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The Guptα-Belnαp Systems S# and S*

are not Axiomatisable

PHILIP KREMER

Abstract Anil Gupta and Nuel Belnap's The Revision Theory of Truth
presents revision theoretic systems of circular definitions. Part I of the
present paper shows that the revision theories S# and S* are not axiomatis-
able. Part II refines this result. Among other things, Part II shows that there
is a strong relationship between revision theories and the theory of inductive
definitions. This relationship is exploited to show that S# and S* (and all
"plausible" revision theories of circular definitions) are of complexity at
least Π^.

/ Introduction The Revision Theory of Truth Gupta and Belnap [2]
treats " is true" as a predicate of sentences. (Strictly speaking, "is true" can
be meaningfully applied to non-sentences. "Tracy is true" is well-formed and
false. " 'Snow is white' is true" is well-formed and true.) Furthermore, [2] takes
the corresponding concept, truth, to be a circular concept: in the definition of
"is true", the expression "is true", which is the definiendum, appears in the
definiens.

More precisely, truth is defined by the set of partial definitions of the form

'/?' is true =Df/>

where p ranges over the sentences of the language. The definition of truth inso-
far as truth applies to "snow is white" is not circular. The pertinent definition is

'snow is white' is true =Df snow is white,

and the definiendum ("is true") does not occur in the definiens. But the defini-
tion of truth insofar as truth applies to "what Tracy says is true" is circular. The
pertinent definition is

'what Tracy says is true' is true = D f what Tracy says is true,

and the definiendum ("is true") does occur in the definiens.
Before considering the special behaviour of truth, [2] develops general semantic

theories of circularly defined concepts: revision theories S0,Si,... ,S n , . . . and S#
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and S*. It provides axiomatisations (in a sense) of the Sn, but not of S# and S*.
More precisely, it provides sound and complete calculuses Cn for the Sn such that,
for every set 3D of definitions and for every formula B, B is a theorem of Cn (rel-
ative to 3D) iff B is valid (on 3D) in Sn. But it provides no such calculuses for S#

and S*. Indeed, regarding S#, [2] explicitly leaves the following open problem:

Is a [sound and] complete calculus for S# possible? If not, what is the complex-
ity of the theorems of S# (relative to that of £>)? (p. 185, Problem 5D.7)

A similar open problem exists for S*.
The present paper largely closes these open problems. We provide a finite set,

3D, of definitions, and we show that the following sets are not recursively enu-
merable (indeed, the set of true arithmetical sentences is recursively embedda-
ble into them):

[A: A is valid on 3D in S#}, and
[A: A is valid on 3D in S*}.

(See the Main Result, Corollary 10.)
The Main Result suffices to establish that there is no complete calculus for

either S# or S*. Suppose that there were a complete calculus for S#. Then, since
our set 3D is finite, we could use the calculus to recursively enumerate [A: A is
valid on 3D in S# j . But this cannot be done. Similarly for S*.

The Main Result also partially answers the second question in [2]'s Prob-
lem 5D.7. Suppose we are looking for a minimal complexity, C, such that for
all sets 3D of definitions the complexity of the set of valid sentences (relative to
that of 3D) is at most C. Then C is at least the complexity of true arithmetic
(which is A}).

The present paper is divided into two parts. Part I (Sections 2-5) establishes
the Main Result. (Part I assumes much the same background as does [2].) Part
II (Sections 6-10) refines the Main Result. (In Part II, Sections 6, 7, and 10
assume the same background as Part I, and Sections 8 and 9 assume some famil-
iarity with the analytic hierarchy.) Section 6 sharpens the Main Result by using
a single circular definition rather than the two circular definitions of Part I. Sec-
tion 7 generalises the Main Result to other "plausible" revision theories. Section
8 investigates the relationship between revision theories and the theory of induc-
tive definitions—a relationship which can be brought out by generalising the con-
struction used in Part I. This relationship helps us improve upon the Main Result:
the lower bound for the complexity of S# and S* is raised to Π2 (Corollary 17).
Section 9 proves the main lemma used in proving Corollary 17. And Section 10
discusses [2]'s theories of truth, T# and T*, which are based on S# and S*.
Throughout this paper, we assume all of the terminology and notation of [2] with
one exception: where [2] uses script S (for revision sequences), we use bold-italic
S(S).

