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RELEVANT PREDICATION: GRAMMATICAL 

CHARACTERISATIONS* 

ABSTRACT. This paper reformulates and decides a certain conjecture in Dunn’s 
‘Relevant Predication 1: The Formal Theory’ (Journal of Philosophical Logic 16, 
347-381, 1987). This conjecture of Dunn’s relates his object-language characterisation 
of a property’s being relevant in a variable x to certain grammatical characterisations of 
relevance, analogous to some given by Helman, in ‘Relevant Implication and Relevant 
Functions’ (to appear in Entailment: The Logic of Relevance and Necessity, vol. 2, by 
Alan Ross Anderson, Nuel Belnap, and J. Michael Dunn et al.) In the course of the 
investigation this paper also investigates Kit Fine’s semantics for quantified relevance 
logics, which appears in his appropriately titled ‘Semantics for Quantified Relevance 
Logics’ (Journal of Phiiosophical Logic 17, 27-59, 1988). 

1. BACKGROUND AND INTRODUCTION 

Dunn (1987) investigates the notion of relevant predication in the 
context of relevance logic; after suggesting an object-language definition 
specifying when a formula Ax is of a “kind that determines relevant 
properties (with respect to the variable x)“, he leaves us with a tech- 
nical conjecture relating his object-language characterisation of 
relevance to various possible meta-linguistic characterisations - in 
particular, to some characterisations given in Helman (to appear; see 
also Helman 1977). In this paper we restate this conjecture in various 
forms and show which forms of the conjecture are true and which are 
false, thereby linking Dunn’s and Helman’s research projects. 

Dunn’s project 

Dunn motivates his object-language definition of relevance by con- 
sidering the following pair of statements: 

(1) Socrates is such that he is wise 

(2) Reagan is such that Socrates is wise 

Despite the surface similarities of these statements - and the classical 
logician’s temptation to treat (2) as a kind of degenerate case of the 

Journal of Philosophical Logic 18: 349-382, 1989. 
0 1989 Kluwer Academic Publishers. Printed in the Netherian&. 



350 PHILIP KREMER 

logical structure exhibited by (1) - Dunn takes it that these state- 
ments are quite different. These differences are brought out by the 
“strict analogy” between (1) and (2) and the following two statements 

(1’) If anyone is Socrates then he is wise. 

(2’) If anyone is Reagan then Socrates is wise. 

The argument for (1’) is taken to be the following: 

(l^) Socrates is wise. Therefore, if (X = Socrates) 
then x is wise. 

But the corresponding argument for (2’) is a clear case of irrelevance. 
The argument for (2’) would be: 

@^I Socrates is wise. Therefore, if (x = Reagan) 
then Socrates is wise. 

(1”) is taken to be an instance of the indiscernibility of identicals: 

(l#> Fc 1 (x = c) + Fx. 

This is at least plausibly a relevant principle. Meanwhile, (2”) seems 
to be an instance of the dreaded 

@#I AtB+A. 

Dunn notes that we cannot count as a relevant theorem the indiscern- 
ibility of identity in its unrestricted form: 

A[c/x] +. (x = c) + A. 

This is because, if A does not contain x free (for instance if A = p) 
or even if A is relevantly equivalent to a formula which does not 
contain x free (for instance if A = p & (p v Fx)) we obtain 

p +. (x = c) -+ p, 

which is too close to 

for comfort. Whatever instances of indiscernibility we do count as 
theorems we at least want 

A[c/x] +. (x = c) + A 
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to hold when A is a relevant property of c - whatever properties we 
take to be relevant. This is at least some of the motivation - though 
by no means all of it; for a fuller story we refer the reader to Dunn 
(1987) - for the following two object-language definitions: 

(1) (~xA)c =df Vx((x = c) + A). 
Here (~xA)c should be read as “c relevantly has the property of 
being (an x) such that A”. The use “( QxA)” is here meant to 
remind us of lambda abstraction and the use of “(AxA)“. 

(2) “A is of a kind to determine relevant properties (with respect 
to x)” =df Vx(Ax + Vy( y = x -+ Ay)), where y is not free in 
A. 

The second definition corresponds exactly to an object language 
definition of “Str(A, x)” that he suggests later in the paper, where 
he defines 

Str(A, x) =df Vx(Ax + Vy( y = x + Ay)) 

(where y is not free in A). 

This later definition occurs in the wake of a discussion of several 
meta-linguistic grammatical characterisations of what variables a 
formula is said to interestingly depend on, or what variables a formula 
is strict in. His general hypothesis is that these meta-linguistic charac- 
terisations somehow pick out the notion of the relevance of a 
property, as does his object-language definition. His specific technical 
conjecture is this: 

CONJECTURE. Suppose we take as axioms all formulas of the form 
Str(A, x), where A is an atomic sentence, and x is a variable occurring 
in A. Then for all formulas A (compound as well), Str(A, x) is a theorem 
iff A is (provably relevantly equivalent to a formula B which is) strict in 
x in the . . . refined [sense] due to Helman. [See Helman, to appear, 
and 1977. See also Dunn, 1987, Note 12.1 

Helman’s project 

Though the concerns of Helman (to appear) are quite different from 
the concerns of Dunn (1987) Helman becomes interested, as Dunn 
does, in when a formula interestingly depends on a variable. One of 
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Helman’s concerns is to present an interpretation of R,, which relies 
on an analogy between the provability of implicational formulas and 
the definability of functions of certain types. More specifically, 
Helman formalises the notion of proof from hypothesis (in a number 
of logics) by a system of typed lambda-abstractions. 

First he reminds us that, given a term, t and a variable x, lambda- 
abstraction allows us to form the function 

which takes on the value t[a/x] for any argument a. Then he turns 
our attention to the possibility of lambda-abstraction within a typed 
language, where a type is any sentence formed from propositional 
variables, using only the conditional. Formally, he begins with a 
collection of infinitely many variables of each type. He then defines 
the collection of I-terms as follows: 

(1) each variable of type A is a L-term of type A; 
(2) if t is a I-term of type A + B and u is a I-term of type A, then 

(tu) is a A-term of type B; here we think of ourselves as 
applying the function t to the argument u; 

(3) if t is a I-term of type B, and x is a variable of type A, then Ixt 
is a L-term of type A + B; here, the function lxt takes 
arguments of type A, and spits out terms of type B. 

Next, Helman claims that we can regard the terms of our typed 
language as natural deduction proofs for a pure implicational logic: a 
term proves the sentence that is its type, with the types of its free 
variables as undispatched hypotheses. And so, closed terms ought to 
represent proofs of the theorems of some interesting implicational 
logic. Fortunately, they do: Helman shows that the set of types of 
closed I-terms is the same as the set of theorems of H,, the pure- 
implicational part of intuitionistic logic. For this reason, Helman 
denotes the set of closed J-terms “AH,“. 

Consider the following A-term, where x is a variable of type B, and 
where y is a variable of type A: 

A.yAxy. 

This closed I-term, which is of type A + (B + A), represents a proof 
of A + (B + A); note that the vacuousness of the abstraction Lx 
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corresponds to the intuition that the formula B is not used in proving 
A from the hypotheses A and B. Such examples, together with an 
interest in relevance logic as opposed to intuitionistic logic, motivates 
the following two definitions: 

(1) 

(2) 

an abstract, Axt, is vucuous when x is not free in t; 

AR, is the class of L-terms containing no 
vacuous abstracts. 

The second definition only really makes sense in light of the following 
theorem: 

A sentence (in the language of R,) is a theorem of R, 
iff it is the type of some L-term in AR,. 

