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Abstract. In the topological semantics for modal logic, S4 is well-known to be complete for the
rational line, for the real line, and for Cantor space: these are special cases of S4’s completeness
for any dense-in-itself metric space. The construction used to prove completeness can be slightly
amended to show that S4 is not only complete, but also strongly complete, for the rational line. But
no similarly easy amendment is available for the real line or for Cantor space and the question of
strong completeness for these spaces has remained open, together with the more general question of
strong completeness for any dense-in-itself metric space. In this paper, we prove that S4 is strongly
complete for any dense-in-itself metric space.

In the topological semantics for modal logic (McKinsey, 1941; McKinsey & Tarski,
1944; Rasiowa & Sikorski, 1963), S4 is well-known to be complete for the class of all topo-
logical spaces, as well as for a number of particular topological spaces, notably the rational
line, Q, the real line, R, and Cantor space, C. The results for Q, R, and C are special cases
of S4’s completeness for any dense-in-itself metric space: see Rasiowa & Sikorski (1963,
Theorem XI, 9.1), which is derived from McKinsey (1941) and McKinsey & Tarski (1944).

In Kripke semantics, it is customary to strengthen the completeness of a logic, L, for
a Kripke frame (a class of frames) to strong completeness, that is, the claim that any
L-consistent set of formulas is satisfiable at some point in the frame (in some frame in the
class): the simplest completeness arguments, using canonical frames and models, tend to
deliver this stronger result.1 In topological semantics, as long as the language is countable,
the construction used to prove the completeness of S4 for Q can be slightly amended to
show the strong completeness of S4 for Q. But no similarly easy amendment is available
for R or for C, and the question of the strong completeness of S4 for these spaces has until
now remained open. In the current paper, we prove that S4 is strongly complete for any
dense-in-itself metric space, including R and C.

It should be noted that the question of strong completeness in topological semantics
has not been widely addressed. That said, given the well-known identification of reflexive
transitive Kripke frames with Alexandroff spaces (see p. 549, below), and given the well-
known strong completeness of S4 for the class of countable reflexive transitive Kripke
frames (Makinson, 1966), S4 is strongly complete for the class of countable Alexandroff
spaces and therefore for the class of all topological spaces. Also, Theorem XI, 10.2 (v) in
Rasiowa & Sikorski (1963) immediately entails a kind of restricted strong completeness of

Received: February 26, 2013.
1 Such arguments were first published in Makinson (1966). There are, however, modal logics L that

are complete for some class of Kripke frames for L, but strongly complete for no class of Kripke
frames for L. Standard examples are GL and Grz: see Zakharyaschev et al. (1997), especially
Section 1.5, “Stronger forms of Kripke completeness”.
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S4 for the class of subspaces of the irrational line: any consistent theory is satisfiable in this
class, where a theory is a set of formulas containing all the theorems of S4 and closed under
both modus ponens and necessitation. These results leave open the strong completeness of
S4 for R, for C, and for any arbitrary dense-in-itself metric space.

§1. Outline.

1.1. An interior map strategy. The completeness of S4 for a given dense-in-itself
metric space X is typically proved by showing that any finite rooted reflexive transitive
Kripke frame is the image of an interior map from X . Section §3, below, strengthens the
completeness of S4 for Q to strong completeness by showing that any countable rooted
reflexive transitive Kripke frame is the image of an interior map from Q. We pursue this
strategy in two steps. Firstly, we observe that any countable rooted reflexive transitive
Kripke frame can be unravelled into the infinite binary tree, 2<ω (Lemma 3.3): thus S4
is strongly complete for 2<ω (Lemma 3.4). Secondly, we observe that there is an interior
map from Q onto 2<ω: thus S4 is strongly complete for Q. This is an instance of a general
strategy. First, show that S4 is strongly complete for some master space Y , in this case 2<ω.
Then transfer the strong completeness of S4 for the master space to the strong completeness
of S4 for X , backwards via a surjective interior map, as in Figure 1.

The interior map strategy just outlined shows the strong completeness of S4 for a par-
ticular space by showing that every countable rooted reflexive transitive Kripke frame is
the image of that space under some interior map. But this strategy is not applicable to
every dense-in-itself metric space: for example, the Kripke frame 〈N, ≤〉 is not the image
of any interior map from R—see Lemma 4.6.2 Neither is 2<ω—see Corollary 4.8. This
observation has motivated the strong suspicion that there is a set � of formulas satisfiable
in 〈N, ≤〉, and therefore consistent, but not satisfiable in R. This suspicion is refuted by
our main result. Section §4 also considers another interior map strategy and shows that it
too fails.

1.2. Algebraic semantics. Sections §5ff are devoted to the main project: proving that
S4 is strongly complete for any dense-in-itself metric space. Section §5 generalizes the
topological semantics for S4 to an algebraic semantics. Any topological space X generates
an interior algebra I(X) = 〈P(X), ⊆, I ntX 〉, where I ntX is the interior operator on
subsets of X . In general, an interior algebra is a triple I = 〈A, ≤, I〉, where 〈A, ≤〉 is
a Boolean algebra, and I is a unary interior function on A satisfying certain conditions.3

Section §5 generalizes topological models to algebraic models based on interior algebras
and defines what it is for S4 to be strongly complete for an interior algebra I: the strong
completeness of S4 for the topological space X is then equivalent to the strong complete-
ness of S4 for the interior algebra I(X). So, to prove the strong completeness S4 for any
dense-in-itself metric space X , it suffices to transfer the strong completeness of S4 from
I(2<ω) to I(X).

With topological spaces, the strong completeness of S4 is transferred backwards from
the range of a surjective interior map onto the domain as in Figure 1. With interior algebras,
the strong completeness of S4 is transferred forwards from the domain of an embedding to

2 I owe this observation to Guram Bezhanishvili, David Gabelaia, and Valentin Shehtman.
3 These conditions are the duals of the Kuratowski axioms for a closure function, introduced in

Kuratowski (1922). See Section §5, below.
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Fig. 1. Transferring strong completeness from one topological space to another, backwards via a
surjective interior map.

Fig. 2. Transferring the strong completeness of S4 from one interior algebra to another, forwards
via an embedding.

the range as in Figure 2. So our task reduces to finding an embedding from I(2<ω) into
I(X).

