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THE JOURNAL OF SYMBOLIC LoGic 

Volume 62, Number 2, June 1997 

ON THE COMPLEXITY OF PROPOSITIONAL 
QUANTIFICATION IN INTUITIONISTIC LOGIC 

PHILIP KREMER 

Abstract. We define a propositionally quantified intuitionistic logic Her+ by a natural extension of 

Kripke's semantics for propositional intuitionistic logic. We then show that Har+ is recursively isomorphic 

to full second order classical logic. Her+ is the intuitionistic analogue of the modal systems S57r+, S47r+, 

S4.27r+, K47r+, Tir+, K7r+ and Bir+, studied by Fine. 

?1. Introduction. Kripke's [1963] semantics for propositional intuitionistic logic 
can be extended in a natural way to a language with propositional quantifiers. 
Kripke defines an intuitionistic model structure to be an ordered triple (g, K, <) 
where K is a non-empty set, g E K, and < is a reflexive and transitive relation on 
K. We get a model by adding an assignment X of a truth value to each propositional 
variable p at each point h E K, with the following constraint: if q (p, h) _ T 
and h < h' then q5(p, h') T. Kripke gives recursive clauses extending q so that 
q5 (A, h) is defined for every formula A of a propositional intuitionistic language. A 
formula A is valid iff, for every model (g, K, <, q), q(A, g) = T. Kripke shows that 
a formula is valid iff it is a theorem of Heyting's intuitionistic logic, H. 

Given a model, M = (g, K, <, 0), it is natural to take the proposition assigned to 
the formula A to be the subset of points h E K such that 0(A, h) = T. Indeed, we 
could proceed by taking X to be an assignment of propositions to the propositional 
variables, where a proposition is a subset P of K which is such that if h E P and 
h < h' then h' E P. Kripke's recursive clauses can be re-interpreted as clauses for 
determining the proposition, say M(A), assigned to each formula A. Understood 
this way, A is valid if, for every model M (g, K, <, 0), g E M(A). 

The present paper extends Kripke's semantics to prepositionally quantified lan- 
guages, by interpreting the quantifiers as ranging over the propositions, understood 
as above. Our main result is that the resulting set of valid formulas, which we call 
HIr+, is recursively isomorphic to full second order classical logic (?3, Theorem 7, 
below). 

It is important to distinguish Hir? from the prepositionally quantified intuition- 
istic logics considered by Gabbay [1974] and [1981], Lob [1976], Sobolev [1977], 
Kreisel [1981], Scedrov [1984], Pitts [1992] and others. These logics are defined by 
extending H with new axioms or inference rules for the propositional quantifiers; 
Gabbay et al have shown various among these systems to be undecidable. Following 
Henkin [1950], we call the interpretations of the quantifiers resulting in these logics 
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secondary interpretations; and we call the interpretation of the quantifiers resulting 
in Hzr+ the primary or principal interpretation. 

?2. Related results. Fine [1970] studies modal logics S57r+, S47r+, S4.27r+, 
K47r+, Tir+, Kir+ and Bir+, analogous to Hzr+. S57r+ is also studied by Kaplan 
[1970]. And in Kremer [1993] I study an analogous relevance logic RP+. Kaplan 
and Fine show that S57r+ is decidable, and Fine discusses proofs that second-order 
arithmetic can be recursively encoded in the other modal systems. And in Kremer 
[1993] I show that RP+ is recursively isomorphic to full second classical order logic. 
My [1993] strategy can be extended to S47r+, S4.27r+, K47r+, Tir+, Kir+ and Bir+, 
to show that they too are recursively isomorphic to full second order classical logic. 
(Fine and Kripke inform me that they independently proved this result shortly after 
the publication of Fine [1970]. 

Until now, the problem of the complexity of Hzr+ has remained open. Given the 
expressive weakness of intuitionistic logic, my [1993] strategy is not as straightfor- 
wardly extendable to Hzr+ as it is to S47r+ and all. In particular, we must proceed 
differently in the intuitionistic context than in the relevance context in showing that 
we can focus our attention on a class of models for which we can define a connective, 
--, with the following property: for each model M in the class and each formula A, 
-,A is true in M iff A is not true in M. (In the modal context, the class of all models 
will do the trick.) This "classical" negation connective is useful at various stages in 
the encoding of second order formulas in the intuitionistic language. 

?3. Precise statement of the main result. We work with a propositional language 
with a countable set PV = {Pi, . . ., Pn, .. . } of propositional variables; left and 
right parentheses; connectives &, V, and -?; and propositional quantifiers V 
and 3. We use p, q, ... as metalanguage variables over PV and A, B, ... as 
metalanguage variables over formulas. 

DEFINITION 1. An (intuitionistic) model structure (ims) is an ordered triple (g, K, 
<) such that K is a non-empty set, g E K and < is a reflexive and transitive relation 
on K. Given an ims, a proposition is a set P C K such that if h E P and h < h' 
then h' E P. 