Part I The Main Result

2 Preliminaries Let L be the first-order language of arithmetic, with the fol-
lowing nonlogical constants: a name, 0; a unary function symbol, ' binary func-
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tion symbols, + and x; and a binary relation symbol, <. Let 3D be the set
consisting of the following two definitions:

Gx = D f [3zVy(y < z <-> Gy) & Vy(y <x-+Gy)]

Hx = D f [Vy(Gy -• Gy') & VyVz((Gz &y<z)^Gy)& 3yGy & Gx]

v [[ly(Gy& ~Gy') v 3ylz{Gz & y < z & ~Gy)v ~3yGy] &Hx].

The upshot of these definitions is made explicit in Section 3, where we note the
behaviour of the revision rule δ^tM and of revision sequences for &O,M> when M
is in a particular class of models soon to be specified.

First, let AX be the sentence which says that < is a strict linear order, that 0
is the <-smallest element, and that x' is indeed the immediate successor of x
(see [2], Example 5A.17, p. 154):

vx - (Λ: < x) & vxvyvz((x <y&y<z)-+x<z)

& VxVy(x<yvx = y v y < x) & vx~ (x<0)

&Vx(x<x') &VxVy(x<y^> (y = x'vx' <y)).

We say that a model M of L is an ^4^-model iff it satisfies AX. (A good
example is the set of natural numbers with the standard interpretation of the non-
logical constants.) We are interested in the behaviour of δ&tM (and of its revi-
sion sequences) when M is an ̂ IX-model. In our discussion below, if M = <D, I>
is a model of L, we write, for d,d ! ,d 2 E D,

d' for I(')(d);
d! < d2 for <d!,d2> G I(<); and
0 for 1(0).

Finally, given a hypothesis, h, we define h(G) to be [d G D : h(G,d) = t}, and
h(H) to be {d G D : h(H,d) = t ) .

Before we move on to the behaviour of 6© i M, some definitions.

Definition 1 Suppose that M = <D,I> is a model of L. Then S <Ξ D is '-complete
iff (Vd G S)(d' G S). We say S c D is an initial segment iff (vd! G S)(Vd2 G D)
(if d2 < dj then d2 G S). For every άx ,d2 G D, [d! ,d2] = { d G D : d ! < d < d 2 ) .
For every n,d ( n ) = ά" /, where ' occurs n times. Finally, N M is the smallest
'-complete set containing 0. (That is, N M = {O^O'^iT,...}.)

3 Behaviour ofδ^>M and of revision sequences for δ^M We prove Lem-
mas 2-5 in Section 4.

Lemma 2 Suppose that M = <D,I> is an AX-model and that h is a hypothe-
sis. Then

(i) ifh(G) = [0,d] then δ^M(h)(G) = [0,d'];
(ii) ifh(G) = 0 then δ^M(h)(G) = {0}; and

(iii) otherwise, δ^M(h)(G) = 0 .

Lemma 3 Suppose that M = <D,I> is an AX-model and that his a hypothe-
sis. Then
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(i) */ h(G) is a non-empty '-complete initial segment, then δ^fM(h)(H) =
h(G); and

(ii) otherwise, δ^M(h)(H) = h(H).

Lemma 4 Suppose that M = <D,I> is an AX-model and that S is a revision
sequence for δz>iM. Then

(i) Sω(G) is a non-empty, '-complete initial segment;
(ii)S ω + 1 (G) = 0 ;

(iii) 5 2 ω(G) = N M ;
(iv) ( V α > ω ) ( 5 β ( C ) c N M ) ;
(v) for every limit ordinal, λ, Sλ+ω(G) = N M ; and

(vi) for every limit ordinal, λ, 5χ+ω + 1 (G) = 0 .

Lemma 5 Suppose that M = <D,I> is an AX-model and that S is a revision
sequence for δ£>fM Then

(i) S2ω+ι(H) = NM;and
(ii) (Va>2ω)(Sa(H) = KM).

Corollary 6 Suppose that M = <D,I> is an AX-model. Then, if h is recurring
for δ&M, then h(H) = KM.

Proof: By Lemma 5 (ii).

4 Proofs of Lemmas 2-5 For these proofs, we introduce four abbrevia-
tions. (Notice that D, below, is logically equivalent to ~C.)

A abbreviates 3zVy(y < z <-• Gy);
Bx abbreviates Vy(y < x-> Gy);
C abbreviates [vy{Gy -+ Gy') & VjVz((Gz & y < z) -> Gy) & lyGy] and

D abbreviates [ly(Gy & -Gy') v 3jVz(Gz &y < z & -Gy) v ~3yGy].