The considerations which I have been outlining motivate the 
thought that, given a function t, and a variable x, t is relevant in x (or 
x is relevant to t) just in case x occurs freely in t (in which case the 
abstract, ;Ixt, is not vacuous). This thought must, however, be refined 
when we want to extend our considerations to R,,. In order to 
extend our considerations. Helman enlarges the class of d-terms to the 
full class of terms by adding the following operators to our language: 

(1) pairing: if t and u are terms with the types A and B, respectively, 
then the pair (t, U) is a term of type A & B; 

(2) left and right projections: if t is a term of type A & B, then its 
left and right projections, pt and qt, are terms of type A and 
type B, respectively. 

It no longer suffices to characterise the functions relevant in x as 
those functions in which x occurs freely, since, if we did, the function 
(x, y) would be relevant in x and y, despite the fact that the term 
AxAy(x, y) is of type A + (B + (A & B)) for some A and B - and 
this is not the type of a theorem of R. 

What Helman eventually does is to characterise two interesting 
senses in which a function depends on a variable; the first sense is 
related to the logic U+&, and the second to R,,. (U, as noted in 
Helman 1977, stems from tinkering with the natural deduction 
systems for relevance logic in Anderson and Belnap 1975 ($27.2, 
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p. 348), and takes its name and axiomatic form from Chidgey 1970.) 
In order to characterise the first sense, Helman defines the set of 
variables strict in a term t, St(t), as follows: 

(1) st(x) = (x}; 

(2) st((t, 2.4)) = st(t) n st(u); 

(3) SW4 = st(t) u st(u); 

(4) st(Axt) = st(t) - {x}. 

An abstract lxt is strict when x is strict in t. 
If we define AU,, as the set of closed terms containing no abstracts 
that are not strict, we find that a sentence in the language of U,, is a 
theorem of U,, iff it is the type of a term in J.U,,. 

Turning his attention to R,,, Helman defines x to be used evenly 
in t if x is free in t and no free occurrence of x in t appears in one 
half of a subterm (u, v) of t which has no free occurrence of x in the 
other half. Then ilxt is relevant if x is used evenly in t. Finally if we 
define AR,, to be the set of closed terms containing no abstracts that 
are not relevant, we find that a sentence in the language of R,, is a 
theorem of R,, iff it is the type of a term in AR,,. 

What is of special interest to us is the association of strictness with 
U, and of even use, or relevance, with R. Helman’s characterisations 
of strictness and relevance are for terms in his language, but they 
have analogs for formulas in the language of quantified relevance 
logic. We will define these analogs in $2, and discover an association 
of our analog of strictness with U, and of our analog of relevance 
with R. 

To begin our project 

The logic for which Dunn is interested in carrying out this investi- 
gation is quantified relevance logic, with “ =” introduced by means of 
a number of axioms. In order to draw the connections between 
Dunn’s and Helman’s projects, we will carry out the investigation for 
a number of related logics, involving two ways of adding quantifi- 
cation and “ = ” to R (the relevance logic of Anderson and Belnap 
1975) and two ways of adding quantification and “ = ” to U. 
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The axioms we will use are 

(1) the standard axioms for relevance logic (which can be found in 
Anderson and Belnap 1975 427.1.1); 

(2) the following quantificational axioms: 

(Ql) w> (4 + ~bd-4 

(Q2) (Vx)(A + B) + (A + (Vx)B), x not free in A; 

(43) (Vx)(A v B) + (A v (Vx)B), x not free in A; 

Note: These are only three of the quantificational axioms 
laid out in Anderson, Belnap and Dunn (to appear, 938.2) where 
Relevance Logic with quantification is discussed and described. 
We omit the other two axioms for “V” given there, since these 
axioms, namely 

(Vx)(A + B) + ((Vx)A -P (Vx)B), and 

((Vx)A & (Vx)B) + (Vx)(A & B), 

can be derived in using (Ql), (Q2), (Q3) and the axioms for R, 
and the rule of generalisation, which we will take as a rule for 
our systems. These last two axioms are included in Anderson, 
Belnap and Dunn (to appear, §38.2), since that particular 
exposition does not include the rule of generalisation; in the 
exposition given there, the rule is restricted to axioms, and is a 
rule for deriving axioms. These approaches are equivalent. We 
omit the axioms for “3” given in Anderson, Belnap and Dunn 
(to appear, $38.2) since it will make our exposition simpler to 
think of “3” as a defined expression in our language. 

(3) The following axioms for “ = “: 

WV x = x; 

Wm) x = y+y = x; 

(Trans) x = y + (y = 2 + x = z); 

the possibly “unstable” substitution axiom: 

(Sub) (Ay & x = y) + Ax;’ 
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and an axiom added for the purposes of this investigation, the 
strict axiom 

CW Str(A, x) where A is an atomic sentence and x is 
a variable occurring in A. 

((Str) can be re-written as 

Vx(Ax + Vy( y = x + Ay)) 

(where y is not free in A).) 

(4) the U axiom: 

W) (A & t) + (A + B) +. A -, B; 

(see Chidgey 1970, and Anderson and Belnap 
1975, $27.2, p. 348). 

The four systems with which we will be concerned have three 
rules: 

(1) 

(2) 

(3) 

modus ponens; 

conjunction; and 

the rule of generalisation: From A[v/x] to infer 
(Vx)(A), where ZJ is not free for x in &/xl. 

These four systems are the following: 

(1) Rv3'= (“Relevance Logic with Quantifiers and ‘=“‘): 
all axioms except (U) and (Sub); 

(2) R v3X=s (“Relevance Logic with Quantifiers and 
‘ = ’ and Substitution”): 

R v3x= + (Sub); 

(3) Uv3’= (“U with Quantifiers and ‘=“‘): 
RV3x= + (U); 

(4) u V~X=S (“, with Q uantifiers and ‘ = ’ and Substitution”): 
Uv3’= + (Sub). 

For the purposes of this paper, we will simply refer to these as R, RS, 
U and US respectively, unless otherwise noted. (The system with 
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which Dunn’s paper is concerned is, in this terminology, PCS.) 
Before attending to our conjecture we point out the following. 

THEOREM 1. RV3x=S and RVqx= are conservative extensions of RV3x, 
which is itself a conservative extension of R. 

Proof. We leave it to the reader to show that Rv3x is a conservative 
extension of R. The proof that RVjxES and Rv31= are conservative 
extensions of Rvsx relies on the observation that if a formula A is a 
theorem of RVjxzS or Rv3’= , then the formula A’ is a theorem of Rv3x, 
where A’ is the result of replacing in A every instance of the sub- 
formula x = y with the following: the conjunction of all formulas of 
theformVz, ,..., Vz,(Fz,...x...z,t*Fz ,... y...z,),whereF 
is a predicate (possibly O-place, in which case Fz, . . . x . . . zk = F) 
occurring in A. 

THEOREM 2. R < RS < U = US. 
Proof. (1) U = US: 

A straightforward induction on the length of the formula A will show 
that every instance of the substitution axiom is a theorem of U. 

(2) RS < U: 
Note that 

(0 & t) + (P + 4)) + (P + 4) (*I 

is a theorem (indeed an axiom) of U, but it is not a theorem of RS. 
(It is straightforward to show using Urquhart’s semi-lattice semantics 
for R&, - see Urquhart 1972 and 1973, as well as Anderon, Belnap 
and Dunn, to appear, $47 - that (*) is not a theorem of R. So it is 
not a theorem of RV3x, since RV3.’ is a conservative extension of R. 
And so it is not a theorem of RV3x=S since RV31zS is a conservative 
extension of Rv3”.) 