DEFINITION 2. An (intuitionistic) model is an ordered 4-tuple M = (g, K, ?, q) 

where (g, K, <) is an ims and q is a function on PV so that +5(p) is a proposition. 
M = (g, K, <, q) is based on (g, K, <). Given a model M, a proposition P and a 
propositional variable p, M[P/p] is the model just like M except that it assigns the 
proposition P to the propositional variable p. 

DEFINITION 3. Given a model M = (g, K, <, q) and a formula A, we define 
M(A), the proposition assigned by M to A, as follows: 

M(p) = q (p), for propositional variables p 

M(A & B) = M(A) n M(B) 

M(A V B) = M(A) U M(B) 

M(A -? B) = {h E K : for each h' E M(A), if h < h' then h' c M(B)} 
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M(-A) = {h E K: for each h' E K, if h < h'then h' 0 M(A)} 

M(VpA) = n{ M[P/p](A): P is a proposition} 

M(3pA) = U{M[P/p](A): P is a proposition}. 

LEMMA 4. For every formula A, M(A) is a proposition. 

PROOF. By induction on the complexity of A. H 

DEFINITION5. M validates A (M l= A) iff g E M(A). A is valid (I= A) iff A is 
validated by every model. 

DEFINITION 6. HIr+ = {A | A}. 

THEOREM 7 (The Main Result). Hzr+ is recursively isomorphic tofull second order 
classical logic. 

PROOF. See ??4-8, below. H 

NOTE. Dmitri Skvortsov has sent me a proof of a weaker result-that Hzr+ is not 
r.e.-and he is preparing it for publication. I was aware of Skvortsov's result, but I 
had not seen the proof, when I discovered the current proof. The current, stronger, 
result requires quite a different proof from Skvorstov's. 

?4. Proof of the main result: Preliminaries. It suffices to show that second order 
logic is 1-reducible to Hzr+, since the fact that Hzr+ is 1-reducible to second order 
logic can be shown by the methods of Kremer [1993, ?1.5 and ?11.7]. Our proof 
that second order logic is 1-reducible to Hzr+ relies on a result that can be gleaned 
from Nerode and Shore [1980, ?1]. Nerode and Shore reproduce unpublished 
considerations of Rabin and Scott, showing how to code arbitrary n-ary relations 
by sib (symmetric irreflexive binary) relations. The result is that second order logic 
is recursively isomorphic to second order logic with second order quantification 
restricted to sib relations. We will state a slightly different result, more useful for 
our purposes, that follows from these considerations (Theorem 9, below). To make 
things precise, we assume that we are working with a second order classical language 
with individual variables x1, . . ., x, . . .; binary relational variables XI, . . ., Xn I . ; 

parentheses; connectives V and -'; identity, =; and first and second order universal 
quantifiers. 

DEFINITION 8. A classical second order SIB-model (or simply SIB-model) is an 
ordered pair M = (U, q) where U (the universe) is a non-empty set, and q is a 
function mapping every individual variable to a member of U and every relational 
variable to a sib relation on U. The concepts of validity in M(M l= A) and of 
validity (|= A) are defined in the standard ways, with the relational quantifiers 
ranging over all and only the sib relations. We define SIB2 to be the set of formulas 
valid in every second order SIB-model. We also define a peculiar theory, 2-SIB2, to 
be the set of formulas validated by every second order SIB-model whose universe 
has at least two elements. 

THEOREM 9 (Nerode and Shore [1980], and Rabin and Scott). 2-SIB2 is recursive- 
ly isomorphic to second order logic. 
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REMARK. Nerode and Shore [1980] show how to encode binary relations as sib 
relations, and arbitrary n-ary relations as binary relations. The present paper's 
Appendix (? 10) gives what we consider a simpler encoding of binary relations as 
sib relations. We refer the reader to Nerode and Shore [1980] for the encoding of 
n-ary relations as binary relations. We reserve this material for the Appendix due 
to its distance from our main topic, HMr+. -H 

Given Theorem 9, it suffices, for our main result, to prove that 2-SIB2 is 1- 
reducible to Hzr+. 

?5. Proof of the main result: more preliminaries. 

DEFINITION 10. A simple ims is an ims (g, K, <) such that < is a partial ordering 
on K (if h < h' and h' < h then h = h'); and such that g is the <-least member 
of K (for each h E K, g < h). For simple ims's, we write h < h' for (h < h' and 
h 54 h'). For each h E K, we define the proposition [h] = {h' : h < h'}. The set 
of classical points is CL = {h : for no h', h < h'}. A simple (intuitionistic) model 
is a model based on a simple ims. 

THEoREM 11. HMr+ = {A : for every simple model M,M l= A}. 