So our set 3D of definitions (form Section 2) is

Gx = D f [A & Bx]

Hx = D f [C & Gx] v[D& Hx].
Proof of Lemma 2: (i) Suppose that h(G) = [0,d], Then A is true in M + h. Fur-
thermore, in M + h, Bx is true of all and only the members of [Ojd']. (ii) Sup-
pose that h( G) = 0 . Then A is true in M + h. Furthermore, in M + h, Bx is true
of 0 and only 0. (iii) Suppose that h(G) Φ 0 and that for every dGΌ,h(G)Φ
[0,d]. Then A is false in M 4- h. So, in M + δ£>>M(h), Gx is false of every d E D.

Proof of Lemma 3: (i) Suppose that h(G) is a non-empty '-complete initial
segment. Then D is false in M + h. So (D & Hx) is false in M + h, of every
d E D. Furthermore, C is true in M + h. So, in M + h, (C & Gx) is true of
d E D just in case Gx is true of d. So Hx is true of d in M -h δ£>)M(h) just in case
Gx is true of d in M + h. (ii) Suppose that h(G) is not a non-empty '-complete
initial segment. Then (C & Gx) is false, in M + h, of every d E D. Furthermore,
D is true in M + h. So, (D & Hx) true of d in M + h just in case Hx is true of
d in M + h. So, Hx is true of d in M + δΏ M(h) just in case Hx is true of d in
M + h.
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Proof of Lemma 4: (i) We consider three cases, (a) S0(G) = [0,d]. In this case,
by Lemma 2(i), for every n > 0, Sn(G) = [0,d(n)]. Let Dd = [0,d] U {d(n): n is
a natural number}. Notice that for every c G D, <G,c> is stably t in S Γ ω iff
c G Dd; and <G,c> is stably f in S Γ ω iff c £ Dd. So, since Sω coheres with S Γ ω
([2], Definitions 5C.2 and 5C.3), ^ ( G ) = Dd, which is a non-empty, '-complete
initial segment, (b) S0(G) = 0 . In this case, by Lemma 2(ii) and 2(i), for every
n > 0, Sn(T) = [0,0{n~ι)]. By an argument like that in case (a), Sω(G) = N M ,
which is a non-empty, '-complete initial segment, (c) S0(G) Φ 0 and for every
d G D, S0(G) Φ [0,d]. Then, by Lemma 2(ii), S\ (G) = 0 . So, by Lemma 2(ii)
and Lemma 2(i), for every n > 1, Sn(G) = [0,0 ( n"2 )]. So, by an argument like
that in case (a), Sω(G) = N M , which is a non-empty, '-complete initial segment,
(ii) This follows from Lemma 4(i) and Lemma 2(iii). (iii) This is proved by an
argument like that for Lemma 4(i)(c). (iv) This is proved by induction on α. The
base case (ω 4- 1) is by Lemma 4(ii). If a is a successor ordinal then the induc-
tive hypothesis and Lemma 2 do the trick. If a is a limit ordinal then the induc-
tion hypothesis and the coherence requirement on revision sequences do the trick,
(v) This is proved by an argument like that for Lemma 4(i) (where we consider
three cases for Sλ corresponding to the three cases for So)9 Sλ+ω(G) is a non-
empty, '-complete initial segment. By Lemma 4(iv), 5 λ + ω ( G ) c; ]NM. So
5χ+ ω(G) = N M . (vi) This follows from Lemma 4(v) and Lemma 2(iii).

Proof of Lemma 5: (i) This follows from Lemma 4(iii) and Lemma 3(i). (ii) This
is proved by induction on a. The base case is just Lemma 5(i). The limit case
depends on the inductive hypothesis and on the coherence requirement on revi-
sion sequences. For the successor case, suppose that a = β + 1, and consider two
subcases, (a) Sβ(G) is a non-empty '-complete initial segment. Then, by Lemma
4(iv), Sβ(G) = N M . So, by Lemma 2(i), Sa(H) = Sβ(G) = JNM. (b) Sβ(G) is
not a non-empty '-complete initial segment. Then, by Lemma 3(ii), Sa(H) =
Sβ(H) = N M (by the inductive hypothesis).

5 Proof of the main result Let N = <ω,Iω> be the standard model of arith-
metic. N is clearly a model of AX. N is also a model of the sentence PA~ where
PA~ is the sentence formed by universally closing all of the Peano axioms other
than the axioms of induction, and then conjoining them. Indeed, we have the
following. (We omit the proof.)

Lemma 7 Suppose that M = <D,I> is an AX-model such that (i) N M = D;
and (ii) M is a model of PA~. Then M is isomorphic to N.

Our main lemma is Lemma 8.

Lemma 8 For every formula B of L,

NtBiffϊf[(AX&PA-&VxHx)^>B] iff\=f [(AX& PA~ & VxHx) -+B].