(3) R < RS: 
Note that 

(x = Y&WY&P) -P))) + W&P) -PI 

is a theorem of RS but not a theorem of R (see Appendix 1). 
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2. RE-STATEMENT OF THE CONJECTURE 

We are now almost ready to re-state, in our terms, the conjecture 
along with some of its relatives. Before we do, we define “inspectably 
weakly relevant in x”, and “inspectably strongly relevant in x” for 
formulas in the language of Rv3”=; these are the analogs of Helman’s 
strictness and Helman’s relevance, respectively. 

DEFINITION 3. Inspectably weakly relevant in x: 
(1) All atomic formulas with x free are inspectably weakly relevant 

in x. 
(2) if A and B are inspectably weakly relevant in x, then so are 

A&B,A v Band-A; 
(3) if either A or B is inspectably weakly relevant in x, so is 

A + B; 
(4) if A is inspectably weakly relevant in x and y is a variable 

distinct from x, then Vy(A) and 3y(A) are inspectably weakly relevant 
in x. 

DEFINITION 4. Inspectably strongly relevant in x: 
(1) All atomic formulas with x free are inspectably strongly relevant 

in x; 
(2) if A and B are inspectably strongly relevant in x, then so are 

A&B,A v B,lA,andA+ B. 
(3) if A is inspectably strongly relevant in x, and x is not free in B 

then A + B and B + A are inspectably strongly relevant in x; 
(4) if A is inspectably strongly relevant in x, and y is a variable 

distinct from x, then Vy(A) and 3y(A) are inspectably strongly 
relevant in x. 

Now, given any logic L (chosen among R, RS and U), we define: 

DEFINITION 5. A formula A is “strongly (weakly) L-relevant in 
x” iff it is L-equivalent to a formula which is inspectably strongly 
(weakly) relevant in x. 

Note that inspectably strong relevance in x entails inspectably weak 
relevance in x, and strong L-relevance in x entails weak L-relevance 
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in x. Now, given any logic L, we can simply state the conjecture for 
strong (weak) L-relevance: 

CONJECTURE FOR STRONG (WEAK) L-RELEVANCE: 
For every formula A, tL Str(A, x) iff A is strongly (weakly) 

L-relevant in x. 

Note that we have here six conjectures: one for each sense in which a 
formula can be said to be “relevant” in a variable, and for each logic. 
What we have done is first defined inspectably relevance, and then 
L-relevance, so that we could economically restate Dunn’s conjecture 
that Str(A, x) is a theorem iff A is provably relevantly equivalent to a 
formula B which is strict (i.e., relevant) in x. 

In what follows we will first prove the strong L-conjecture for R, 
RS, and U. We will then suggest that this proof is too easy and rather 
uninteresting. This will motivate a slightly amended definition of 
strong and weak L-relevance, and we will see that this re-definition 
makes things more interesting. In our concluding remarks, we will 
suggest that this research not only brings together the research 
projects of Helman and Dunn, but also gives us reasons to doubt the 
“stability” of the substitution axiom (at least in the context of 
relevance logic), and therefore of any (relevance) system that requires 
it as an axiom. 

3. SOME INITIAL RESULTS 

We are now ready to state some initial results. 

THEOREM 6. For L = R, RS or U, if A is inspectably strongly 
relevant in x, then FL Str(A, x). 

Proof. Induction on the complexity of A. 

COROLLARY 7. If A is strongly L-relevant in x, then FL Str(A, x). 

THEOREM 8. Zf IL Str(A, x), then A is strongly L-relevant in x. 
Proof. Suppose FL Str(A, x). Then, k,Ax + Vy(y = x -+ Ay). Also 

note that bLVy( y = x -+ Ay) + Ax, since tL(x = x + Ax) + Ax. 
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So, A is L-equivalent to Vy( y = x + Ay)), which is inspectably 
strongly relevant in X. QED 

Corollary 7 and Theorem 8 give us the conjecture for strong 
L-relevance, for L = R, RS, or U. This is where we suggest that 
things seems almost too easy, and rather uninteresting. The problem 
is that this last proof almost “cheats”. The formula A is indeed 
shown to be L-equivalent to a formula, say A’, which is inspectably 
strongly relevant in x, but the disturbing thing is that, whether or not 
A has “=” in its vocabulary, A’ does. And “=” is a rather strong 
piece of vocabulary to bring to bear in showing A to be strongly 
L-relevant. What would happen if we required A’ to have no more 
vocabulary than A? This question suggests the following redefinition 
of strong and weak L-relevance. 

DEFINITION 9. A formula A is “strongly (weakly) L-relevant in a? 
iff it is L-equivalent to a formula A’ which is inspectably strongly 
(weakly) relevant in x, and which has no more vocabulary than A. 

For our purposes, the vocabulary of a formula is taken to be the set 
of predicates in the formula, including possibly “ =“. Note that is it 
still the case that L-relevance entails L-strictness. 

Given these new definitions, the conjectures for strong and weak 
L-relevance take on new meaning, and are not so easily dealt with. 
(Before we continue, note that Theorem 6 still holds with the new 
definition of strong L-relevance.) 

4. MAIN RESULTS 

In this section we will simply summarize the main results to be pro- 
ven in this paper. As we have already noted, we have two conjectures 
for each logic; so we have six conjectures in all. Here then are the 
results, and where they are proven: 

(1) Conjecture for strong R-relevance: true; i.e., any formula, A, is 
strongly R-relevant in x iff 1, Str(A, x). See 95. 
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(2) Conjecture for weak R-relevance: false. Although kR Str(A, x) 
entails that A is weakly R-relevant in x (since strong R-relevance 
entails weak R-relevance) the converse is not true. For example, 
the formula 

(Fx&p) -+ Fx 

is weakly R-relevant in x, but it is not true that 
t, Str((Fx &p) + Fx, x). See 47. 

(3) Conjecture for strong U-relevance: true. See $5. 
(4) Conjecture for weak U-relevance: true. See $7. 

Notice that the last two results entail that, in the logic U, strong and 
weak relevance are equivalent. 

(5) Conjecture for strong K&relevance: false. It is true that for 
every formula, A, which is strongly &S-relevant in x we have 
IRS Str(A, x). But the formula 

(Fx &p) -P Fx 

is not strongly &S-relevant in x, although we do have 
kRS Str((Fx & p) + Fx, x). See $6. 

(6) Conjecture for weak RS-relevance: true. See 58. 

5. PROOF OF THE CONJECTURE FOR STRONG L-RELEVANCE, 

FOR L = R OR U 

We now proceed to prove the conjecture for strong L-relevance for 
L = R or U. 

LEMMA 10. If the language we are working with has a finite, but non- 
empty set of non-logical predicates of positive degree, then there is a 
formula, x z y, with just two free variables, x and y, and with the 
following properties: 

(1) x z y is inspectably strongly relevant in x and in y; 
(2) “ = ” is not in the vocabulary of x z y; 
(3) For L = R or U, andfor all formulas A, if !-LA, then kLA’, 

where A’ the result of replacing every instance of % = v” with 
34 x v” where u and v are any two variables. 
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Proof Let k be the greatest degree of all of the non-logical predi- 
cates of the language. Add variables z,, . . . , zk to the language. 
Let S = {Fz,, . . . , zdegcFJ: F is a non-logical predicate of the 
language, of positive degree.} 
Let T = {A[x/zi] * A[ y/z,]: A E S and i = 1, . . . , k, and zi occurs 
in A.} 
Finally, let x z y =df Vz,, . . . , Vz, (AT), where AT is taken to be 
the conjunction of all formulas in T. Clearly, x M y has property (2). 
To see that it has property (l), note that every conjunct in AT is 
relevant in both x and y. The proof that it has property (3) is by 
induction on the length of proof of A. 