1.3. Strong completeness for the infinite binary tree with limits. Section §6 considers
the infinite binary tree with limits: the space 2≤ω of finite and infinite binary sequences,
equipped with the Scott topology.4 We define an embedding, hU (the reason for the sub-
scripted U will become clearer below), from I(2<ω) into I(2≤ω), thereby transferring
the strong completeness of S4 from I(2<ω) to I(2≤ω)—and so transferring the strong
completeness of S4 from 2<ω to 2≤ω.5,6 Note that the the embedding hU cannot be onto,
since P(2≤ω) is of greater cardinality than P(2<ω). If we let the algebra JU be the range
of hU , then note: (1) JU is a proper subalgebra of I(2≤ω), and (2) hU transfers the strong
completeness of S4 from I(2<ω) to JU . This will be useful below.

4 Nick Bezhanishvili pointed out that the topology used in Section §6 is the Scott topology.
5 In fact, we define a whole class of embeddings from I(2<ω) into I(2≤ω), though we only need

one of them.
6 An anonymous referee alerted me to Lando & Sarenac (2011), which proves that S4 is complete

for 2≤ω. The interior map strategy used in Lando & Sarenac (2011) does not extend to proving
strong completeness: see Section §6, below.
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Fig. 3. Strong completeness is transferred from I(2<ω) to I(X) via the embedding h∗◦hU .

1.4. Strong completeness for dense-in-themselves metric spaces. Section §7 defines,
for any dense-in-itself metric space X , a function fX : X → 2≤ω and shows that this
function is continuous. Section §8 shows that, if X is a complete dense-in-itself metric
space, then fX is a surjective interior map.7 Thus, when X is a complete dense-in-itself
metric space, we can transfer the strong completeness of S4 from 2≤ω to X backwards
via fX . An aside, the existence of an interior map from any complete dense-in-itself
metric space onto 2≤ω might be of broader interest, for example, in studying logics of
the real line and of other complete dense-in-themselves metric spaces in other contexts,
such as dynamic topological logic (see Kremer & Mints, 2005) or bimodal logic in two-
dimensional topological semantics (see van Benthem et al., 2006; Kremer, xxxx).

Unfortunately, there are incomplete dense-in-themselves metric spaces X such that the
function fX : X → 2≤ω is neither an interior map nor surjective. In such cases, we
cannot simply transfer the strong completeness of S4 from 2≤ω to X backwards via fX .
Fortunately, even in such cases, the function fX induces an embedding, say h∗, from the
subalgebra JU of I(2≤ω) into I(X). So the strong completeness of S4 is transferred first
from I(2≤ω) to JU via the embedding hU , and then from JU to I(X) via the embedding
h∗: see Figure 3. Note that h∗◦hU is an embedding from I(2<ω) into I(X). This suffices
for the strong completeness of S4 for X .

§2. Notation, terminology, and main result. We begin by fixing notation and ter-
minology. We assume a propositional language with a countable set PV of propositional
variables; standard Boolean connectives &, ∨, and ¬; and one modal operator, �. We
abbreviate ¬�¬A as ♦A and (¬A ∨ B) as (A ⊃ B). A finite set of formulas is consistent
iff either it is empty or the negation of the conjunction of the formulas in it is not a theorem
of S4; and an infinite set of formulas is consistent iff every finite subset is consistent.

Given a nonempty set X , a topology on X is a family τ of subsets of X , such that (1)
∅, X ∈ τ ; (2) if S, S′ ∈ τ , then S ∩ S′ ∈ τ ; and (3) if σ ⊆ τ , then

⋃
σ ∈ τ . Dugundji

(1966) and Engelking (1989) are standard references on topology. The members of τ are
the open subsets of X (in the topology τ ). A basis for τ is any set σ ⊆ τ such that every
member of τ is the union of members of σ . A topological space is an ordered pair 〈X, τ 〉,

7 After I showed him the construction of an interior map from R onto 2≤ω, David Gabelaia
conjectured that the construction could be generalized to any complete dense-in-itself metric
space. He was right. An anonymous referee has alerted me to Lando (2012), which constructs an
independently discovered interior map fromR onto 2≤ω.
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where X is a nonempty set and τ is a topology on X . We will somewhat imprecisely
identify X with 〈X, τ 〉, letting context or fiat determine τ . Thus, for example, we identify
R with 〈R, τR〉, where τR is the standard topology on R. We take the basics of point-
set topology to be given, in particular, the notions of the interior and closure, I ntX (S)
and ClX (S), of a subset S of a topological space, X . The boundary of a set S ⊆ X is
∂X (S) =df ClX (S) − I ntX (S). We typically suppress the subscripted X on I ntX , ClX ,
and ∂X . A subset S of X is dense iff X = Cl(S). A point x ∈ X is an isolated point iff
{x} is open. A space X is dense-in-itself iff X has no isolated points. Alternatively, X is
dense-in-itself iff (∀x ∈ X)(Cl(X − {x}) = X).

A Kripke frame is an ordered pair 〈X, R〉, where X is a nonempty set and R ⊆ X × X .
We will somewhat imprecisely identify X with 〈X, R〉, letting context or fiat determine
R. A Kripke frame X is reflexive (transitive) iff R is: for the rest of this paper, we will
assume that all Kripke frames are reflexive and transitive. A Kripke frame is rooted iff
(∃r ∈ X)(∀x ∈ X)(r Rx). A subset O of X is open iff (∀x, y ∈ X)(x ∈ O & x Ry ⇒
y ∈ O). A subset C of X is closed iff X − C is open. If 〈X, R〉, is a Kripke frame, then
the open sets just defined form a topology, τR on X . Indeed, the topological space 〈X, τR〉
is an Alexandroff space: these are the spaces 〈X, τ 〉 such that, if σ ⊆ τ , then

⋂
σ ∈ τ . We

will somewhat imprecisely identify the Kripke frame 〈X, R〉 with the Alexandroff space
〈X, τR〉. If 〈X, R〉 is a Kripke frame, then the interior of a set S ⊆ X is the largest open
subset of S: I ntX (S) =df {x ∈ S : ∀ y ∈ X, x Ry ⇒ y ∈ S}. Finally, for x ∈ X , we define
R(x) =df {y ∈ X : x Ry}. Note that the family {R(x) : x ∈ X} is a basis for the topology
τR .

A topological model (Kripke model) is an ordered pair M = 〈X, V 〉, where X is a
topological space (Kripke frame) and V : PV → P(X). V is called a valuation. We
will use the term model to cover topological models and Kripke models. For any model
M = 〈X, V 〉, V is extended to all formulas as follows: V (¬A) = X − V (A), V (A & B) =
V (A) ∩ V (B), V (A ∨ B) = V (A) ∪ V (B), and V (�A) = I nt (V (A)). If � is a nonempty
set of formulas, then V (�) =df

⋂
A∈� V (A); if � is empty, then V (�) =df X .