Proof:

(i) N \= B => tf[(AX& PA~& VxHx) -> B]: Suppose that N 1= B. Suppose also
that ΨV[(AX &PA~ & VxHx) -> B]. Then, there is a model M = <D,I>
of L, and a recurring hypothesis h such that M + h 1= (AX& PA ~ & VxHx)
and M + h ΨB. Since h is recurring, h(H) = 1NM, by Corollary 6. So, since
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M + h t= VxHx, D = N M . So, by Lemma 7, M is isomorphic to N. So M 1= B.
So M + h 1= B9 which contradicts M + h ¥ B.

(ii) )rf[(AX &PA- & VxHx) -• B] => HP [(,4* & P 4 " & Vx/fx) -> 5 ] : See
RTT, Theorem 5D.22 (p. 191).

(iii) &[(AX&PA-&VxHx)^>B] =*N\=B: Suppose that \=?[(AX&PA~&
VxHx) -+B], Notice first that NN = ω. Now let h be any hypothesis which
is recurring for δ = dχ,fN. (Such a hypothesis exists by [2], Theorem 5C.7(i),
p. 170.) So there is a natural number p such that N + δp(h) N [{AX& PA~
& VxHx) -> B]. Now, since N N AX & PA', and since G and H do not
occur in (AX & PA~), N + δp(h) 1= AX & PA~. Furthermore, since h is
recurring for δ, δp(h) is recurring for δ. So, by Corollary 6, and by the fact
that NN = ω, N + δp(h) N VxHx. And so N + δp(h) 1= B. Finally, since nei-
ther G nor H is in the vocabulary of B9 N N B, as desired.

Before we state the Main Result (Corollary 10), we give a definition which makes
it precise.

Definition 9 Suppose that A Q X and B g Y, where each of X and Y is either
the set of natural numbers or the set of formulas of a language whose syntax can
be recursively arithmetised. A is recursively embeddable in B iff, for some 1-1
recursive function f : X -• Y, and for all x E X, x G A iff f(x) E B.

Corollary 10 (The Main Result) The set of true arithmetic sentences is recur-
sively embeddable in [A: A is valid on 3D in S#} and in [A: A is valid on 3D on
S*}.

Proof: Let f be the following function on the set of formulas of L:

ί(B) = [(AX&PA~&VxHx)-+B].

Then, by Lemma 8, B is a truth of arithmetic iff f(B) is valid on 3D in S# iff
f (B) is valid on 3D in S*.

As noted in Section 1, the non-axiomatisability of S# and S* (and indeed
that their complexity is at least Δ}) follows from Corollary 10.

Part II Refinements

6 Using one definition instead of two Though our set 3D of definitions con-
tains circular definitions for two predicates, we can alter our proof so that the
Main Result applies to the S# and S* theories of a single definition (of a unary
predicate). The trick is to define a unary predicate F whose behaviour on the odd
numbers does the job of G and whose behaviour on the even numbers does the
job of H. In order to make the distinction between even and odd numbers pre-
cise, we assume that we are working in models of (AX& PA~) rather than in
models of AX. We use two abbreviations:

(Λ: is even) abbreviates (3w)(x = (0" x w)); and
(Λ: is odd) abbreviates - (3w)(x = (0" x w)).

The definition of Fx is:
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Fx = D f [(x is odd) & 3zVy(y < z & (y is odd) <* Fy)

&vy(y<x&{yis odd) -> Fv)]

v [(x is even) & Vy(Fy & (y is odd) -• Fj>")

& VyVz((Fz &y<z&(zis odd) & (y is odd)) -• Fy)

& 3j>(( j is odd) & Fy) & Fx']

v [(x is even) & [3j((y is odd) & Fy & -Fy")

v lylz((y is odd) & (z is odd) &Fz&y

<z& -Fy) v ~3.y((.y is odd) & Fy)] & Fx].

The analogue to Lemma 8 is the following. For every formula B of L,

NNJϊiff

\=f [(AX&PA~ & Vx((x is even) -> Fx)) -* 5] iff

HP [(yLΓ&PA~& Vx((x is even) - Fx)) - B].

So the complexity of the S# and S* theories of a single definition of (a unary
predicate) is at least that of arithmetic (which is Δ}).

7 Other revision theories S# and S* are not the only plausible revision
theories for sets of circular definitions. And (as pointed out by Gupta in corre-
spondence) our results apply to any plausible such theory, since our proofs do
not rely on the special features of S# and S*.