LEMMA 11. If t,A, where L = R or U, and where the vocabulary of 
A includes at least one non-logical predicate of positive degree, then 
there is a formula x xA y such that 

(1) x M* y is inspectably strongly relevant in x and y; 
(2) the vocabulary of x z:A y is a subset of the vocabulary of A, and, 

furthermore, does not contain “ = “; 
(3) t,A’, where A’ is the same as A except, for all variables u and v, 

every instance of “u = v” has been replaced by “u xA v”. 
Proof Let LangA be the language whose non-logical predicates are 

just the non logical predicates used in A. Then, by obvious con- 
servative extension theorems t,A, where “FL” is now taken to be 
provability using only LangA. Clearly, LangA has a non-empty and 
finite set of non-logical predicates of positive degree. So, we can 
define x z;A y as the x M y in Lemma 10 (restricting attention to 
LangA). Clearly x %A y will have the desired properties. 

LEMMA 12. For L = R, RS, or U, tft,x = x + A, then the 
vocabulary of A contains at least one predicate of strictly positive 
degree, including possibly ” = “. 

Proof. To prove this lemma, we are going to define a function 4 
from formulas in the language to the set { - 1, 0, l}. 

For atomic formulas: 
(1) If F is a predicate of strictly positive degree, including possibly, 

“-“, let &Fx,, . . . , x,) = 1; - 
(2) If p is a sentence letter - i.e., a predicate letter of degree 0 - 

then let 4(p) = 0. 



RELEVANT PREDICATION 363 

For complex formulas: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

404 = -do); 

W & B) = min(4(4, 4(B)); 

444 v B) = max(dM, W)); 

c$(A -+ B) = max(- 4(A), 4(B)) if 444 d W); 

&A + B) = min(- 444, WN if 444 > W); 

w4 = d40 

(The idea of proving the theorem this way was a suggestion of Nuel 
Belnap’s. The definition of the function C#J is taken almost verbatim 
from the technical appendix of Dunn 1987.) The following facts are 
straightforward to show: 

(1) 

(2) 

If A is an axiom of R, RS, or U, then 4(A) = 0 or 1. 

If$(A)=Oorl,andif4(A+B)=Oorl, 
then 4(B) = 0 or 1. 

(3) If 4(A) = 0 or 1, and if 4(B) = 0 or 1, 
then4(A&B) = Oorl. 

(4) If 4(A) = 0 or 1, then ~(VXA) = 0 or I. 

Therefore, if A is a theorem of R, RS, of U, then &A) = 0 or 1. 
Now we can also show by induction on the complexity of A, that 
if A contains no predicates of strictly positive degree, then 4(A) = 0. 
Therefore, if A contains no predicates of strictly positive degree, 
C#J(X = x + A) = - 1. Therefore, if A contains no predicates of 
strictly positive degree, x = x + A is neither a theorem of R, RS, 
nor U. QED 

Finally, we obtain 

THEOREM 13. For L = R or U, if t, Str(A, x) then A is strongZy 
L-relevant in x. 

Proof. If “ = ” is in the vocabulary of A then the proof follows 
immediately from the proof of Theorem 8. Assume that “ =” is not in 
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the vocabulary of A. Now, t,Str(A, x). Therefore t,Vx(Ax + Vy 
(x = y + Ay)). Therefore k,x = x + (Ax -+ Ax). Therefore by 
Lemma 12, the vocabulary of A contains at least one non-logical 
predicate of positive degree; and therefore so does the vocabulary of 
Vx(Ax + Vy(x = y + Ay)). Therefore, by Lemma 11, there is a 
formula x M y 

(1) that is relevant in x and in y; 
(2) the vocabulary of which is contained in the vocabulary of A; 

and 
(3) which is such that 

t,Vx(Ax + Vy(x z y -+ Ay)), 

(since “ = ” is not in the vocabulary of A). 
Now, let A’ =dr Vy(x z y + Ay). Note that A’ is inspectably 

strongly relevant in x. Also note that the vocabulary of A’ is 
contained in the vocabulary of A. Also recall 
t,Vx(Ax + Vy(x w y + Ay)). 
Therefore b,Vx(Ax + A’x). 
Note as well that tLVy(x rz y + Ay) + (x x x + Ax). Also, 
FL.@ z x + Ax) + Ax, since t,x x x. So t,Vx(A’x + Ax). 
Therefore, k,A ct A’. 
Therefore, A is L-equivalent to A’. QED 

Theorem 13 and Corollary 7 together give us the conjecture for 
strong L-relevance, for L = U or R. 

6. WHAT ABOUT RS? 

We have proven true the conjecture for strong R-relevance and the 
conjecture for strong U-relevance. But this proof does not work for 
the conjecture for strong RS-relevance. Why not? The crucial lemma 
in the proof of the other two conjectures is Lemma 10, where we 
prove that, when working with a finite language, we can always 
replace every occurrence of x = y in every theorem with x z y. This 
proof is carried out by induction on the length of the proof of the 
theorem, A. This induction does not go through in RS since there are 
instances of the substitution axiom - which is not an axiom of R or 
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of U and so which does not need to be worried about in the proofs 
for R and U - in which we cannot replace “x = y” with “x z y”; 
and so, we cannot even prove the first step of the induction. To see 
an example of such an instance of the substitution axiom, suppose we 
are working in a language with just one non-logical predicate, say F, 
of degree 1, and with just one sentence letter p. Then “x z y” is 

Vz(Fx ++ Fy). 

Note that 

A = (x = Y & WY & P) + PI) + ((Fx &PI -+ P) 

is an axiom of RS, but 

A’ = (Vz(Fx c, Fy) & ((Fy &p) + p)) + ((Fx Kc p) 

is not a theorem of RS (see Appendix 1). 
Of course, we have not yet shown that the conjecture for strong 

RS-relevance is false. But it is, as we will shortly see. First, however, 
we show some preliminary results involving RS. 

LEMMA 14. For L = RS or U, if t,x = x + (Ax + Ax), then 
1,x = y --) (Ax + Ay). (In which case t, Str(A, x).) 

Proof. Suppose t-,x = x -+ (Ax + Ax). 
We will show k,x = y + (Ax + Ay) by deriving 

x = y + (Ax + Ay) 

in a Fitch-style natural deduction (using the rules for R and the 
axioms for RS, which are all theorems of U). Here goes: 

1. I x = x + (Ax + Ax), 
2. 
3. 
4. 
5. 

x = Yl 

6. 

y = x, (from 2., the Sym axiom, and MP) 
x = x, (from 2., 3., Trans, and MP) 
(Ax -+ Ax), (from l., 4., and MP) 
y = x & (Ax + Ax), (from 3., 5., and 

&-introduction) 
(Ax -+ Ay), (from 6., Sub, and MP) 

8.1~ = y -+ (Ax --f Ay), (from 2., 7., and the 
rule for conditional 
proof.) 

QED 

7. 
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LEMMA 15. For L = RS or U, if A is inspectably weakly relevant in 
x, then 1,x = x -+ (Ax + Ax). 