Suppose that A is a formula, that X is a topological space or Kripke frame, and that
M = 〈X, V 〉 is a model. We say that A is valid in M iff V (A) = X , and valid in X iff A
is valid in 〈X, V 〉 for every valuation V . We say that S4 is complete for X iff A ∈ S4 for
every formula A valid in X .

Suppose that � is a set of formulas. Suppose that X is a topological space or Kripke
frame, that x ∈ X , and that V : PV → P(X) is a valuation. Then we say that � is
satisfied at x in 〈X, V 〉 iff x ∈ V (�), that � is satisfiable at x in X iff there is some model
〈X, V 〉 such that x ∈ V (�), and that � is satisfiable in X iff � is satisfiable at some x ∈ X .
Note that S4 is complete for X iff every finite consistent set of formulas is satisfiable in X .
We say that S4 is strongly complete for X iff every consistent set of formulas is satisfiable
in X .

A metric space is an ordered pair 〈X, d〉, where X is a nonempty set and the distance
function d : X × X → R satisfies the following for every x, y, z ∈ X :

1. d(x, y) = d(y, x) ≥ 0,

2. d(x, y) = 0 iff x = y, and

3. d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).

We will not carefully distinguish X from 〈X, d〉. It will be useful to define the distance
between a point x ∈ X and a set S ⊆ X . If S is nonempty, then

d(x, S) =df inf {d(x, y) : y ∈ S}.
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And d(x, ∅) =df ∞. It will also be useful to note that a kind of triangle inequality holds
for distances to nonempty sets as well as to points:

d(x, S) ≤ d(x, y) + d(y, S)

We impose a topology τd on X by taking as a basis all the open balls, that is, all the sets
of the following form, where x ∈ X and r ∈ R+: B(x, r) =df {y : d(x, y) < r}—here,R+
is the set of positive reals. Note the following: if O ⊆ X is open, then (∀x ∈ X)(x ∈ O iff
(∃r ∈ R+)(B(x, r) ⊆ O)). We will not carefully distinguish X and 〈X, d〉 from 〈X, τd〉.
Note that if we impose the distance function d(x, y) = |x − y| on R, Q, and C, then they
are all dense-in-themselves metric spaces.

Suppose that X is a metric space with distance function d, that 〈xn〉 = x1, . . . , xn, . . .
is an infinite sequence of points in X and that x ∈ X . Then 〈xn〉 is a Cauchy sequence
iff (∀ε > 0)(∃n)(∀i, j ≥ n)(d(xi , x j ) < ε). We say that 〈xn〉 converges to x iff (∀ε >
0)(∃n)(∀m ≥ n)(d(x, xm) < ε). We write 〈xn〉 → x . We say that 〈xn〉 converges iff
(∃x ∈ X)(〈xn〉 → x). Note that every convergent sequence is Cauchy. Finally, a metric
space is complete iff every Cauchy sequence converges. It is well-known that R and C are
complete but that Q is not.

The following completeness theorem is taken from Rasiowa & Sikorski (1963, Theorem
XI,9.1, (vii)),which is in turnderived fromMcKinsey (1941)andMcKinsey&Tarski (1944):

THEOREM 2.1. (Completeness). If X is a dense-in-itself metric space, then S4 is complete
for X.

Our main result is

THEOREM 2.2. (Strong completeness). If X is a dense-in-itself metric space, then S4 is
strongly complete for X.

Theorem 2.1 is well-known, especially when X = Q, R, or C. For X = Q, there is a
new and more accessible proof in van Benthem et al. (2006); and, for X = R, there are
new and more accessible proofs in Aiello et al. (2003), Bezhanishvili & Gehrke (2005),
Mints & Zhang (2005) and Hodkinson (2012). For X = Q, Theorem 2.2 is easy to prove
and seems to be well-known (though we have not found an explicit statement of it in the
literature): we sketch the easy proof in Section §3 below. For X = R or C, and in the most
general case, Theorem 2.2 has been an open question. As noted above, we devote Sections
§5ff to its proof.

We recall the standard notion of an interior map. A function from a topological space
(or Kripke frame) to a topological space (or Kripke frame) is continuous iff the preimage
of every open set is open;8 is open iff the image of every open set is open;9 and is an
interior map iff it is continuous and open. Suppose that M = 〈X, V 〉 and M′ = 〈X ′, V ′〉
are models, and that f is an interior map from X onto X ′. Then f is an interior map from
M onto M′ iff, for every p ∈ PV and x ∈ X , x ∈ V (p) iff f (x) ∈ V ′(p). The following
lemma and corollary are standard.

8 If 〈X, R〉 and 〈X ′, R′〉 are Kripke frames, then f : X → X ′ is a continuous function from
the topological space 〈X, τR〉 to the topological space 〈X ′, τR′ 〉 iff f is monotonic: for every
x, y ∈ X , if x Ry then f x R′ f y.

9 If 〈X, R〉 and 〈X ′, R′〉 are Kripke frames, then f : X → X ′ is an open function from the
topological space 〈X, τR〉 to the topological space 〈X ′, τR′ 〉 iff for every x ∈ X and y ∈ X ′, if
f x R′ y, then for some z ∈ X , x Rz and f z = y.
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LEMMA 2.3. If f is an interior map from M = 〈X, V 〉 onto M′ = 〈X ′, V ′〉, then for
every formula A and x ∈ X, x ∈ V (A) iff f (x) ∈ V ′(A).

COROLLARY 2.4. (Transfer of the strong completeness of S4 backwards via a surjective
interior map). Suppose that each of X and X ′ is a Kripke frame or topological space,
and that there is an interior map from X onto X ′. Then if � is satisfiable in X ′ then �
is satisfiable in X. Thus, if S4 is strongly complete for X ′, then S4 is strongly complete
for X.

§3. Strong completeness for the infinite binary tree and for the rational line: the
interior map strategy. For each n ≥ 0, let 2n be the set of binary sequences (sequences
of 0s and 1s) of length n. Let 2<ω =df

⋃∞
n=0 2n , that is, 2<ω is the set of finite binary

sequences. Let 2ω be the set of infinite binary sequences of order type ω. And let 2≤ω =df
2<ω ∪ 2ω. We use � for the the empty binary sequence, that is, the binary sequence of
length 0. We use b, b′, etc., to range over 2<ω; b, b′, etc., to range over 2ω; and b, b′, etc.,
to range over 2≤ω. If b ∈ 2<ω and b ∈ 2≤ω, then we write b�b for b concatenated with b.
We write b0 and b1 for b�〈0〉 and b�〈1〉. For any b ∈ 2<ω, we write |b| for the length
of b. Given any b ∈ 2ω and any n ∈ N, the finite binary sequence b|n is the initial segment
of length n of b. Thus b|0 = � and |b|n| = n. Given b ∈ 2<ω and b ∈ 2≤ω, we say b ≤ b
iff b is an initial segment of b and b < b iff both b ≤ b and b �= b. We will also use “≤”
for ≤ restricted to 2<ω.