PROOF. Clearly HMr+ C {A: for every simple model M, M l= A}. Now sup- 
pose that A ' HMr+. Then for some model M = (g,K,<,0), M V A. De- 
fine an equivalence relation on K: h h' iff h < h' and h' < h. Let 
(h) = {h' h h'}. And define a new model M' = ((g) , K', <', b'), where 
K' = {(h) h E K&g < h}; (h) <' (h') iff h < h'; and (h) c 0/'(p) iff h E +(p). 
Observe: (1) ((g) , K', <') is asimpleims; (2) q' is well-defined; and (3) if (h) <' (h') 
and (h) c +5'(p) then (h') c q5'(p). So M is a simple model. Also, the following 
can be shown by induction on the complexity of the formula B: (h) E M'(B) iff 
h E M(B). So M' is a simple model such that M' L A. H 

Given Theorem 11, we henceforth restrict our attention to simple ims's and 
simple models-in fact we will simply refer to these as ims's and models, dropping 
the modifier "simple". 

DEFINITION 12. An ims is <n-tiered iffthere are no chains hl, ..., hn+I E K with 
hi < h 1 1. An ims is n-tiered iffit is <n-tiered and is not < (n - 1)-tiered. A model is 
<n-tiered (n-tiered) iff it is based on an <n-tiered (n-tiered) ims. We define the tiers 
of a <n-tiered ims or model as follows: tier, = {g}; tier,+, = {h : for some h' E 
tierm, h' < h and for no h", h' < h" < h}. Figures 1 to 6 represent some sample 
3-tiered ims's. Figures 4, 5 and 6 represent some 3-tiered ims's of a type that will be 
of special interest. 

DEFINITION 13. (i) <n-Hr+ = {A : for every <n-tiered model M, M k= A}. 
(ii) n-Hir+ = {A : for every n-tiered model M, M k= A}. 

THEOREM 14. <n-Hir+ = n-Hir+. 

PRoOF Clearly <n-Hir+ C n-Hir+. To see that n-Hir+ C <n-Hir+, suppose 
M = (g, K, <, 0) is a <n-tiered model such that M L A. So M is an m-tiered 
model, where m < n. Create an n-tiered model M' as follows: get K' by adding 
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FIGuRE 5 
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n-m new distinct members, g9, ... , gn-m, to K; extend < to <' so that gi <' gi + and 
gn-m </ g; and let M' = (gl, K', <', 0). (Note that g, ...gn-m 0(p) for each 
propositional variable p.) Notice that, for each formula B, M(B) = M'(B) n K. 
So, since M VL A, g 0 M'(A). So, by Lemma 4, g, 0 M'(A). So M' VL A. -H 

THEOREM 15. Let C1 be the formula Vp(p V -p). Given Cn, Let Cn+l be the 
formula Vp(p V (p -* Cn)). Then, for each n, andfor each model M, M is <n-tiered 
iff M # Cn. 

PROOF. For any ims, let CL1 = CL as in Definition 10; CLm+i = {h: for every 
h', if h < h' then h' E CLm }. First, we show by induction on n that, for each n, 
and for each model M = (g, K, <, q), M(Cn) = CLn. 

Base case. To show M(C1) C CL1, suppose that h E M(C1) and h 0 CL1. 
Then there is some h' > h. Let P = [h']. Since h E M(Vp(p V -p)), and since 
h 0 P, h E M[P/p](-p). (M[P/p] is defined in Definition 2.) So, for every 
k > h, k 0 P = [h']. So h' 0 [h'], which is clearly false. So M(C1) C CL1. 
On the other hand, to show that CL1 C M(C1), suppose that h E CL1. To show 
that h E M(C1) = M(Vp(p V -p)), fix a proposition P. We want to show that 
h E M[P/p] (p V -p). Clearly this is true if h E P. And if h 0 P, then, since there 
are no k > h, we have h E M[P/p](-p). So h E M[P/p](p V -p), as desired. 

Inductive step. Suppose that, for each model M, M (Cm) = CLm. Fix a model 
M. To show M(Cm+i) C CLm+i, suppose that h E M(Cm+i) and h 0 CLm+i. 
So there is some h' > h such that h' 0 CLm. Let P = [h']. Since h E M(Vp(p V 
(p - Cm)), and since h 0 P, h E M[P/p](p -* Cm). So, since h' > h and 
h' E M[P/p](p) = P, h' E M[P/p](Cm). But this contradicts h' ' CLm, given 
the inductive hypothesis. So M(Cm+i) C CLm+i. On the other hand, to show 
that CLm+l C M(Cm+i), suppose that h E CLm+ . To show that h E M(Vp(p V 
(p * Cm)), fix a proposition P. We want to show that h E M[P/p](p V (p -* 

Cm)). Clearly this is true if h E P. Suppose h 0 P. Then, for each k > h, 
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k E M[P/p](p) X- k E P X- k > h X- k E CLm (since h E CLmi+) =# 

k E M[P/p](Cm), by the inductive hypothesis. So h E M[P/p](p -* Cm). So 
h E M[P/p](p V (p -* Cm)), as desired. 

Induction complete. Now fix a model M = (g, K, <, 0) and note: M is <n-tiered 
iff CLn = K iffM(Cn) = K iffg E M(Cn) iffM F Cn, as desired. H 

COROLLARY 16. n-H7r+ is 1-reducible to H7r+. 