Proof. By induction on the complexity of A. 

COROLLARY 16. For L = RS or U, if A is weakly L-relevant in x, 
then FL Str(A, x). 

We now require only one more lemma to show that the conjecture for 
strong RS-relevance is false. 

LEMMA 17. If “ = ” is not in the vocabulary of A, then strong (weak) 
R- and RS-relevance in x are equivalent for A. 

Proof. For the purposes of this proof, we will refer to Relevance 
Logic with Quantifiers and “ = ” as RVqx=, and Relevance Logic with 
Quantifiers, “ = ” and Substitution as RV3x=S, and Relevance Logic 
with Quantifiers but without “ =” as RV3x. First we recall that both 
R v&C= and Rvh=S are conservative extensions of Rv3x (see Theorem 1). 

Therefore, if B is a formula whose vocabulary does not include 
“ = “, then: 

(~,c+S~) * (~pxB) * (k,,,,=B). (*I 

Now, suppose that A is a formula which is strongly (weakly) RVjxzS- 
relevant in x, and the vocabulary of which does not include “ = “. 
Then, there is some formula A’, which is inspectably strongly (weakly) 
relevant in x, and which uses no more vocabulary than A, and which 
is such that k,,,=,A c) A’. Since A’ uses no more vocabulary than A, 
and “ = ” is not in the vocabulary of A, “ = ” is not in the vocabulary 
of A ++ A’. So, by (*), 

t,,= A c--) A’. 

Therefore, A is strongly (weakly) Rv3”=-relevant in x. So, we see that 
for formulas without “ = ” in their vocabulary, strong (weak) Rv3x=s- 
relevance entails strong (weak) Rv3”=-relevance. The converse is 
proven similary. QED 

We are now ready to show: 

THEOREM 18. The conjecture for strong RS-relevance is false. 
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Proof. Let Ax be the formula “(J’x & p) + Fx”. Suppose Ax is 
strongly RS-relevant in x. Then Ax is strongly R-relevant in x, since 
“ =” is not in its vocabulary (see Lemma 17). Therefore b,Str(A, x). 

However, we can show that Str(A, x) is not a theorem of R (see 
Appendix 1). Therefore Ax is not strongly RS-relevant in x. However, 
Ax is inspectably weakly relevant (and therefore weakly RS-relevant). 
Therefore t.,Str(A, x). (See Corollary 16.) QED 

7. THE CONJECTURES FOR WEAK R-RELEVANCE AND WEAK 

U-RELEVANCE 

We have decided the conjectures for strong L-relevance; we now turn 
to the conjectures for weak L-relevance. The conjectures for weak 
R-relevance and U-relevance can be dealt with in a trite. 

THEOREM 19. The conjecture for weak R-relevance is false. 
Proof. Let Ax be the formula “(Fx & p) + Fx”. Ax is inspectably 

weakly relevant in x and therefore weakly R-relevant in x. However, 
as we saw in the proof of Theorem 18, Str(Ax, x) is not a theorem of 
R. QED 

THEOREM 20. The conjecture for weak U-relevance is true. 
Proof. Suppose A is weakly U-relevant in x. Then t,Str(A, x), by 

Corollary 16. On the other hand, suppose I-.Str(A, x). Then A is 
strongly U-relevant in x by Theorem 13. Now recall that for any 
L = R, RS, or U, strong L-relevance entails weak L-relevance. 
Therefore A is weakly U-relevant. QED 

8. THE CONJECTURE FOR WEAK RS-RELEVANCE 

We now go on to prove the conjecture for weak RS-relevance. 
Corollary 16 tells us that for every formula A, if A is weakly RS- 
relevant in x, then t,,Str(A, x). To prove the converse, we first make 
the following definition and state an important lemma. 

DEFINITION 21. A formula B contains an interesting identity iff B 
has a sub-formula of the form “u = o”, where u and z, are distinct 



368 PHILIP KREMER 

variables. For example, the formula (3x)(x = y) contains an interest- 
ing identity, while the formula (3x)(Vy)(x = x + ( y = y & Fxy)) 
doesn’t. 

LEMMA 22. If a formula B does not contain an interesting identity, 
then ift,,B then t,B. 

Proof. Although this Lemma is intuitively “obvious”, its proof 
takes us sufficiently far afield and is sufficiently involved to be the 
topic of another paper. In this paper, we will give a sketch of the 
proof; see Appendix 2. 

THEOREM 23. Zf F,,Str(A, x) then A is weakly RS-relevant. 
Proof. Suppose that k,,Str(A, x). Now if “ = ” is in the vocabulary 

of A, then the result follows from the proof of Theorem 8. So suppose 
that “=” is not in the vocabulary of A. So we have k&Vx)(Vy) 
(Ax + (x = y + Ay)), where y is not free in A. 
Therefore I-,,Ax + (x = x + Ax). 
Since “ = ” is not in the vocabulary of A, the formula 

Ax + (x = x + Ax) 

contains no interesting identities. 
Therefore t,Ax + (x = x + Ax), by Lemma 22. 
Now, by Lemma I1 (see $5) there is a formula x z y such that 

(1) x z y is inspectably strongly relevant in x and y; 
(2) the vocabulary of x w y is a subset of the vocabulary of 

Ax + (x = x + Ax), and, furthermore, does not contain “ = “; 
(3) t-,B, where B is the same as Ax + (x = x + Ax) except, for 

all variables u and z, , every instance of “U = V” has been 
replaced by “u z v”. 

Since “ = ” is not in the vocabulary of A, it follows from (2) that the 
vocabulary of x z y is a subset of the vocabulary of A. So if we let 
A’x =dT x w x + Ax, then A’ uses no more vocabulary than A. 
Furthermore, from (3) we see that 

t,Ax + (x z x + Ax). 

Therefore F,Ax -+ A’x. 
Therefore t,,Ax + A’x. (*) 
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Also notice that t,x z x. (This is clear from the proofs of Lemmas 
10 and 11.) From this it follows that 

t‘Qtx x x + Ax) + Ax 

Therefore t,A’x + Ax. 
Therefore t,,A’x + Ax. (**) 
From (*) and (**) we see that A’ is M-equivalent to A. Also, A’ is 
inspectably weakly relevant in x, since x w x is inspectably strongly 
(and therefore weakly) relevant in x. Therefore A is weakly RS- 
relevant in x. QED 

And this is enough to prove the conjecture for weak RS-relevance. 

9. CONCLUDING REMARKS 

Now that we have shown all of our promised conjectures, we draw 
attention to a couple of points. First notice that the broadest gram- 
matical characterisation of relevance is strong relevance for R, and 
weak relevance for U (and for RS). These were our analogs to 
Helman’s relevance and Helman’s strictness, respectively. Recall that 
Helman’s relevance plays an important role in characterising theorems 
in R; our grammatical analog to it plays an important role in charac- 
terising relevant formulas in R. Recall that Helman’s strictness plays 
an important role in characterising theorems in U; our grammatical 
analog to it plays an important role in characterising relevant formulas 
in U. Whether there is a deeper association between Dunn’s ideas and 
Helman’s is an issue for further research. 