We identify 2<ω with the infinite binary tree, that is, the countably infinite rooted tran-
sitive reflexive Kripke frame 〈2<ω, ≤〉. For each b ∈ 2<ω, let [b] =df {b′ ∈ 2<ω : b ≤ b′}.
Note that the family {[b] : b ∈ 2<ω} is a basis for the topology τ≤ on 2<ω induced by ≤.
We also identify 2<ω with the topological space 〈2<ω, τ≤〉. We can represent any branch
of the tree 2<ω with an infinite binary sequence b ∈ 2ω: b represents the branch whose
nodes are b|0, b|1, b|2, . . .. The following result, due originally to Dov Gabbay and in-
dependently discovered by Johan van Benthem, is well-known; for a proof see Goldblatt
(1980, Theorem 1).

LEMMA 3.1. Any finite rooted reflexive transitive Kripke frame is the image of 2<ω

under some interior map.

Together with the fact that any finite consistent set � of formulas is satisfiable in some
finite rooted reflexive transitive Kripke frame, Lemma 3.1 entails that S4 is complete
for 2<ω.

EXAMPLE 3.2. Here we give an example of a consistent set � of sentence that is not
satisfiable in any finite Kripke frame: this shows that Lemma 3.1 is not of immediate
help for the strong completeness of S4 for 2<ω. Suppose that p0, p1, p2, . . . are distinct
propositional variables. Let � = {♦pi : i ∈ N}∪{�(pi ⊃ ¬p j ) : i, j ∈ N, i �= j}. To see
that � is satisfiable, and therefore consistent, let M = 〈〈N, ≤〉, V 〉, where V (pn) = {n}.
Note that V (�) = {0}. Thus, � is satisfiable. But we also claim that � is not satisfiable
in any finite Kripke frame. For suppose that � is satisfiable in the Kripke frame 〈X, R〉.
Then there is some valuation V and some point x ∈ X such that x ∈ V (�). Since
{♦pi : i ∈ N} ⊆ �, for every i ∈ N, there is an xi ∈ X with both x Rxi and xi ∈ V (pi ).
Also, if i �= j then xi �= x j , since x ∈ V (�(pi ⊃ ¬p j )). So X is infinite.

The proof of Lemma 3.1 is an unravelling construction that can easily be strengthened
to prove
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LEMMA 3.3. Any countable rooted reflexive transitive Kripke frame is the image of 2<ω

under some interior map.

Proof. For each n ≥ 0, let Nn be the set of sequences of natural numbers of length n.
Let N<ω =df

⋃∞
n=0N

n , that is, N<ω is the set of finite sequences of natural numbers. We
use s, s′, etc., to range overN<ω. As with binary sequences, we use “�” for concatenation
and we say s ≤ s′ iff s is an initial segment of s′. We identify N<ω with the countably
infinite rooted transitive reflexive Kripke frame 〈N<ω, ≤〉.

Suppose that 〈X, R〉 is a countable Kripke frame with root r . For our desired result,
it suffices to construct two surjective interior maps: f : 2<ω → N<ω and g : N<ω → X .
Then g◦ f will be an interior map from 2<ω onto X .

To construct f : 2<ω → N<ω, we first define a function zero: 2<ω → N, as fol-
lows: zero(�) = 0; zero(b0) = zero(b) + 1; and zero(b1) = 0. Note that zero(b)
is simply the number of uninterrupted occurrences of 0 at the end of b: for example,
zero(001101000) = 3, zero(100001) = 0, and zero(000100) = 2. We now define our
function f : 2<ω → N<ω: f (�) = �, f (b0) = f (b), and f (b1) = f (b)�zero(b). It is
straightforward to check that f is a surjective interior map.

To construct g:N<ω → X , for each x ∈ X let succx be any function fromN onto R(x).
And define g(�) = r , the root of X ; and g(s�n) = succg(s)(n). It is straightforward to
check that g is a surjective interior map. �

Together with the fact that any consistent set � of formulas is satisfiable in some count-
able rooted reflexive transitive Kripke frame (Makinson, 1966), Lemma 3.1 entails

LEMMA 3.4. S4 is strongly complete for 2<ω.

So to prove Theorem 2.2 in the case X = Q, we only need

LEMMA 3.5. There is an interior map from Q onto 2<ω.

Theorem 2.4 in van Benthem et al. (2006) is our Theorem 2.1 in the case X = Q: the
proof in (van Benthem et al., 2006) includes a proof of our Lemma 3.5.

§4. The failure of interior map strategies. One strategy for proving our main result
might be to apply the strategy in Section §3 to more spaces: for each dense-in-itself metric
space X , find an interior map from X onto 2<ω. Unfortunately, this will not work: there is
no interior map fromR or from C, for example, onto 2<ω (Corollary 4.8, below). Our argu-
ments in this section depend on the Baire Category Theorem—see Theorem 4.1 below—
Dugundji (1966) is a good source on Baire spaces and the Baire Category Theorem. In
particular, a topological space X is a Baire space if the intersection of each countable
family of open dense sets in X is dense in X .

THEOREM 4.1. (Baire Category Theorem, Dugundji, 1966, p. 299, Theorem 4.1). Any
complete metric space, for example, R or C is a Baire space.

LEMMA 4.2. (Engelking, 1989, p. 270, Theorem 4.3.11). Any closed subset of a com-
plete metric space is a complete metric space.

COROLLARY 4.3. Any closed subset of a complete metric space is a Baire space.

LEMMA 4.4. (Dugundji, 1966, p. 256, Exercise 2). Any open subset of a Baire space is
a Baire space.
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COROLLARY 4.5. Suppose that O is an open subset and C is a closed subset of a
complete metric space X. Then O ∩ C is a Baire space.

In what follows, we identify N with the Kripke frame 〈N, ≤〉. For each n ∈ N, let
[n] =df {m ∈ N : n ≤ m}: the nonempty open subsets of N are those of the form [n] for
n ∈ N.

LEMMA 4.6. There is no interior map from any Baire space ontoN. Thus, for example,
there is no interior map from R or from C onto N.

Proof. Suppose that f is an interior map from a Baire space X ontoN. For each n ∈ N,
let On = f −1[ [n] ]. Note that each On is open and dense in X , since each [n] is open
and dense in N and f is an interior map. Thus,

⋂∞
n=0 On is dense in O , since X is a

Baire space. But
⋂∞

n=0 On must be empty, since it is the preimage of
⋂∞

n=0[n], which is
empty. �

LEMMA 4.7. There is an interior map from 2<ω onto N.