PROOF. Given Theorem 14, it suffices to show that <n-H7r+ is 1-reducible to 
Hir+. And for this, it suffices to show that, for each formula A, A E <n-H7r+ 
iff (Cn -* A) E Hir+, where Cn is as defined in Theorem 15. (X-) Suppose 
that (Cn -* A) 0 H7r+. Then there is some model M = (g, K, <, q) such that 
M b (Cn - A). So, for some h E K, h E M(Cn) and h 0 M(A). Define 
M'= (h, [h], <', 0'), where <' is < restricted to [h], and where +'(p) = + (p) n [h]. 
For every formula B, M'(B) = M(B) n [h]. So h 0 M'(A) and h E M'(Cn). So 
M' bL A, and M' F Cn. So, by Theorem 15, M' is a <n-tiered model. So, since 
M' bL A, A <?n-H7r+. (a=) Suppose that (Cn -* A) E HMr+. Note: M is a 
<n-tiered model =X M f= Cn => M l= A. So A 0 <n-H7r+. H 

Given Corollary 16 and Theorem 9, it suffices, for our main result, to show the 
following: 

THEOREM 17. 2-SIB2 is 1-reducible to 3-H7r+. 

PROOF. See ??6-8, below. H 

?6. Proof of Theorem 17. The idea of the proof is to mimic the behaviour of 
a classical second order SIB-model (with two or more elements in the universe) 
with a special kind of 3-tiered intuitionistic model. We will construct particular 
3-tiered models so that the points on tier2 stand in for the objects in the universe 
of a SIB-model; and so that the points on tier3 stand in for unordered pairs of 
distinct objects from the universe of a SIB-model. The subsets of the third tier can 
stand in for sib relations on the universe of a SIB-model, since a sib relation can 
be thought of as a set of unordered pairs of distinct objects. So, we will define a 
special kind of 3-tiered model, one that can mimic a SIB-model. Figures 4, 5 and 
6, above, represent 3-tiered ims's that will represent SIB-models whose universes 
have, respectively, two, three and four members. Figures 1, 2 and 3 represent less 
well-behaved 3-tiered ims's. 

DEFINITION 18. A 3-tiered ims is SIB-like iff (i) every pair of distinct points in 
tier2 has a unique least upper bound; (ii) every point in tier3 is the least upper bound 
of two distinct points in tier2; and (iii) no three distinct points in tier2 have an upper 
bound. A model is SIB-like iff it is based on a SIB-like ims. Notice that every 
3-tiered SIB-like model will represent a classical second order SIB-model whose 
universe has two or more members. 

DEFINITION 19. SIB-H7r+ = {A : for every 3-tiered SIB-like intuitionistic model 

M,M #=A}. 

To prove Theorem 17, it suffices to show Theorems 20 and 21: 
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THEOREM 20. SIB-Hir+ is 1-reducible to 3-H7r+. 

PROOF. See ?7, below. A 

THEOREM 21. 2-SIB2 is 1-reducible to SIB-Hir+. 

PROOF See ?8, below. A 

?7. Proof of Theorem 20: SIB-Hir+ is 1-reducible to 3-H7r+. The primary task 
of ?7.1 and ?7.2 is to define a sentence, sib, in the intuitionistic language, which is 
such that, for every 3-tiered model M, M l= sib iff M is SIB-like (see Table 3, row 
5). 

7.1. Table 1: Object language connectives and their two meta-linguistic interpre- 
tations. Given a 3-tiered intuitionistic model M = (g, K, <, q), we can think of a 
formula A as playing two roles: (i) A names a subset of K, in particular, M(A); 
and (ii) A makes a claim about the model. For example, (p -* q) names the set 
M (p -* q) and (p -* q) says that M (p) C M (q) since, for every 3-tiered model M, 
M k (p -* q) iff M(p) C M(q). (I appeal to exactly the same considerations in 
Kremer [1993].) Table 1 lists formulas constructed with the primitive intuitionistic 
object language connectives, and indicates what the formulas say and what they 
name. 

In reading Tables 1, 2 and 3, it is important to assume that the model M is a 
3-tiered model. The blank entries in these tables are those of no particular interest. 

TABLE 1 

Formula What the formula says: What the formula names: 

M'l= Formula iff M(Formula) = 

(A&B) M#AandM#=B M(A)nM(B) 

(A V B) M A or M # B M(A) U M(B) 

(A -* B) M(A) C M(B) 

P"JA M(A) 0 

VpA for each proposition P, 
M[P/p] k= A 

3pA for some proposition P, 
M[P/p] A 

7.2. Tables 2 and 3: Defined object language connectives and formulas, and their 
metalinguistic interpretations. Tables 2 and 3 define some object language connec- 
tives and formulas. Table 2 is concerned with what the definienda name and Table 3 
is concerned with what they say. Also, in Table 3, we define a one-place connective 

and a two place connective e. If p is a propositional variable and if A and B are 
formulas, then (Vp E A)B is an abbreviation of the formula Vp(-'(p E A) V B); and 
(:p E A)B is an abbreviation of the formula 3p((p E A) & B). Using E, we will be 
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able to mimic quantification over the elements of the partial order K by quantifying 
over propositions of the form [h], for h E K. 