We also draw attention to the logic for which Dunn originally set 
out his conjecture, RS. We suggest that there is reason to doubt the 
“stability” of that logic, and, therefore, of the substitution axiom 
itself. We begin our discussion by asking, what is the meaning of 
“x = y”, and what, as a result, are the most suitable axioms which 
with to introduce “ = ” into a relevance logic. The stock answer to the 
first question is, of course, that x and y refer to the same entity. We 
are uncomfortable with this answer, especially in light of the existing 
semantics for quantified relevance logic; see Fine (1988) - we discuss 
this semantics in some depth in Appendix 2. (The problem is that it is 
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quite possible, given a model, and given any two of the model’s 
individuals, i, and i2, for one point of the model to validate i, = i2, 
and another to validate ii # i2; and so it is unclear whether i, and i2 
are in fact the same object. Furthermore, it is difficult to see how one 
might amend the semantics so that whether or not a given point 
validates c1 = c, depends on the individuals assigned to c, and cz.) 
Another answer to the question of the meaning of “= ” is that 
“x = y” simply “says” that “x” and “y” are interchangeable in all - 
or maybe just some - contexts. Another way of putting this is that 
“x = y” is just a short-hand for the conjunction of all formulas of 
the form “Ax +-+ Ay”. But this isn’t very satisfying, since we would 
then have 

x = Y + (P + P) c*> 
which offends our relevance intuitions. And what is it about (*) that 
offends these intuitions? It is that p is not, in any intuitive sense, 
relevant in either x or y. 

This suggests an understanding of “x = y” which is more in 
keeping with our relevance intuitions: “x = y” is a shorthand for the 
conjunction of all formulas of the form “Ax ++ Ay”, where A is 
“relevant” in x. Here we still have an intuitive notion of relevance in 
mind - a notion for which we have two rival grammatical character- 
isations: inspectably weak relevance and inspectably strong relevance. 

If this is our intuitive understanding of “x = y”, with what axioms 
are we best to introduce “ = ” into quantified relevance logic? The 
following three should be relatively uncontroversial. 

UW x = x 

Wm) x = y+y = x; 

(Trans) x = y-+(y=z+x=z). 

In addition to this we should introduce at least one axiom which 
embodies our understanding of “x = y”. The following suggests 
itself: 

x = y + (Ax + Ay), where y is not free in A and 
where A is “relevant” in x. 
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Substituting our two grammatical characterisations of relevance in for 
“relevant” yields two rival logics: 

(1) Rv3”= with 

(Strong) x = y 

and 
(2) Rv3*= with 

(Weak) x = y -+ 

(Ax + AY), where y is not free 
in A and where 
A is inspectably 
strongly relevant 
in x; 

(Ax + AY), where y is not free 
in A and where A 
is inspectably weakly 
relevant in x. 

We will call these logics Rstmng and Rweak, respectively. 
The possibility that strong relevance is the best characterisation of 

relevance is motivated by a preference for R over RS; and the possi- 
bility that weak relevance is the best characterisation of relevance is 
motivated by a preference for RS over R. If our intuition is right, and 
if an axiom like 

x = Y + (Ax + AY), where y is not free in A and 
where A is “relevant” in x, 

is supposed to embody our understanding of “x = y” then we should 
expect R - which tells us that “relevance” is strong relevance - to 
be equivalent to Rstrong, and RS - which tells us that “relevance” is 
weak relevance - to be equivalent to Rweak. 

We note with some happiness that R is in fact equivalent to Rstrong. 
However, we suspect that Rweak is strictly weaker than RS, and this is 
the source of our suspicion that RS is in some sense unstable. After 
all, it seems that RS tells us that relevance is weak relevance and 
hence that “x = y” is shorthand for the conjunction of all formulas 
of the form “Ax ++ Ay”, where A is weakly relevant. And it seems 
that Rweak provides us with the same understanding of “ = “. Doesn’t 
it seem then that there’s something amiss if Rweak is strictly weaker 
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than RS? Unfortunately, we do not yet have a proof of our conjec- 
ture to that effect (or a disproof of it) and so we leave the following 
unproved conjecture: 

R weak is strictly weaker than RS. 

APPENDIX 1. CONSTANT DOMAIN SEMI-LATTICE SEMANTICS 

The most natural move to make in an attempt to come up with a 
semantics for RV3x is to take Routley and Meyer’s relational semantics 
for R - as provided in Routley and Meyer (1973) and Routley, 
Plumwood, Meyer and Brady (1982), and as discussed in Anderson, 
Belnap and Dunn (to appear, $48) - and to add a domain D of 
objects, and to say (intuitively) of a point, a, that a 1 VxAx just in 
case a k Au, for every object “u” in the domain. (This is spelled out 
formally in Anderson, Belnap and Dunn (to appear, §48.9).) Unfor- 
tunately, as is shown in Fine 1986, Rv3’ is not complete for such a 
semantics. However, if we apply the same idea to Urquhart’s semi- 
lattice semantics for R,, - which can be found in Urquhart (1972 
and 1973), and in Anderson, Belnap and Dunn (to appear, 547) - we 
do obtain a semantics for which RF& is sound and complete. We spell 
it out formally with the following definition. 

DEFINITION 24. A quintuple M = (K, 0, u, D, V) is a “constant 
domain semi-lattice model for Ry&“, iff it satisfies the following: 

(1) (K, 0, u) is a semi-lattice. 
(2) D is a non-empty set. 
(3) We can allow actual elements of this domain enter in to 

formulas (thought of as finite sequences) in place of variables. 
A D-sentence is then such a formula with no free variables. 
Then we stipulate that V is a function from K x {Fd, . . . d,: F 
is an n-place predicate term and d, , . . . , d, E D } to {true, 
false}. Note that we allow O-place predicate letters; if F is 
O-place we will say that Fd, . . . d,, = F. 

DEFINITION 25. For every model M = (K, 0, u, D, V), and 
every a E K, and every D-sentence A, we define a kM A as follows: 
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(1) For atomic D-sentences, Fd, . . . d,, , a kM Fd, . . . d, iff 
V(Fd, . . . d,) = true. 

(2) a~,A&Biffa~,AandAk,B. 
(3) a I=,,, A --t B iff (Vb E K)(b kM A * b u a kM B). 
(4) a k,,, @x)(A) iff (Vd E D)(u k A[d/x]). 
(5) a I-,+, (3x)(A) iff (Id E D)(u k A[d/x]). 

If A is a formula with free variables in it, we say that a FM A, 
just in case a kM (Vxi) . . . (Vx,)A, where x, . . . x, are the free 
variables in A. 
We say that M k A iff 0 k,,, A. 
We say that a formula A is valid (with respect to a constant domain 
semi-lattice semantics) iff (VM)(M b A). 

We now state, without proof, the following theorem. 

THEOREM 26. A formula A is valid iff it is a theorem of R’d_3”,. 

If we add the following two clauses to Definition 25, we obtain a 
semantics for which RVjx is not complete, but sound: 

(6) uk,,,A v Biffuk,Aoruk,B; 
(7) a kM 1 A iff it is not the case that a kM A. 

THEOREM 27. If A is a theorem of RV3x, then A is valid with respect 
to a constant domain semi-lattice semantics. 

Proof. by induction on the length of proof of A. 

Indeed, we can state a more general theorem. 

THEOREM 28. Suppose that L is an axiomatic extension of RVjx. 
Suppose M is a constant domain semi-lattice model, such that, for every 
axiom A of L, M k A. Then, for every theorem B of L, M k B. 

Proof. by induction on the length of proof, in L, of B. 

Using this semantics, we can show that 

(9 6 = Y & (KY &P) -, P))) -+ ((Fx &P) -, P), and 

(ii) (x = Y -, (U’x &P) -+ Fx) + ((FY &P) -, FY)), and 
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are not theorems of RVjx=, and that 

(iii) owx - FY) & WY &PI + PI) + w &PI + P) 

is not a theorem of RvqJzs. 

