L is a normal modal logic, as characterized in Hughes and Cresswell 
[9]. All of the unquantified modal logics that we have mentioned are normal. Define 

LUr+ =df {A: A is a formula in the language of S47r+ and A is validated 
by every model structure that validates all of the formulas in L}. 

(The definition of S47r + here is slightly different but equivalent to the definition in 
?2. Similarly, the present definition of K7r+, Tir+, K47r+, S4.27r+, B7r+ and S57r+ 
is equivalent to the definitions in Fine [4].) 
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THEOREM 20. Suppose that I is a set of sentences in a quantified or unquantified 
propositional language with an implicational connective -), and that (A -) A) E I 
for every sentence A, and that, for some propositional variables p and q, ((p -) 

p) -) (q -) q)) f I. (I could be any relevance logic, or one of numerous strong 
pseudo-relevance logics like RM or even RM3, which Meyer [17] calls "just a shade 
off being classical".) Then the -) of I cannot be defined in LIr+. 

Theorem 20 is in some ways broader and in some ways narrower than the result 
of Meyer [17]. Theorem 20 is broader than Meyer [17]. First, Meyer considers 
only definitions of -) as modalised truth functions, while Theorem 20 concerns 
definitions much more broadly conceived. Second, Meyer considers defining -) 
in unquantified modal systems, while we consider defining -) in prepositionally 
quantified modal systems. And third, Meyer places stronger restrictions on the 
behaviour of the newly defined connective -): in effect, he insists that, for a definition 
to have succeeded, the V & -) fragment of the modal logic L be equal to the 

V & -) fragment of the relevance logic, where - and are identified. But we 
insist only that the -) fragments be equal. 

Theorem 20 is narrower than Meyer [17]. Meyer puts very weak conditions 
on the propositional modal system L: they are (1) that L contain all of the clas- 
sical propositional tautologies; and (2) that once -) has been defined, if ((A -) 
B) &(B - A)) E L then, for any formula C and any propositional variable p, 
(C[A/p] - C[B/p]) E L. We insist that L be a normal modal system, although 
we do not insist on Meyer's condition (2). Open question: can our conditions on L 
be weakened? 

?9. Concluding remarks. 
9.1. Technical remarks. (1) The proof of Theorem 13 goes through for S4.27r+'P 

as well as for S47r+'P. Open question: is -) definable in K7r+'P, T7r+'P, K47r+'P, 

B~r+'P, or S57r+'P? Conjecture: yes in K7r+'P, Tzr+'P, K47r+'P and B7r+'P; and 
no in S57r+'P. Open question: is -) is definable in any Lr, as opposed to L7r+? 
Conjecture: no. 

(2) The relevance logic with the closest affinity to S4 has been taken to be An- 
derson and Belnap's E rather than R. Indeed, the pure implicational fragment for 
E is motivated in part by a natural deduction system which combines a natural 
deduction system for the -3 of S4 with a natural deduction system for the -) of R. 
(Anderson and Belnap [1, pp. 1-26].) Furthermore, Urquhart's [21] semantics for 
E, combines the semilattice semantics for R, with Kripke's semantics for S4. But 
we have relied upon a semantic connection between R and S4 rather than between 
E and S4. Open question: is the -) of E definable in S47r+'P? Conjecture: no. 

(3) Our treatment of definite propositional descriptions is motivated by a Fregean 
treatment of definite individual descriptions. But other treatments of definite in- 
dividual descriptions have been proposed. (Carnap [3] considers the proposals of 
Russell [19] and [20] and of Hilbert and Bernays [7], and compares them to the 
Fregean proposal.) These proposals agree regarding formulas that contain only 
proper descriptions. In our definition of -) (?6.2, Table 2) the only pertinent def- 
inite propositional descriptions are proper in every model. So our definition of -) 
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should work in the presence of any well-motivated treatment of definite proposi- 
tional descriptions, since any such treatment will agree with our Fregean treatment 
in the pertinent cases. 

9.2. Methodological remarks. Many issues upon which we have touched call out 
for further elaboration. To what extent does S47r+ capture the notion of propo- 
sitional quantification? Can the notion of definite propositional description be 
fruitfully elaborated? Can a general theory of connective definition and connective 
identification across logics be developed? 

Regarding this last question, we note (with a little dismay) that, although the - 

fragment of S47r+'P is equal to Ra, things do not work out so nicely with larger 
fragments. (S47r+'P),& = Ra&, but (S47r+'P) &v $8 Ra& v. So, while we have 
expressed, in S47r+'P, relevant implication in isolation from other connectives, we 
have not expressed its interactions with all of the other connectives. 

That (S47r+'P)Y& v :8 Ra& v is only damaging to the extent that the V of S47r+'P 

can be identified with the V of R. But the use of the same symbol 'V' is not enough 
to identify the two connectives. We may identify them at an intuitive level: both 
connectives are meant to formalise the same pre-theoretic notion of disjunction. 
But this is not sufficient grounds for identifying two formal connectives. For the 
claim that we can have rival formalisations of pre-theoretic notions suggests that 
the same intuitive notion can be formalised by distinct formal connectives. What is 
wanting here is a more complete theory of cross-logic identification of connectives. 

While we are on the topic, we note (with a little more dismay) the way -) 

interacts, in S47r+'P, with cu. The following are, as expected, theorems: (wA -) A), 
(w A - LiiA) and w(A -) B) -> (2A -) LIB). But, though (p -) p) is a theorem, 
w (p - p) is not. Indeed, there are models in which (p -) p) is true only at the 
actual world. This calls for further thought. 

Despite these drawbacks, we maintain that it is interesting that the pure theory 
of relevant implication can be represented, in a strong and interesting sense, in an 
independently motivated extension of S4. 
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