Proof. For each sequence b ∈ 2<ω, let 	(b) = |b|, the length of b. Note that 	 is an
interior map from 2<ω onto N. �

COROLLARY 4.8. There is no interior map from any Baire space onto 2<ω. Thus, there
is no interior map from R or from C onto 2<ω.

As noted above, Corollary 4.8 blocks any attempt to prove Theorem 2.2 by finding, for
each dense-in-itself metric space X , a surjective interior map from X onto 2<ω. A subtler
way to use interior maps might be as follows: for each dense-in-itself metric space X , show
that each consistent set of sentences is satisfiable in some Kripke frame that is the image
of an interior map from X . Example 4.9 and Lemma 4.10 block this strategy.

EXAMPLE 4.9. Suppose that p0, p1, p2, . . . are distinct propositional variables. Let � =
{p0}
∪ {�(pi ⊃ ♦p j ) : i < j}
∪ {�(pi ⊃ ¬♦p j ) : i > j}

∪ {�(

n∧
i=0

¬pi ⊃ ¬♦pn) : n ∈ N}.

To see that � is satisfiable, and therefore consistent, let M = 〈N, V 〉 where N is
identified with the Kripke frame 〈N, ≤〉 and where V (pn) = {n}. Note that V (�) = {0}.10

LEMMA 4.10. Suppose that X is a complete metric space and �, as defined in Exam-
ple 4.9, is satisfiable in the Kripke frame 〈Y, R〉. Then there is no interior map from X
onto Y .

Proof. Suppose that X , � and 〈Y, R〉 are as described, and that f : X → Y is a
surjective interior map. We will define a subspace Y≥0 of Y , and a surjective interior map
g : Y≥0 → N. We will then let X∗ =df f −1[Y≥0], and show that X∗ is a Baire space.
Finally, we let f ∗ be f restricted to X∗ and show that g◦ f ∗ is an interior map from X∗
onto N, contradicting Lemma 4.6.

10 An anonymous referee alerted me to the similarity of the formulas in � to the frame formulas of
Fine (1974).
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Since � is satisfiable in 〈Y, R〉, there is a valuation V : PV → P(Y ) and a y0 ∈ Y such
that y0 ∈ V (�). We begin by defining certain subsets of Y :

Yn =df R(y0) ∩ V (pn)
Y≥n =df

⋃
m≥n Ym =R(y0) ∩ ⋃

m≥n V (pm)

Yω =df R(y0) ∩ ⋂
n V (¬pn).

Let R≥0 be R restricted to Y≥0: we will identify Y≥0 with the Kripke frame 〈Y≥0, R≥0〉
and, through the identification of Kripke frames with Alexandroff spaces (as in Section §2),
with the topological space 〈Y≥0, τR≥0〉.

CLAIM 4.11. The Yn’s form a partition of Y≥0. Proof. The fact that each Yn is nonempty
follows from the fact that y0 ∈ V (p0) and y0 ∈ V (�(p0 ⊃ ♦pn)). To see that the Yn’s are
pairwise disjoint, consider Yi ∩ Y j , where i > j . The claim that Yi ∩ Y j = ∅ follows from
the fact that y0 ∈ V (�(pi ⊃ ¬♦p j )).

Define g : Y≥0 → N as follows: g(y) = n iff y ∈ Yn . Claim 4.11 implies

CLAIM 4.12. The function g is well-defined for each y ∈ Y≥0 and is surjective.

CLAIM 4.13. The function g is continuous. Proof. Since Y≥0 = 〈Y≥0, R≥0〉 and N =
〈N, ≤〉 are Kripke frames, it suffices to show that g is monotonic: for y, y′ ∈ Y≥0, if
y R≥0 y′, then g(y) ≤ g(y′) (see Footnote 8). So suppose that y, y′ ∈ Y≥0 and y R≥0 y′, in
wich case y Ry′. Let m = g(y) and k = g(y′) so that y ∈ Ym ⊆ V (pm) and y′ ∈ Yk ⊆
V (pk). And assume for a reductio that k < m. Note that y ∈ V (

∧k
i=0 ¬pi ), since y0 Ry

and y ∈ Ym ⊆ V (pm) and y0 ∈ V (�(pm ⊃ ¬♦pi )), for every i < m. So y ∈ V (¬♦pk),
since y0 ∈ V (�(

∧k
i=0 ¬pi ⊃ ¬♦pk)). So y′ ∈ V (¬pk), a contradiction.

CLAIM 4.14. The function g is open. Proof. Since each of Y≥0 = 〈Y≥0, R≥0〉 and
N = 〈N, ≤〉 are Kripke frames, it suffices to show the following, for any y ∈ Y≥0 and
any n ∈ N: if g(y) ≤ n, then g(y′) = n for some y′ ∈ Y≥0 with y R≥0 y′ (see Footnote
9). So suppose that g(y) ≤ n. Let m = g(y), so that y ∈ Ym ⊆ V (pm). Note that
y ∈ V (♦pn) since y0 ∈ V (�(pm ⊃ ♦pn)) and y0 Ry and y ∈ V (pm). So there is some
y′ with y Ry′ and y′ ∈ V (pn). Since y0 Ry and y Ry′, we have y0 Ry′: thus y′ ∈ R(y0). So
y′ ∈ Yn = R(y0) ∩ V (pn). So y′ ∈ Y≥0. So y R≥0 y′, since y Ry′. Also g(y′) = n, since
y′ ∈ Yn .

CLAIM 4.15. The function g is an interior map from Y≥0 onto N. Proof. From Claims
4.12, 4.13, and 4.14.

Let X∗ = f −1[Y≥0].

CLAIM 4.16. X∗ is a Baire space. Proof. Given that X is a complete metric space, it
suffices by Lemma 4.5 to show that X∗ is the difference between two open sets in X .
Given that f : X → Y is continuous, it suffices to show that Y≥0 is the difference between
two open sets in Y . Note that Y≥0 = R(y0) − Yω. Since R(y0) is open in Y , it suffices to
show that Yω is open in Y , that is, that Yω is closed under R. So suppose that y ∈ Yω and
y Ry′. Since y ∈ Yω, we have y0 Ry. So y0 Ry′. So y′ ∈ R(y0). It remains to show that
y′ ∈ V (¬pn) for each n ∈ N. Fix n ∈ N. Since y ∈ Yω, we have y ∈ V (

∧n
i=0 ¬pi ).

Also, y0 ∈ V (�(
∧n

i=0 ¬pi ⊃ ¬♦pn)). So y ∈ V (¬♦pn). So, since y Ry′, y′ ∈ V (¬pn),
as desired.