APPENDIX 2. A SKETCH OF THE PROOF OF LEMMA 22, AND 
MORE ON SEMANTICS 

Recall the statement of Lemma 22. 

LEMMA 22. Zf a formula B does not contain an interesting identity, 
then ift,,B then t,B. 

This lemma, which we prove semantically, would be quite easy to 
prove if we had a constant domain semantics for RVgx, as we shall 
shortly see. Unfortunately, we don’t. However, we do have a constant 
domain semi-lattice semantics for R!$, which we will use to prove the 
following theorem, which is a version of Lemma 22, restricted to 
formulas in the language of RF&= . 

THEOREM 29. Zf a formula B, in the language of RL’“=, does not 
contain an interesting identity, then if kR2k=~B, then 

1 R”_3L= B. 

Proof. Suppose 1 (F,Q= B). Then for some constant domain 
semi-lattice model A4 = trK, 0, v, D, V3, such that M validates every 
axiom of RF;=, we have 1 (M k B). We define a new model M’ thus: 

where 

M’ = (K, 0, u, D, V’) 

V’(a, Fd, . . . d,) = false if F is “ = ” and d, # d2, 

= V(a, Fd, . . . d,) otherwise. 

Notice that, as far as atomic formulas are concerned, M’ agrees with 
A4 at every point of K, except that at no point does M’ validate 
d, = d,, where d, and d2 are distinct. As it turns out, h4’ validates 
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every axiom, not only of R!$&=, but also of Ry;='. Furthermore, it 
can be shown by induction on the complexity of C that for every 
formula C, and for every a E K, if C does not contain an interesting 
identity, then a + C iff a V C. And so, if C is a formula which does 
not contain any interesting identities, M k C iff M’ b C. 

And so 1 (M’ k E). And so, since M’ is an R?,=s-model, 
1(k,yB). QED 

Unfortunately, as I have already mentioned, such a proof is not 
available to us if we use the currently known full semantics for Rv3.‘, 
which is provided by Fine (1988),’ and which is not a constant 
domain semantics. Shortly, we shall see what the problem is. 

In SQRL, Fine defines a possible model A to be an 1 I-tuple, 
(T, S, D, 4 0, T, 1, +, 41, where: 

(i) T (theories) is a set; 
(ii) S (saturated theories) is a subset of T; 
(iii) D (relative domain) is a function from T into sets (he uses D 

(domains) for Rg(D), I (individuals) for uD, and z (domain 
equivalence) for {(t, u) E T x T: D, = D,}); 

(iv) I (logics) is a function from D into T, with D,(ar) = CI for all 
LX E D; 

(v) l (fusion) is a partial function from T x T into T, which is 
defined, for arguments t and u, only when t x u, and which 
then takes a value v z t; 

(vi) - (complementation) is a unary operation on S for which 
-a z a whenever a E S; 

(vii) 2 is a binary relation on T, holding between t and u from T 
only when t z u; 

(viii) r (the up operator) is a partial function from T x D into T. 
It is defined, for given arguments t and ~1, only when c1 2 D,, 
and its value is a u for which D, = a; 

(ix) 1 (the down operator) is a partial function from T x D into 
T. It is defined, for given arguments t and ~1, only when 
D, I> CI, and its value is a u for which D, = a; 

(x) --f (the across operator) is a partial function from 
T x ((i, j}: i and j are distinct elements of I} into T - it is 
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defined on T and {i, j } just in case the distinct i, j E D,, and 
its value is then a u z t; 

(xi) C$ (valuation) is a relation that holds between a theory t E T 
and an n + I-tuple (R, i, , . . . , i,,) consisting of an n-place 
predicate R and individuals i, , . . . , i,, from D,. 

Fine often writes - and we will often write: 

(1) 1 for l(u); 

(2) tts or tB or simply tf for f(t, /I); 

(3) tJ8 or ts or simply tl for J(t, b); 

(4) “jt’or simply Tfor +(t, (i, j}). 

(5) tu for t  l u. 

Fine uses - and we will use - the following conventions: 
(1) t, s, U, . . for members of T; 
(2) a, b, c, . . . for members of S; 
(3) a, A Y, . * * for members of D; 
(4) i, j, k, . . . for members of I. 
Fine defines a possible model A to be an actual model if it satisfies 

some thirty-five conditions he lists in the next few pages. Now, Fine 
at first shows soundness and completeness with respect to actual 
models for a certain minimal logic, which he calls BQ. But he also 
shows that if we require actual models to satisfy an additional nine 
conditions listed at the end of his paper, we obtain a sound and 
complete semantics for RV3x. In light of this, we will define a Fine- 
model to be an actual model which satisfies these last nine conditions. 
Henceforth this paper will be concerned with Fine-models, rather 
than with what Fine calls actual models. 

Fine defines truth with respect to a Fine-model in the following 
way; see SQRL, $2. First, given a Fine-model A and a language L, we 
add the individuals, I, to the language (as constants) to obtain the 
enlarged language L+ . Given a formula A of L+ , let r(A) = {i E I: i 
occurs (as a name) in A). We say that A is dejined at the point t of A 
if D, 2 I(A); and we let S(t) = {A: A is a sentence of L+ which is 
defined at t}. Finally, relative to the Fine-model A, the relation k of 
truth - we will call this “Fine-truth” - is to hold between a theory t 
of A and a sentence A of S(t). It is defined by the following clauses: 
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(i) t k Ri, . . . i,, iff &t, (R, i,, . . . , i,)), for R a n-place 
predicate; 

(ii) t b B & C iff t k B and t 1 C; 
(iii) t k 1 B iff (Vu 2 t)(not -a b B); 
(iv) t b B --+ C iff (Vu w t)(u != B * tu k C); 
(v) t b VxBx iff (3tf)@ E D,,\D,)(tf k Bi). 

We will say that a sentence A is Fine-true in a Fine-model A - in 
symbols, A k A - if I \ A for every I at which A is defined. We will 
say that a formula Av, . . . v,, with free variables v,, . . . , v, is 
Fine-true in every Fine-model A if, for any individuals i, , . . . , i,, E I, and 
for any I at which Ai, . . . i, is defined, 1 b Ai, . . . i,,, and that a 
formula of the given language L is Fine-valid - IA - if it is 
Fine-true in every Fine-model. 

Not too surprisingly, Fine proves the following theorem. 

THEOREM 30. For any formula A, kKV3,A iff \A. 

This is an immediate consequence of his Theorem 20 in SQRL. 
Now we will see why a proof such as the proof of Theorem 29 is 

not available using Fine’s semantics. The main step in the proof was 
this: given a model, IV, we defined a model M’ which was just like M 
except that it did not validate d, = d2 at any point, when d, and d2 
were distinct members of D. The natural way to do the same proof 
with Fine’s semantics would be, given a model A, to define a model A’ 
which is exactly like A except that @(t, ( = , i,, i2)) is false whenever 
i, is distinct from iz. Unfortunately, the resulting possible model A’ 
would not be a Fine-model, since it would not satisfy Fine’s condition 
V(ix), which is the following; (see SQRL $1): 

44~ R, 4, . . . , i,) = c#~(c R, ii, . . , i;), where + is 
j, k+ for distinct j, k E D, and, for p = 1, 2, . . . , n, 
ii = ip if ip # j or k, and ii = j or k if ip = j or k. 