TABLE 2 

Definiendum Definiens What the definiendum names: 
| M(Definiendum) = 

C1 Vp(p V rp) CL (see Theorem 15) 

C2 VP (P V (p -* C1)) CL2 (see Theorem 15) 
= tier2 U tier3 (since M is 3-tiered) 

TABLE 3 

Definiendum Definiens What the 
definiendum says: 
M l= Definiendum iff 

(A + B) (A -*B) &(B -*A) M(A) =M(B) 

oA (,(A& C1) - C2) M(A) 0 

__1A o-A M p- A 

(A E B) oA & (A -* B) & [AV Vp (-i(pp for some h E M(B), 

Cj) V -(p&A) V (A -* p)) V M(A) = [h] 
((A -* C2) & --(A - Cj) & Vp 

((p&A-* C) V (A -p)))] 

sib (Vp E C1) (3 q E C2) (3r E C2) (- M is SIB-like 
(q E C1) & -'(r E C1) & -'(q ?-+ r) 
& (q & r ?-+ p)) & (Vp E C2) (Vq 
E C2) ((p ?-+ q) V (p -* C1) V 
(q-* Cj)V((p&q)E Cj))&(Vp 
E C2) (Vq E C2) (Vr E C2) ((p -- 

C1) V (q -* C1) V (r -* C1) V 

(p +-3 q) V (q +-+ r) V (p +-+ r) V 
-(p &q&r)) 

The entries in the third columns of Tables 2 and 3 express non-obvious claims. 
Here we verify the last four rows in Table 3. 

TABLE 3 ROW 2. Suppose that M is 3-tiered. Then M l= oA iff M(A) 7 0. 

PROOF. First notice that M(A & C1) = 0 iff M = -(A & C1) (by Table 1 row 5) 
iff M (j(A & C)) = K iff MQ(4(A & C)) Z tier2 U tier3 (since M is 3-tiered) iff 
M (A & C1)) Z M(C2) (by Table 2 row 2) iff M V ((A & C1) -* C2) (by Table 
1 row 3). So it suffices to show that M(A) = 0 iff M(A & C1) = 0. (#X) is obvious. 
To show (<=) suppose that M(A) 7 0. Also, M(A) is closed upwards. So, since 
M is finitely-tiered, there is an h E M(A) such that, for every h' E K, h St h'. So 
h E CL1 = M(C1) (Table 2 row 2). So M(A & Cl) = M(A) n M(Cl) #L 0. -1 
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TABLE 3 ROW 3. Suppose that M is 3-tiered. Then M = --A iff M pa A. 

PROOF. M a --A iff M a o-A iff M(A) = 0 iff M(A) = K iff M l= A. H 

TABLE 3 ROW 4. Suppose that M is 3-tiered. Then M l= (A E B) iff for some 
h E M(B), M(A) = [h]. 

PROOF M l= (A E B) iff both 
(1) M(A) is a non-empty subset of M(B); and 
(2) either 

(2.1) M l= A, inwhichcase M(A) = K =[g]; or 
(2.2) for every proposition P C CL1, either P n M(A) = 0 or M(A) C P; or 
(2.3) M(A) C CL2 and M(A) 9 CL1 and, for every proposition P, either 

P nM(A) C CL1 or M(A) C P. 
So M l= (A E B) iffboth 

(1) M(A) is a non-empty subset of M(B); and 
(2) either 

(2.1) M(A)=[g];or 
(2.2) M(A) = [h] where h E CL1; or 
(2.3) M(A) = [h] where h E CL2 -CL1. 

So M l= (A E B) iff for some h E M(B), M(A) = [h]. - 

TABLE 3 ROW 5. Suppose that M is 3-tiered. Then M l= sib iff M is SIB-like. 

PROOF. M |= sib iff 
(1) for every h E CL1, there are distinct h', h" E CL2 - CL1 such that 

[h'] n [h"] = [h] = {h} (note that [h] = {h} for each h E CL1); and 
(2) for any distinct h, h' E CL2 -CL1, [h] n [h'] = [h"] where h" E CL1, so 

that [h] n [h'] = {h"}; and 
(3) for any distinct h, h', h" E CL2 -CL1, [h] n [h'] n [h"] = 0. 

So M - sib iff 
(1) every point in CL1 is the unique least upper bound of two distinct points 

in CL2 -CL1; and 
(2) any two distinct points in CL2 - CL1 have a unique upper bound; and 
(3) no three distinct points in CL2 -CL1 have an upper bound. 

Now note that, if (1), (2) and (3) hold, then CL1 = tier3 and CL2 - CL1 = tier2. 
Further, if M is SIB-like, then CL1 = tier3 and CL2 -CL1 = tier2. So M l sib iff 

(0) CL1 = tier3 and CL2 -CL1 = tier2; and 
(1) every point in tier3 is the unique least upper bound of two distinct points 

in tier2; and 
(2) any two distinct points in tier2 have a unique upper bound; and 
(3) no three distinct points in tier2 have an upper bound. 