CLAIM 4.17. Let f ∗ be f restricted to X∗.
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CLAIM 4.18. The function g◦ f ∗ is an interior map from X∗ onto N. Proof. Given
Claim 4.15, it suffices to show that f ∗ : X∗ → Y≥0 is a surjective interior map. To
see that f ∗ is surjective, note that f ∗[X∗] = f [X∗] = f [ f −1[Y≥0]] = Y≥0. To see
that f ∗ is continuous, note that the restriction of a continuous function is continuous (see
Dugundji, 1966, Theorem 8.2 (2) and (3)). To see that f ∗ is open, let O ⊆ X∗ be an
open set in X∗. Then O = O ′ ∩ X∗, for some set O ′ ⊆ X which is open in X . Since
f is open, f [O ′] is open in Y . So f [O ′] ∩ Y≥0 is open in Y≥0. So it suffices to show
that f ∗[O] = f [O ′] ∩ Y≥0. Note that f ∗[O] = f [O], since O ⊆ X∗ and f ∗ = f |X∗ .
Thus, f ∗[O] = f [O] = f [O ′ ∩ X∗] ⊆ f [O ′] ∩ f [X∗] = f [O ′] ∩ Y≥0. So to show that
f ∗[O] = f [O ′] ∩ Y≥0, it suffices to show that f [O ′] ∩ f [X∗] ⊆ f [O ′ ∩ X∗]. So suppose
that y ∈ f [O ′]∩ f [X∗]. Then y = f (x) for some x ∈ O ′. Note that x ∈ f −1[Y≥0], so that
x ∈ X∗. So x ∈ O ′ ∩ X∗. So y ∈ f [O ′ ∩ X∗], as desired.

Note that Claims 4.16 and 4.17 together contradict Lemma 4.6. �

§5. Algebraic semantics. The remainder of the paper is devoted to proving our main
result, Theorem 2.2. S4 is strongly complete for every dense-in-itself metric space. Here we
introduce an algebraic generalization of the topological semantics. Except where indicated,
the algebraic semantics here is a notational variant of the algebraic semantics in Rasiowa &
Sikorski (1963, Chapter XI, Section 8).

A Boolean algebra is a bounded complemented distributive lattice, that is, a partial order
〈A, ≤〉 where

1. any a, b ∈ A have a least upper bound a�b and a greatest lower bound a�b (〈A, ≤〉
is a lattice);

2. there is a least element 0 and a greatest element 1(〈A, ≤〉 is bounded);

3. � and � distribute over each other, that is, for any a, b, c ∈ A, we have a � (b �c) =
(a � b) � (a � c) and a � (b � c) = (a � b) � (a � c) (〈A, ≤〉 is distributive); and

4. for each a ∈ A, there is a −a ∈ A such that both a � −a = 1 and a � −a = 0
(〈A, ≤〉 is complemented). Given (3), −a is unique.

A Boolean algebra is degenerate iff 0 = 1.
An interior algebra is an ordered triple I = 〈A, ≤, I〉 where 〈A, ≤〉 is a Boolean algebra

and I is a unary operator on A such that, for every a, b ∈ A,

Ia ≤ a
IIa = Ia

I(a � b) = Ia � Ib
I1 = 1

I = 〈A, ≤, I〉 is degenerate iff 〈A, ≤〉 is. If X is a topological space, then the interior
algebra of subsets of X is the nondegenerate interior algebra I(X) = 〈P(X), ⊆, I ntX 〉.
If I = 〈A, ≤ I〉 and I ′ = 〈A′, ≤′, I′〉 are interior algebras, then I ′ is a subalgebra of I iff
A′ ⊆ A and the operations �′, �′, −′ and I′ are �, �, − and I restricted to A′. Note that,
in this case, 0′ = 0 and 1′ = 1 and ≤′ is ≤ restricted to A′.11

11 Interior algebras go back to their duals, the closure algebras of McKinsey & Tarski (1944):
Boolean algebras enriched with a closure operator rather than an interior operator. Interior
algebras are called topological Boolean algebras in Rasiowa & Sikorski (1963). The name
“interior algebra” first appears in Blok (1976).
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Suppose that I = 〈A, ≤, I〉 and I ′ = 〈A′, ≤′, I′〉 are interior algebras and h: A → A′.
Then h is a Boolean homomorphism from I into I ′ iff, for every a, b ∈ A, we have
h(a � b) = ha �′ hb; h(a � b) = ha �′ hb; and h(−a) = −′ha. Note that, if h is
a Boolean homomorphism, we also have h(0) = 0′ and h(1) = 1′. If h is a Boolean
homomorphism from I into I ′, then h is continuous iff for every a ∈ A, h(Ia) ≤′ I′(ha)
and is a homomorphism iff for every a ∈ A, h(Ia) = I′(ha). A one–one homomorphism
from I into I ′ is an embedding. A classic result of McKinsey & Tarski (1944) is that every
nondegenerate interior algebra can be embedded into I(X) for some topological space
X .12

If X and X ′ are topological spaces and f : X ′ → X , then f induces a function h f :
P(X) → P(X ′) as follows: for each S ⊆ X , h f (S) = f −1[S].

LEMMA 5.1. The function h f is a Boolean homomorphism from the interior algebra
I(X) into the interior algebra I(X ′). If f is surjective, then h f is one–one. If f is
continuous, then h f is continuous. If f is an interior map, then h f is a homomorphism.
And if f is a surjective interior map, then h f is an embedding.

An algebraic model is an ordered pair M = 〈I, V 〉, where I = 〈A, ≤, I〉 is a nonde-
generate interior algebra, and V : PV → A. V is called an (algebraic) valuation. For any
algebraic model M = 〈I, V 〉, V is extended to all formulas as follows: V (¬A) = −V (A);
V (A & B) = V (A) � V (B), V (A ∨ B) = V (A) � V (B), and V (�A) = I(V (A)).

Suppose that A is a formula, that � is a set of formulas, that I is a nondegenerate
interior algebra, and that M = 〈I, V 〉 is an algebraic model. We say that A is valid in
M iff V (A) = 1 and valid in I iff A is valid in 〈I, V 〉 for every valuation V . We say
that S4 is complete for I iff A ∈ S4 for every formula A valid in I. We say that � is
satisfied in M = 〈I, V 〉 iff the set {V (A): A ∈ �} has a nonzero lower bound in I;
and that � is satisfiable in I iff � is satisfied in some algebraic model M = 〈I, V 〉.
Note S4 is complete for I iff every finite consistent set of formulas is satisfiable in I.
We say that S4 is strongly complete for I iff every consistent set of formulas is satisfiable
in I.13

LEMMA 5.2. If X is a topological space, then any set � of formulas is satisfiable in X
iff � is satifiable in the interior algebra I(X), and S4 is strongly complete for X iff S4
is strongly complete for I(X).