What this condition says is that if a point r validates Ril . . . i,,, then 
the point “klvalidates anything of the form Ri; . . . i; where 
Ri; . . . i: is just Ri, . . . i,, with as any number ofj’s in it replaced by 
k’s and any number of k’s in it replaced by j’s. Now, this condition 
throws a spanner in the works for the following reasons: if A’ is to be 
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a model for RQ3x=S, then we must have Z(U) 1 i = i, where i E CI and 
where a has at least one other member, say j. So we must have 
#(/(cx), (=, i, i)). Therefore, if A’ is to satisfy Fine’s condition V(ix), 
we must have 4’(i”l’(~), (=, i, j)). But we wanted to define 4’ so 
that it was not the case that @(i”qcc), ( =, i, j)). And this is the 
problem with Fine’s condition V(ix). 

How do we deal with this problem? It would be nice to just delete 
this condition, but, unfortunately, the new semantics would not be 
complete. 

What we actually do is weaken the condition, and change the 
definition of truth. Formally, we proceed as follows. 

DEFINITION 3 1. A possible model A = (T, S, D, 1, 0, t, 1, +, 4) is 
a *-model iff it satisfies 

(1) all of the conditions satisfied by Fine-models, save, perhaps, 
Fine’s condition V(ix); and 

(2) the following condition, which we will call condition V(ix)*: 

$(t, R, i,, . . . , in) =t- c$(< R, ii, . . . , i;), where + 
is j, k+ for distinct j, k E D, and where ii, . . . , i; is 
just like i,, . . . , i,, except that either all occurrences of j 
in i,, . . . , i,, have been replaced by k, or vice versa. 

Notice that every Fine-model is a *-model, by that not every *-model 
is a Fine model, since the condition V(ix)* is strictly weaker than 
Fine’s condition V(ix). 

To define truth for a *-model, A, we proceed very much as for a 
Fine-model. The important difference is in the inductive definition of 

t k VxBx 

First, given a *-model A and a language L, we add the individuals, I, 
to the language (as constants) to obtain the enlarged language L+. 
Given a formula A of L+ , let r(A) = {i E I: i occurs (as a name) in 
A}. We say that A is dejined at the point t of A if D, 2 I(A); and we 
let S(t) = {A: A is a sentence of Lf which is defined at t>. Finally, 
relative to a *-model A, the relation k* of *-truth is to hold between 
a theory t of A and a sentence A of S(t). It is defined by the 
following clauses: 
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(i) t \* Ri, . . . i, iff 4(t, (R, i, , . . . , i,)), for R a n-place 
predicate; 

(ii) t t=* B & C iff t + B and t b C; 
(iii) tk*lBiff(Va > t)(not -a+ B); 
(iv) t t=* B + C iff (Vu M t)(u 1 B + tu k C); 
(v)* t I* VxBx iff the following two conditions are satisfied: 

(int) (3tf)(3i E D,,\D,)(tf k* Bi), and 
(ext) (Vi E D,)(t \* Bi).3 

We will say that a sentence A is *-true in a *-model A, or that A 
*-validates A - in symbols, A k* A - if I t;* A for every 1 at which 
A is defined. We will say that a formula AZ+ . . . v, with free variables 
V]) . . ) v, 1s ’ *-true in a *-model A if, for any individuals 
4, . . . > i,, E I, and for any 1 at which Ai, . . . i, is defined, 
1 k* Ai, . . . i,, and that a formula of the given language L is *-valid 
- +* A - if it is *-true in every *-model. 

Notice the diffrence between the definitions of Fine-truth and of 
*-truth. Fine’s intuitive gloss on the way he defines t k VxBx is that 
VxBx is true just in case Bi is true for some arbitrary object i. Fine 
takes it that the requirement that i not be in D, guarantees that it is 
indeed arbitrary. We can think of Fine’s condition - i.e., that 
(3tT)(3i E D,,\D,)(tt i= Bi) - for the truth of VxBx at t, as an 
intensional condition on the pair (t, B). We have added the condition 
(Vi E D,)(t b* Bi), i.e., that Bi also be true for every actual object, i. 
This condition can be thought of as an extensional condition on the 
pair (t, B). This explains the use of “(int)” and “(ext)” to name these 
conditions.4 

We are now ready to state the following important theorem. 

THEOREM 32. For any formula A, l-RYjX A iff k*A. 
Proof. (G): Suppose that it is not the case that t,,,A. What we 

need is a *-model, A, such that 1 (A b* A). Let A be the “canonical 
model for RvgX, ARv33x” as defined by Fine in SQRL. Fine shows that 
A is a Fine-model. So 1 (A 1 A). As we have already noted, every 
Fine-model is a *-model. So A is a *-model. Now we point out that 
for any Fine-model, k* and k are the same; see Lemma 33. Therefore 
T(A I=* B). 

(a): This is the detailed part, which we omit. The proof is 
somewhat similar to Fine’s completeness proof in SQRL. 
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LEMMA 33. Zf A = (T, S, D, 1, *, 7, 1, +, #) is a Fine-model, then 
for every t E T and for every formula A of the language L’ (where L is 
the language we are working in), 

t !=* A iff t 1 A. 

Proof. We note that Fine shows that, for every t E T, and every 
formula B, if t k (Vx)(Bx), then (Vi E D,)(t k Bi); see Corollary 6 of 
SQRL, 82. Using this, the result can be proven by induction on the 
complexity of A. 

We need one more theorem before we can prove Lemma 22, 

THEOREM 34. Suppose L is an axiomatic extension of RVqx, and that 
A is a *-model, and that every axiom of L is *-true in A. Then every 
theorem of L is *-true in A. 

Proof. Again, we omit the proof. 

LEMMA 22. If a formula B does not contain an interesting identity, 
then tf !-,=,B then t,,,= B. 

Proof Suppose -I (k,+= B). Then for some *-model, 
A = (T, S, D, 1, l , t, 1, +, 4), such that A *-validates every axiom of 
RYjx=, we have 1 (A k* B). We define a new model A’ thus: 

A’ = CT, S, D, 1, l , t, 1, +, 4’) 

where, for any t E T, and any n-place predicate letter R, and any 
individuals i, , . . . , i,,, 

4’0, CR, 4, . . . , i,,)) iff (1) &(t, (R, i,, . . . , i,)), and 
(2) Ri, . . . i, is not of the form 

“i = j” where i and j are 
distinct individuals. 

Note the following: 
(1) as far as atomic formulas are concerned, A’ agrees with A at 

every t E T, except that at no t does A’ *-validate i, = i2, where i, and 
iz are distinct individuals; 

(2) A’ is a *-model (though it might not be a Fine-model); 
(3) A’ *-validates all of the axioms of RvJxCS. 
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(4) it can be shown by induction on the complexity of C that for 
every formula C, and for every f E T, if C does not contain an 
interesting identity, then t !=*’ C iff t k* C. And so, if C is a formula 
which does not contain any interesting identities, A k* C iff A’ k* C. 

And so 1 (A’ i= B). And so, since A’ is a *-model, 1 (t,,,,=,B). 
QED 

NOTES 

* Many thanks go to Nuel Belnap who suggested this research topic, and whose 
comments and inspiration were most appreciated. 
’ The sense in which this axiom might be “unstable” is explicated in the concluding 
remarks. 
’ Henceforth we will call this paper “SQRL” - for “Semantics for Quantified 
Relevance Logic.” 
3 The reasons for calling these conditions “(int)” and “(ext)” will soon become 
apparent. 
4 The thought of these as intensional and extensional conditions was given to me, in 
conversation, by Michael Dunn. 
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