So M l= sib iff M is SIB-like. H 

Our goal in this section is to establish Theorem 20 (?6). Theorem 20 follows from 
Theorem 22: 

THEOREM 22. A E SIB-H7r+ iff (-' sib VA) E 3-H7r+. 

PROOF. (a) Suppose that (- sib VA) X 3-H7r+. Then there is some 3-tiered 
model M such that M by (- sib VA). So M by A and M y -' sib. So M l= sib, by 
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Table 3 row 3. So M is SIB-like, by Table 3 row 5. Since M is SIB-like and M by A, 
A 0 SIB-H7r+. (<?) Suppose that A 0 SIB-H7r+. Then for some SIB-like 3-tiered 
model M, M VL A. Since M is SIB-like, M l= sib, by Table 3 row 5; in which case 
M V - sib, by Table 3 row 3. So M is a 3-tiered model such that M by (-- sib VA).-I 

?8. Proof of Theorem 21: 2-SIB2 is 1-reducible to SIB-H7r+. This section will 
define, in stages, a recursive function f, from second order formulas to intuitionistic 
formulas, such that a second order formula A E 2-SIB2 iff f (A) E SIB-H7r+ (see 
Corollary 30, below). This will suffice for Theorem 21. 

Definitions 23 and 25, below, will formalise our considerations at the top of ?6. 
We will represent a typical classical second order SIB-model (whose universe has at 
least two members) by an intuitionistic SIB-like model. 

Quantification over the elements of the classical second order SIB-model will 
become quantification over the propositions of the form [h], where h E CL2 - CL 1 = 
tier2. Quantification over such propositions itself plays the role of quantification 
over the elements of tier2. Recall from ?6 that the elements of tier2 in the intuitionistic 
model represent the objects in the universe of the classical second order SIB-model. 

Quantification over the sib relations becomes quantification over the propositions 
that are subsets of CL1 = tier3. Recall from ?6 that these propositions represent 
the sib relations of a classical second order SIB-model. 

We will use propositional variables with odd indices to stand in for relational 
variables of the second order language, and we will use propositional variables with 
even indices to stand in for individual variables of the second order language. 

DEFINITION 23. Suppose that the set U has at least two members; that 0 0 U; and 
that for u, v E U U {0}, we have u 0 v. We then say that U is representable. If U 
is representable, then the representative of U is the ims REP( U) = (g, K, <) where 
g =0;K = {0}U UU{{u,V}: u,v E Uandu 7v};and,forh,k EKh <kiff 
h = 0 or h = k or h E Unk. Given a classical second order SIB-model M = ( U.0), 
the representative of M is the intuitionistic model REP(M) = (g, K, <, qY) where 
(g, K, <) = REP(U) and where q' is defined as follows: 0'(P2i) = [4(xi)] and 

Y'(P2i-1) = {{u, v} : (U, v) E 0(Xi)}. 

LEMMA 24. If U is representable and if M = (U, 0) is a classical second order SIB- 
model, then REP( U) is a SIB-like ims and REP(M) is a SIB-like intuitionistic model. 
Further, in REP(M), CL2-CL1 = tier2 = U and CL1 = tier3 = {{u, v} : u, v E U 
and u 7 v}. 

DEFINITION 25. We define a recursive 1-1 function, f i, from second order formu- 
las to intuitionistic formulas: 

f (Xi = Xj) = (P2i '-> P2j) 

f 1 (Xixjxk) = (P2j &P2k ' P2i-1 ) 

f1(-A) =-f (A) 

f1(A VB) = f1(A) V f1(B) 

f 1 (VxiA) = VP2i(- (P2i E C2) V (P2i E Cl) V f 1(A)) 
f 1 (VXiA) = -21 ( (P2i- 1 -* C1 ) V f 1 (A)). 
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LEMMA 26. For each second order formula A we have the following: if U is a 
representable set (Definition 23) and if M = (U, q) is a classical second order SIB- 
model, then M k A iff REP(M) |= f' (A). 

PROOF. By induction on A. Here we skip the atomic cases and the inductive steps 
for and V, and concentrate on the inductive step for Vxi. (VXi is treated similarly) 
So suppose that A = VxiB for some formula B. Then f I(A) = VP2i (-'(P2i E 

C2) V (P2i E C1) V f I (B)). Now suppose that U is representable and that M = 
(U, 0). We want to show that M k A iff REP(M) I= f I(A). (X-) Suppose that 
REP(M) bL f 1 (A). Then, for some proposition P, REP(M)[P/p2i] bL -(P2i E C2) 
and REP(M)[P/p2i] by (P2i E C1) and REP(M)[P/p2i] f 1(B). So, for some 
proposition P, P = [h] where h E CL2; and P 7 [h] for any h E CL1; and 
REP(M)[P/p2i] a f1(B). So, for some h E tier2 = U, REP(M)[[h]/p2J] pa 
f (B). Note that REP(M)[[h]/p2i] = REP(M') where M' = M[h/xi] is the 
classical second order SIB-model just like M except that it assigns the object h E 
U = tier2 to the individual variable xi. So REP(M') bL f 1 (B). So, by the inductive 
hypothesis, M' bL B. So M L Vxi B. So M V= A. 