The idea guiding S*, the simplest revision theory, is this (where we fix a
model M and a set 3D of definitions): the valid sentences are those which come
out stably true in every On-long (where On is the class of ordinals) revision
sequence (for δ£>>M). More precisely, given the α t h stage in a revision sequence
S, we can use the hypothesis Sa to evaluate the truth values of the sentences.
This results in an evaluation sequence of assignments of truth-values to sentences.
So the idea guiding S* is this: the valid sentences are those which come out sta-
bly true in every On-long evaluation sequence.

We can liberalise the idea guiding S* (see [2], p. 168). One way is to restrict
our attention to some subfamily of the On-long revision sequences—those con-
sidered somehow well-behaved. And so we might not insist that, in order for a
sentence to be valid, the sentence to stably true in all evaluation sequences, but
only in the well-behaved ones. Another strategy is not to restrict the family of
revision sequences, but to weaken the insistence that, in order to be valid, a sen-
tence be stably true (in all On-long evaluation sequences). In S#, for example,
the valid sentences are those which come out nearly stably true ([2], Definition
5C.5, p. 169) in every On-long evaluation sequence.

However we liberalise the idea guiding S*, this much seems certain: being
stably true in all evaluation sequences ought to be a sufficient (if not a necessary)
condition for validity. This motivates clause (5) of Definition 11, below. The
other clauses are motivated by more general concerns. We do not provide a pre-
cise definition of the concept of a revision theory S. We assume that S is based
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on On-long revision sequences, and is guided by a liberalised version of idea guid-
ing S*. And we assume that some definition has been given for "A is valid on
3D in M in S", and that A is valid on 3D in S iff, for every model M (of the lan-
guage L) A is valid on 3D in M in S.

Definition 11 A revision theory S is plausible iff, for every model M (of the
original language) and every set 3D of definitions and every sentence A (of the
original language extended with the definienda):

(1) if A is valid on 3D in M in S then —A is not valid on 3D in M in S;
(2) if A and B are valid on 3D in M in S then (A & B) is valid on 3D in M in S
(3) if A is valid on 3D in M in S and (A -> B) is a theorem of classical logic

then B is valid on 3D in M in S;
(4) if A contains no definienda and A is classically validated by M then A

is valid on 3D in M in S; and
(5) if A is valid on 3D in M in S* then A is valid on 3D in M in S.

Theorem 12 If S is a plausible revision theory then the complexity of S
(indeed, the complexity of the S theory of a single definition of a unary predicate)
is at least Δ{.

Remark 13 We can identify a revision theory S with the corresponding three-
place validity relation S(̂ 4,3D,M) = "A is valid on 3D in M in S". Indeed, we can
take any three-place relation S = S(̂ 4,3D,M) to be a theory of circular definitions,
even if it is in no interesting sense a revision theory. If S = S(̂ 4,3D,M) satisfies
conditions (l)-(5) of Definition 11, we say that S is a plausible theory of circu-
lar definitions. Given a theory S = S(y4,3D,M) of circular definitions, we say that
A is valid on 3D in S iff, for every model M, S(,4,3D,M). The complexity of S
(in the sense we are interested in) is the following: the minimal complexity C such
that, for all sets 3D of definitions, the complexity of [A: A is valid on 3D in S}
(relative to that of 3D) is at most C. The complexity of the S theory of a single
definition of a unary predicate is the following: the minimal complexity C such
that, for all sets 3D = [D] where D defines a unary predicate, the complexity of
{A: A is valid on 3D in S] is at most C. (We can similarly define the complexity
of the S theory of finitely many definitions, or of finitely many definitions of
unary predicates.) Theorem 12 goes through for any plausible theory S of cir-
cular definitions, even if S is in no interesting sense a revision theory. Indeed,
all our theorems below concerning plausible revision theories of circular defini-
tions can be generalised to plausible theories of circular definitions.

* Revision-theoretic definitions, and inductive and co-inductive definitions
Gupta has pointed out (in correspondence) that our construction can be gener-
alised to show that every set or relation that is inductively (or co-inductively)
definable in a given model is revision-theoretically definable in that model. We
can take advantage of this to improve our lower bound for the complexity of S#

and S* (and any other plausible revision theory) by raising it from Δj to Π2
(Corollary 17—the hard work is in proving Lemma 16, which we do in Section 9).

Gupta defines a "translation" of any inductive definition into a pair of revi-
sion theoretic definitions which have the effect of the original inductive defini-
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tion. Suppose that we fix a model, M = <D,I>. Consider a single definition, D,
which is positive in the sense of [2], Definition 5D.24 (i.e., all the occurrences
of the definiendum in the definiens are positive):

Hx=ΌfA(x,H).