The following lemma and corollary generalize Lemma 2.3 and Corollary 2.4:

LEMMA 5.3. Suppose M = 〈I, V 〉 and M′ = 〈I ′, V ′〉 are algebraic models and that h
is an embedding from I into I ′. Then for every formula A, h(V (A)) = V ′(A).

COROLLARY 5.4. (Transfer of the strong completeness of S4, forwards via an em-
bedding). Suppose I and I ′ are nondegenerate interior algebras, and that there is an
embedding from I into I ′. Then if � is satisfiable in I, then � is satisfiable in I ′. Thus,
if S4 is strongly complete for I, then S4 is strongly complete for I ′.

12 Theorem 2.4 in McKinsey & Tarski (1944) makes this point in terms of closure algebras. This
extends a classic result of Stone (1936), namely that every Boolean algebra can be embedded into
〈P(X), ⊆〉 for some set X .

13 We have not seen satisfiability and strong completeness for the algebraic semantics defined in the
literature, certainly not in Rasiowa & Sikorski (1963).
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Given Lemma 5.2, for our main result, Theorem 2.2, it suffices to show

THEOREM 5.5. If X is a dense-in-itself metric space, then S4 is strongly complete for
I(X).

Given Lemmas 3.4 and 5.2, we know

LEMMA 5.6. S4 is strongly complete for I(2<ω).

So, given Corollary 5.4, for Theorem 5.5, it suffices to show

LEMMA 5.7. If X is a dense-in-itself metric space, then there is an embedding from
I(2<ω) into I(X).

We prove Lemma 5.7 in Section §9.

§6. Strong completeness for the infinite binary tree with limits. In Section §3, we
identified 2<ω with the infinite binary tree, that is, the countably infinite rooted transitive
reflexive Kripke frame 〈2<ω, ≤〉. Here we impose a topology on 2≤ω, the infinite binary
tree with limits. For any b ∈ 2<ω, define �b� =df {b′ ∈ 2≤ω : b ≤ b′}. (Note that
�b� � [b]). And take as a basis for our topology on 2≤ω the following family of sets:{
�b� : b ∈ 2<ω

}
. It is easy to check that this is the Scott topology on 2≤ω, as defined, for

example, in Gierz et al. (2003, p. 104).14

LEMMA 6.1. S4 is strongly complete for the topological space 2≤ω.

Before we prove Lemma 6.1, we note that Lando & Sarenac (2011) prove that S4 is
complete for 2≤ω—in particular, by showing that every finite Kripke frame is the image
of an interior map from 2≤ω. Example 3.2, above, shows that for strong completeness, we
need to work with infinite Kripke frames. We might hope to prove Lemma 6.1 by adapting
the strategy in Lando & Sarenac (2011) and showing that every Kripke frame whatsoever
is the image of an interior map from 2≤ω. But this fails:

LEMMA 6.2. There is no interior map from 2≤ω to N = 〈N, ≤〉.
Proof. This follows from Theorem 4.1 and Lemma 4.6 and Lemma 8.1, below. �
Still, we might try another interior map strategy, similar to that suggested in Section §4:

find, for each consistent set � of sentences, a Kripke frame in which � is satisfiable and
that is the image of an interior map from 2≤ω. But this will not work either:

LEMMA 6.3. If �, as defined in Example 4.9, is satisfiable in the Kripke frame 〈Y, R〉,
then there is no interior map from 2≤ω onto Y .

Proof. This follows from Theorem 4.1, Lemma 4.10, and Lemma 8.1, below. �
Happily, we can use the algebraic semantics of Section §5 to prove Lemma 6.1: it will

suffice, given Lemma 5.2 and Corollary 5.4, to define an embedding from the interior
algebra I(2<ω) into the interior algebra I(2≤ω). In fact, we will define a family of such

14 Suppose that X is a nonempty set partially ordered by ≤. A set S ⊆ X is directed iff S is nonempty
and any finite subset of S has an upper bound in S. X is a directed complete partial order (DCPO)
if every directed set has a least upper bound. Note: 2≤ω is a DCPO, but 2<ω is not. A subset O of a
DCPO X is Scott open iff it is both upper closed, that is, (∀x, y ∈ X)(x ∈ O & x ≤ y ⇒ y ∈ O);
and for every directed set S, if sup(S) ∈ O , then S ∩ O �= ∅. The Scott open sets form a topology,
the Scott topology.
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embeddings. Suppose that U is a free ultrafilter onN.15 Say that a set S ⊆ 2<ω U-converges
to b ∈ 2ω iff {n ∈ N: b|n ∈ S} ∈ U . We write S −→U b. Define hU : P(2<ω) → P(2≤ω)
as follows: for S ⊆ 2<ω, let hU (S) = S ∪ {b ∈ 2ω : S −→U b}. We will freely use the
fact that for S ⊆ 2<ω, hU (S) ∩ 2<ω = S. Lemma 6.1 follows from Lemma 5.2, Corollary
5.4, and

LEMMA 6.4. For each free ultrafilter U on N, hU is an embedding from I(2<ω) into
I(2≤ω).

Proof.
CLAIM 6.5. hU (S ∩ S′) = hU (S) ∩ hU (S′). Proof. Note that for every b ∈ 2<ω, we

have b ∈ hU (S ∩ S′) iff b ∈ (S ∩ S′) iff b ∈ hU (S) ∩ hU (S′). So it suffices to show that
for every b ∈ 2ω, we have b ∈ hU (S ∩ S′) iff b ∈ hU (S) ∩ hU (S′). Choose b ∈ 2ω. Note
the following, where the “iff” marked with * is justified by the fact that U is a filter:

b ∈ hU (S ∩ S′)
iff (S ∩ S′) −→U b
iff {n ∈ N : b|n ∈ (S ∩ S′)} ∈ U
iff ({n ∈ N : b|n ∈ S} ∩ {n ∈ N : b|n ∈ S′}) ∈ U
iff* {n ∈ N : b|n ∈ S} ∈ U and {n ∈ N : b|n ∈ S′} ∈ U ,
iff S −→U b and S′ −→U b
iff b ∈ hU (S) and b ∈ hU (S′)
iff b ∈ hU (S) ∩ hU (S′).