('?) Suppose M by A. Then, for some u E U, M[u/xi] by B. So by the inductive 
hypothesis, REP(M[u/xi]) pa f' (B). Note that, in the model REP(M[u/xi]), 
u E tier2 = CL2 - CL1. Further REP(M[u/xi])(p2i) = [u], by Definition of REP 

(Definition 23). So REP(M[u/xi]) #= (P2i E C2) and REP(M[u/xi]) by (P2i E 
C1). So REP(M[u/xi]) by (-P2i E C2) V (P2i E C1) V f (B)). Also note that 

REP(M[u/xi]) = REP(M)[[U]/P2J] So REP(M) by Vp(-(P2i E C2) V (P2i E 
C1) V f 1(B)). So REP(M) by A, as desired. -H 

DEFINITION 27. Let f 2 be the following recursive 1-1 function from second order 
formulas to second order formulas. Suppose that A is a second order formula 
and that n is the greatest number such that xn or Xn appears in A. Let f2 (A) = 

VX1 .VXVX1... VXnA. 

LEMMA 28. For any second order formula A, A E 2-SIB2 if f2(A) E 2-SIB2. 

LEMMA 29. For any closed second order formula A, A E 2-SIB2 if f (A) E 
SIB-H7r+. 

PROOF. Let A be a closed second order formula. (X-) Suppose that fi (A) 0 
SIB-H7r+. Then there is an SIB-like intuitionistic model M = (g, K, <, q) such 
that M by f' (A). We can assume that M has the following two properties: (1) 
the set tier2 is representable (Definition 23) and (2) for each i, O(P2i) has a least 
member, which is in tier2, and 0 (P2i -1) C CL1 = tier3. We can assume (1) since, 
if tier2 is not representable, then there is some other SIB-like intuitionistic model 
M such that M bL f i (A) and such that tier2 is representable. And we can assume 
(2), since f 1 (A) is a closed formula, and the values that X takes on are irrelevant to 
whether or not a particular model validates a particular closed formula. 

Let U = tier2. Note that, since M is SIB-like, U has at least two members. Let M' 
be the classical second order SIB-model (U. +'), where 0'(xi) = the least member 

of X (P2i), and where qY(Xi) = { (u, v) : u, v E tier2 and the least upper bound 
of u and v is in X (P2i-01) }. Note: M' is representable, since U is representable. 
Further, the intuitionistic model REP(M') is isomorphic to the intuitionistic model 
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M. (The notion of isomorphism between intuitionistic models is defined in the 
obvious way.) So, since M by f I(A), we also have REP(M') VA f I(A) (by the 
obvious isomorphism theorem). So, by Lemma 26, M' be A. So A , 2-SIB2. 

(e) Suppose that A , 2-SIB2. Then there is a classical second order SIB-model 
M (U, 0) such that M b- A. We can assume that U is representable. So, by 
Lemma 26, REP(M) by f I (A). So f I (A) , SIB-H~r+. -H 

COROLLARY 30. Let f = fi f2. For any second order formula A, 

A E 2-SIB2 iff f(A) E SIB-H7r +. 

PROOF. By Lemmas 28 and 29. H 

Theorem 21 follows from Corollary 30 together with the fact that f is a recursive 
function. Theorem 21 and Theorem 20 (?6) together yield Theorem 17 (?5), which, 
given Corollary 16 (?5), suffices for our main result (Theorem 7, ?3). 

?9. Concluding remarks. So the logic Hr+ is recursively isomorphic to full 
second order classical logic. This result does not bode well for the Hor+. A 
well-behaved extension of intuitionistic logic should not be so non-constructive, so 
beyond our computational grasp. This seems to speak against any primary interpre- 
tation of intuitionistic propositional quantifiers, and in favour of the axiomatisable 
prepositionally quantified extensions of H, studied by Gabbay and others. 

There is, however, a different primary interpretation of intuitionistic proposi- 
tional quantifiers that is of some interest. Though Kripke [1963] allows for a large 
variety of intuitionistic model structures, both he and the subsequent literature pay 
special attention to trees. We could define a new logic Hor++ by insisting that the 
only ims's taken into consideration be trees. Hnr++ is strictly stronger than Hor+: 
(Vp(rvp V rp) -* VpVq((p -* q) V (q -* p))) E Hor++ but , HMr+. The current 
strategy for establishing the complexity of Hor+ will not work for Hor++, since our 
SIB-like models are not trees, and so would no longer count as models on the new 
thinking. If Hor++ is axiomatisable-we believe that the question is open-then 
it is a plausible second order propositional intuitionistic logic, based on a primary 
interpretation of the propositional quantifiers. 