Since D is positive, δ{D},M is a monotone operator on the space of hypotheses
for H, where these hypotheses are ordered as follows: hi < h2 iff (Vd E D)(if
hx (H9d) = t then h2(H9d) = t). Under these circumstances, in the system Si of
inductive definitions ([2], p. 193) the interpretation of His given by the least fixed
point of δ{/>j>M. The extension thus assigned to H is inductively defined by D.
Also, a sentence A is inductively valid (or valid in Si) on D in M (notation:
M t=P A) iff A is true in the model which extends M by giving if the least fixed
point interpretation. Finally a sentence A is inductively valid (or valid in Si) on
D (notation: t=?̂ 4) iff, for every model M of the original language, A is induc-
tively valid on D in M. (See [2], Definition 5D.25, p. 193.)

Let X be the set inductively defined by D. Gupta notes that we can define
X in any plausible revision theory as follows. For any unary predicate, F, let

(Fis sound) abbreviate Vx(Fx^>A(x9F));
(Fis replete) abbreviate Vx(A(x9F) ->Fx); and

(Fis a fixed point) abbreviate (Fis sound and replete).

Let 3D be the set consisting of the following two circular definitions:

Ox =Df [(O is sound) & - (G is replete) & A(x, G)]

Hx =Df ί(O is a fixed point) & Gx] v [~ (G is a fixed point) & Hx].
The revision process for these definitions yields for H the same interpretation
as the original definition />, where D is understood as an inductive definition.
More precisely, for every revision sequence S for δ^M and for every d E D,

d E X iff <H,d) is stably t in S, and d £ X iff <i/,d> is stably f in S.

And so, in any plausible revision theory, Hx strongly defines X (in the sense anal-
ogous to that of [2], Definition 5D.18).

Gupta also defines a translation of any co-inductive definition into a pair of
revision theoretic definitions which have the effect of the original co-inductive
definition. We can define a system Sci of co-inductive definitions analogously to
the system Si of inductive definitions, and we can define Sci validity analogously
to Sj validity. In Sci the extension of H is given by the greatest fixed point of
fyz)},M> &nd we say that this extension is co-inductively defined by D.

Suppose that Y is this extension. Gupta notes that we can strongly define Y
in any plausible revision theory with the use of the following set £)' of definitions:

Gx = D f [(G is sound) v - (G is replete) vA(x9 G)]

Hx = D f [(G is a fixed point) & Gx] v [ - (G is a fixed point) & Hx].

The revision process for these definitions yields for H the same interpretation
as original definition D, now understood as a co-inductive definition. More pre-
cisely, for every revision sequences S for δay)M and for every d E D,

d E Y iff <i/,d> is stably t in S, and d £ Y iff <//,d> is stably f in 5.
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And so, in any plausible revision theory, Hx strongly defines Y (in the sense anal-
ogous to that of [2], Definition 5D.18).

The Gupta translations immediately yield the following:

Theorem 14 If Sis a plausible revision theory, then the complexity of the S
theory of finitely many definitions of unary predicates (and hence the complexity
of S) is at least that of the Si(Sci) theory of a single definition of a unary
predicate.

So far we have defined Si-validity when a single positive definition D is
given, but [2] defines Si-validity given any (finite or infinite) positive set D of
definitions. We could analogously define Sci-validity given any positive set of
definitions. Now the Gupta translations can be generalised so as to apply not just
to single positive definitions of unary predicates, but to any positive set of def-
initions. These generalised Gupta translations assign two revision theoretic def-
initions to each (co-)inductive definition in 3D. These generalised Gupta
translations yield two results (Theorem 15 and Corollary 17), three remarks
(Remarks 18, 19 and 21), an open problem (Problem 20), and a conjecture (Con-
jecture 22).

Theorem 15 Suppose that Sis a plausible revision theory. Then the complex-
ity ofS is at least the complexity o/Si(Sci). Furthermore, the complexity of the
S theory of finitely many definitions is at least the complexity of the Si(Sci) the-
ory of finitely many definitions.

Lemma 16 The complexity of the S λ theory of finitely many definitions is at
least Uι

2.

Proof: See Section 9.

Corollary 17 Suppose that S is a plausible revision theory. Then the complex-
ity of the S theory of finitely many definitions (and hence the complexity ofS)
is at least Π\.

Remark 18 Aldo Antonelli and Vann McGee have independently sketched
(very similar) proofs that Ul is an upper as well as a lower bound for the com-
plexity of S# and S*. The idea is to produce, in the language of second-order
arithmetic, a Π2 formula with two free variables £) and B, which says that the
formula B is a consequence of the set S) of definitions. A Lόwenheim-Skolem
argument like that for [2], Theorem 5C.15, is needed to show that the only
domain we need is the domain of natural numbers. Antonelli is currently work-
ing on the details of this. Such a result is probably not generalisable to all plau-
sible revision theories.

Remark 19 [2] explicitly compares S# and S* to Sj, and notes a number of
Si validities which are not S# or S* validities. The conclusion is that "S# and S*
are not... generalizations of the system of inductive definitions" (p. 193). In light
of the Gupta translations, this conclusion must be rethought. For anything we
can define inductively (or co-inductively, for that matter) we can strongly define
in S# and in S* (and in any other plausible revision theory).
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Problem 20 Is every set which is definable with a single inductive definition
also definable with a single revision theoretic definition (rather than a pair of
them)?

Remark 21 The Gupta translations are completely general: they are well-
defined whether or not the original set of definitions is positive. Also, there has
been independent research on non-monotone inductive definitions. This suggests
the following.

Conjecture 22 There is an interesting relationship between the behaviour of
a non-monotone definition, understood inductively, and the behaviour of its
Gupta translate (in S# and in S*).

We also note another way, suggested by revision theoretic semantics, of
extending the theory of inductive definitions to non-positive sets of inductive def-
initions. (Similar remarks apply to co-inductive definitions.) For positive sets,
3), of definitions, Si can be thought of as a plausible revision theory, based on
the following strategy for liberalising the idea guiding S* (see Section 6): we con-
sider only the 0-beginning revision sequences, i.e., those which begin by assign-
ing the extension 0 to each definiendum. Thus restricting our attention to a
subfamily of revision sequences does not require the set of definitions to be pos-
itive. And so, given any model M and any set 3) of definitions, we extend Sj as
follows: a sentence A is valid in Si on 3) /« M, iff A is stably true in every 0-
beginning revision sequence for δ^tM.

Conjecture 23 There are interesting points of contact between Sj (so
extended) and the theory of non-monotone inductive definitions.

9 Proving Lemma 16 (A sketch of this proof was provided by Yiannis
Moschovakis in e-mail correspondence.) For the purposes of this section, L is
the first-order language of arithmetic (as in Section 2). If n E ω, n is the term
of L got by appending n copies of ' to the constant 0. We consider three new
unary predicates, Γ, H, and Q. Given a subset S of {Y,H,Q], L U S is the lan-
guage got by enriching L with the predicates in S. We let M range over models
of Ly and N is the standard model of arithmetic (as in Section 4). Given an
L-model M = <D,I>, Y, H, and Q range over subsets of D. We generally assume
that Y, H, and Q are interpretations of Γ, H, and ζλ Given an Z-model M =
<D,I>, M + Y = <D,Γ> is the model of LU {Y} which interprets the constants
of L as does M, and which assigns Y to 7. (Similarly for M + H, M + Y + H,
M + Y + H + Q, etc.) Finally, when we give our set 3) of inductive definitions,
these definitions will be given for models M + Y of the language L U {Y}.

We prove Lemma 16 by showing that, for every Π^ set TΓ C ω , there is a
finite positive set 3) of definitions (over the language L U [Y] and with
definienda Hand Q) such that TΓ is recursively embeddable in [A: A is valid on
3) in Si). So suppose that TΓ £ ω is Π2. Then, for some second-order Π} relation
P c ω x (p(ω) (where (P(ω) is the power set of ω), TΓ = {n E ω: (VY Q ω)
«n,Y> ί P)}. We now state Moschovakis's "Abstract Kleene Theorem", regard-
ing second-order Π} relations (see Moschovakis [3], Theorem 8A1, p. 132).

Theorem 24 (Moschovakis) Every U\ second-order relation on a countable
acceptable structure is inductive.
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Without defining the terms in this theorem, we note its upshot for P. There
is a formula A = A(x,Y,Q) of L U {y,Q} in which Q occurs positively and
which is such that, for every Y c ω , the set Q(Y) = {n G ω: <n,Y> G P) is induc-
tively defined in the model N + Y by the definition:

Qx=ΌfA(x,Y,Q).

(See Moschovakis [3], Chapter 6, Section 6A.)
Let the set 3D of definitions consist of:

Hx = D f (Λ: = 0 v ly(Hy &x = y'))

Qx=mA(x,Y,Q).