?10. Appendix: encoding binary relations as sib relations. This appendix will show 
how to encode arbitrary binary relations as sib relations-our encoding is quite 
different from but, we believe, simpler than that of Nerode and Shore [1980]. This 
will show that second order logic with only binary relational variables, interpreted 
as ranging over all binary relations, is 1-reducible to 2-SIB2. As mentioned in 
the remark after Theorem 9, we refer the reader to Nerode and Shore [1980] for 
the encoding of n-ary relations as binary relations. Recall that our logic SIB2 is 
defined for a second order language with individual variables x1, . . ., Xn, .. .; binary 
relational variables Xi, . . ., Xn, . . .; parentheses; connectives V and --; identity, =; 
and first and second order universal quantifiers. We define BIN2 to be standard 
second order logic, restricted to this language. So we define BIN2 so that the Xi 
range over all binary relations. 

Consider a non-empty set U. We will represent binary relations on U as sib 
relations on a larger set U', where U' is equipped with a privileged sib relation R. 
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FIGURE 7 

U U' 

0 0 

FIGURE 8 

U U 
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For each point u E U, add three new points, and define R so each point in U is 
represented by a constellation in U', as in Figure 7. The lines connecting the points 
in U' represent the relation R. 

Figure 8 shows how a particular binary relation, say B, on U, is represented by 
a sib relation B' on U'. The directed lines connecting the points in U represent B, 
and the lines connecting the points in U' represent B'. Note that the top point in 
each constellation in U' represents a point acting as the left member of an ordered 
pair in U x U; the middle point in each constellation represents a point acting as a 
right member of an ordered pair; and the other two points serve to distinguish the 
"left" and the "right" points in each constellation. 

Formally, we will define a recursive 1-1 map, g, from second order formulas 
to second order formulas (where the only second order variables in each case are 
binary) so that A E BIN2 iff g(A) E 2-SIB2. This will establish that BIN2 is 1- 
reducible to 2-SIB2. This, coupled with the obvious fact that 2-SIB2 is 1-reducible 
to BIN2, shows that BIN2 is recursively isomorphic to 2-SIB2. We will define g in 
stages. But first, some preliminary definitions. 

DEFINITION 31. The formula constellation is the following (where & and -have 
their standard definitions interms of-' and V): Vx3y((x = yVXixy) & 3a3b3c(a 54 
b&a 4 c&Xibc& Xiac& -Xiab&Vz(Xlyz -(z = aVz = bVz = c))). This 
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formula says that the sib relation XI splits the world up into constellations as in the 
world U' in Figure 7. 

DEFINITION 32. Suppose that the sib-model M satisfies constellation and that U 
is M's universe of discourse and that R = M(X1). Then a point u E U is a left 
point iff u is R-related to exactly one point. And u is a right point iff u is R-related 
to exactly three points. A sib relation S is a representative (of some binary relation) 
iff, for every (u, v) E S, either u is a left point and v is a right point, or u is a right 
point and v is a left point. 

DEFINITION 33. For each individual variable x the formulas left(x) and right(x) 
are 3yVz(Xixz -z = y) and 3a3b3c(a -7 b&a -7 c&b -7 c&Vz(Xixz -(z = 
a V z = b V z = c)), respectively. In those models that satisfy constellation, left(x) 
says that x is a left point, and right(x) says that x is a right point. 

DEFINITION 34. For each binary relational variable X, the formula representa- 
tive(X) is the following: 

VxVy(-'Xxy V ((left(x) & right(y)) V (left(y) & right(x)))). 

In those models that satisfy constellation, representative(X) says that the sib relation 
X represents an arbitrary binary relation. 

DEFINITION 35. We define a map gi from second order formulas to second order 
formulas. Those individual variables indexed by odd numbers will be restricted to 
left points, and those individual variables indexed by even numbers will be restricted 
to right points. Further, the relational variables will be restricted to representatives. 
We increase the index of the relational variables because of the special purpose 
served by XI. 

gl(XnXiXj) = Xn+IX2i-1X2.i 

g1(xi = xj) = XIX2i-IX2j 

g,(--A) =-igi(A) 

g, (A V B) =g (A) V gi (B) 

gj (Vxi A) =X2i - I dVX2i (2 left(x2i - 1) V right(x2i) V `X1 X2i - 1 X2i V g, (A)) 

g, (VXiA) = VXi+ (- representative(Xi+l) V g, (A)). 

DEFINITION 36. Let f2 be defined as in Definition 27. Let g (A) = constellation 
Vglf2(A). 

LEMMA 37. For any closed second order formula A, A E BIN2 iff constellation 
Vgi (A) E 2-SIB2. 

PROOF. This is similar to the proof of Lemma 29 (?8). Analogous preliminary 
definitions and lemmas are useful. H 

COROLLARY 38. For any second orderformula A, A E BIN2 iff g(A) E 2-SIB2. 

PROOF. This is proved by Lemma 28 (?8) and Corollary 34. - 

COROLLARY 39. BIN2 is recursively isomorphic to 2-SIB2. 
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