For every M = <D,I> and for every Y c D, the least fixed point of δχ)>M+γ
assigns to //the extension N M (Definition 1, Section 2). Also, for every Y ^ ω,
the least fixed point of δ£>>N+γ assigns to //the extension ω and assigns to Q the
extension Q(Y). And so we have the following:

Lemma 25 For every Y and for every n G ω, N + Y hf ~Qn iff <n,Y> £ P.

The core of the proof of Lemma 16 is in Lemma 26.

Lemma 26 For every sentence BofLU [ Y, //, Q},

tψ((AX& PA' & VxHx) -> B) iff (VY c ω )(N + Y hp B).

Proof: (=*) Assume (3Y c ω)(N + Y V? B). Choose such a Y. Then N + Y +
H + Q ψ B9 where H and Q are the extensions assigned to H and Q by the least
fixed point of δ^N+γ. Now, N H (AX & PA ") and N + H N VxHx, so N + Y +
H + Qt(AX&PA-&VxHx).SoN + Y + H + Q\t((AX&PA-&VxHx)->B).
So, N + Y PP ((AX&PA-&VxHx)-*B). So ψf((AX&PA~&VxHx)-+B)9

as desired.

(«=) Assume PpίMA' & PA~ & Vx/ft:) -> 5 ) . So we can fix some M = <D,I>
and some Y g D such that M + Y V? ((AX & PA~ & VxHx) -+ B). So M +
Y + H H- Q ψ ((AX&PA~ & VxHx) -• B), where H and Q are the extensions
assigned to H and Q by the least fixed point of δ£>>M+γ. SoM + Y + H + Qh
(AX&PA- & VxHx) and M + Y + H + Q ψ B. Since H = N M and since M +
Y + H + Q (= VxHx, D = 1NM. So M is isomorphic to N (by Lemma 7, Section 5).
Letφ: D->ω be this isomorphism, andforX^ΞD, define φ(X) = [φ(d): dGD) c=ω.
Then φ(H) and φ(Q) are the extensions assigned to H and Q by the least fixed
point of δi>fN+φ(γ). Furthermore, N + φ(Y) + φ(H) + φ(Q) is isomorphic to
M + Y + H + Q. So N + φ(Y) + φ(H) + φ(Q) M A So N + φ(Y) Î P 5.

Corollary 27 For ei ery n G ω, n G TΓ iff Np ((̂ 1 ̂  & /M " & VX//ΛΓ) -• - Qn).

As promised, we have shown that, for every Π^ set π c ω , there is a finite pos-
itive set 3D of definitions (over the language I U {y}) such that TΓ is recursively
embeddable in [A: A is valid on 3D in Sj). This suffices for Lemma 16.

10 Theories of Truth [2] bases its theories of truth, T# and T*, on S# and
S*. In the theories of truth there is a single circular concept, truth, and it is
defined via an infinite set of partial definitions (p. 197). Furthermore, suppose
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that L is a first-order language which has a "quotation name" (p. 75) Ά9 for each
sentence A of L+ (which results by adding the truth predicate TtoL). Then the
set of partial definitions is completely determined: it is the set of definitions of
the form

ΓA'=Ό{A,

where A is a sentence of L+.
Given the special features of T# and T*, our work on S# and S* does not

deliver any verdict regarding the complexity of T# and T*. We leave this as an
open problem which we now make precise (Problem 32).

Definition 28 If L is a first-order language then L+ is the result of adding
the truth predicate TtoL.

Definition 29 Suppose (1) L is a first-order language with a quotation name
for each sentence of L+; (2) M = <D,I> is a model for L; (3) D contains each
sentence of L+; and (4) for each sentence A of L+, I ('A') = A. Then M is a
ground model for L. (This diverges slightly from [2]'s definition.)

Definition 30 (See [2], p. 210.) Given a ground model, M (for a language L),

\U = {A: A is valid in M by T#) and V^ = {A: A is valid in M by T*}.

Definition 31 Given a first-order language L (with quotation names for the
sentences i n L + ) ,

V* = Π (VM*. M is a ground model for L} and

\l = n (VM: M is a ground model for L].

Problem 32 What is the complexity of v£ and of V£?

Remark 33 McGee has pointed out (in correspondence) that Burgess [1] has
made some progress toward solving this problem. In particular, let L be the lan-
guage of arithmetic (as in Section 2) and let N be the standard model of arith-
metic (as in Section 6). Furthermore, identify each formula A of L+ with it
Gόdel number, Gn(^), so that l(Ά') = Gn(A). Burgess [1] shows that VN
(which is called "DT") is complete Uι

2. (Theorem 12.3, p. 676; Burgess [l]'s
statement of this theorem contains a typo.) McGee has noted that the same holds
for V&.
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