CLAIM 6.6. hU (2<ω − S) = 2≤ω − hU (S). Proof. Note that for every b ∈ 2<ω, we have
b ∈ hU (2<ω − S) iff b ∈ (2<ω − S) iff b ∈ 2≤ω − hU (S). So it suffices to show that for
every b ∈ 2ω, we have b ∈ hU (2<ω − S) iff b ∈ 2≤ω − hU (S). Choose b ∈ 2ω. Note the
following, where the iff marked with * is justified by the fact that U is an ultrafilter:

b ∈ hU (2<ω − S)
iff (2<ω − S) −→U b
iff {n ∈ N : b|n ∈ (2<ω − S)} ∈ U
iff (N− {n ∈ N : b|n ∈ S}) ∈ U
iff* {n ∈ N : b|n ∈ S} �∈ U ,
iff S �−→U b
iff b �∈ hU (S).

CLAIM 6.7. hU (S ∪ S′) = hU (S) ∪ hU (S′). This follows from Claims 6.5 and 6.6.

By Claims 6.5, 6.6, and 6.7, hU is a Boolean homomorphism.

CLAIM 6.8. For each b ∈ I nt2<ω(S) and b ∈ 2ω, if b ≤ b, then b ∈ hU (S).
Proof. Suppose that b ∈ 2<ω, b ∈ 2ω, b ∈ I nt2<ω(S) and b ≤ b. Since b ≤ b, b = b|k for

15 We say that a nonempty F ⊆ P(N) is a filter onN iff, for any S, S′ ⊆ N, we have (1) ∅ �∈ F , (2)
if S, S′ ∈ F , then S ∩ S′ ∈ F , and (3) if S ∈ F and S ⊆ S′, then S′ ∈ F . We say that U ⊆ P(N)
is an ultrafilter on N iff U is a filter on N and, for any S ⊆ N, either S ∈ U or N − S ∈ U .
It is well-known that, if U is an ultrafilter, then S ∪ S′ ∈ U iff either S ∈ U or S′ ∈ U . We say
that U is a principal ultrafilter on N iff there is some S ⊆ N such that U = {S′ ⊆ N : S ⊆ S′}.
Otherwise, U is free. It is well-known that free ultrafilters exist, though the proof of this requires
some (weak) version of the Axiom of Choice. Note that every free ultrafilter onN contains every
cofinite subset of N. Moreover, every infinite subset of N is a member of some free ultrafilter
onN.
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some k ∈ N. Thus, for each n ≥ k, we have b|n ∈ S, since b|k = b ∈ I nt2<ω(S). Thus
{n ∈ N : b|n ∈ S} is cofinite. So {n ∈ N : b|n ∈ S} ∈ U , since U is a free ultrafilter.
So S −→U b. So b ∈ hU (S).

CLAIM 6.9. For each b ∈ I nt2<ω(S), �b� ⊆ hU (S). Proof. Suppose that b ∈ 2<ω and
b ∈ I nt2<ω(S). By Claim 6.8, (2ω ∩�b�) ⊆ hU (S). Also, (2<ω ∩�b�) = [b] ⊆ S ⊆ hU (S).
Thus �b� ⊆ hU (S), as desired.

CLAIM 6.10. I nt2<ω(S) ⊆ I nt2≤ω(hU (S)). Proof. Suppose that b ∈ I nt2<ω(S). Then,
by Claim 6.9, �b� ⊆ hU (S), in which case �b� ⊆ I nt2≤ω(hU (S)), since �b� is open in 2≤ω.
Thus b ∈ �b� ⊆ I nt2≤ω(hU (S)).

CLAIM 6.11. hU (I nt2<ω(S)) ⊆ I nt2≤ω(hU (S)). Proof. Note that hU (I nt2<ω(S)) ∩
2<ω = I nt2<ω(S) ⊆ I nt2≤ω(hU (S)), by Claim 6.10. So it suffices to prove that hU (I nt2<ω

(S)) ∩ 2ω ⊆ I nt2≤ω(hU (S)). So suppose that b ∈ hU (I nt2<ω(S)) ∩ 2ω. Then I nt2<ω(S)
−→U b. So {n ∈ N : b|n ∈ I nt2<ω(S)} ∈ U . So {n ∈ N : b|n ∈ I nt2<ω(S)} is nonempty.
Choose n ∈ N with b|n ∈ I nt2<ω(S). Then by Claim 6.9, �b|n� ⊆ hU (S), in which case
�b|n� ⊆ I nt2≤ω(hU (S)). But b ∈ �b|n�. So b ∈ I nt2≤ω(hU (S)), as desired.

CLAIM 6.12. I nt2≤ω(hU (S)) ⊆ hU (I nt2<ω(S)). Proof. Since I nt2≤ω(hU (S)) is open, it
is the union of the basic sets that are subsets of it:

I nt2≤ω(hU (S)) =
⋃

b∈2<ω∩I nt2≤ω (hU (S))

�b�.

So it suffices to show that

�b� ⊆ hU (I nt2<ω(S)), for every b ∈ 2<ω ∩ I nt2≤ω(hU (S)).

Choose b ∈ 2<ω ∩ I nt2≤ω(hU (S)). Since b ∈ I nt2≤ω(hU (S)), and since �b� is the small-
est open set in 2≤ω containing b, we have �b� ⊆ hU (S). So [b] = �b� ∩ 2<ω ⊆ hU (S) ∩
2<ω = S. So b ∈ [b] ⊆ I nt2<ω(S) = I nt2<ω(I nt2<ω(S)). So �b� ⊆ hU (I nt2<ω(S)),
by Claim 6.9.

By Claims 6.5, 6.6, 6.7, 6.11 and 6.12, hU is a homomorphism from I(2<ω) into
I(2≤ω).

CLAIM 6.13. hU is one–one. Suppose that hU (S) = hU (S′). Then S = hU (S) ∩ 2<ω =
hU (S′) ∩ 2<ω = S′.

By Claims 6.5, 6.6, 6.7, 6.11, 6.12 and 6.13, hU is an embedding from I(2<ω) into
I(2≤ω). �

6.1. The algebra of U-convergent sets. Given a free ultrafilter U on N, say that a set
S ⊆ 2≤ω is U-convergent iff S∩2ω = {b ∈ 2ω : S∩2<ω −→U b}. Let AU =df {S ⊆ 2≤ω :
S is U-convergent}, let IU be the restriction of I nt2≤ω to AU , and let JU =df 〈AU , ⊆, IU 〉.
Note that AU is the image of P(2<ω) under hU . Thus, JU is an interior algebra, indeed
a proper subalgebra of I(2≤ω). We call JU the algebra of U-convergent sets. Clearly,
hU is an embedding of I(2<ω) into (indeed onto) JU . Thus, by Lemmas 3.4 and 5.2 and
Corollary 5.4,

LEMMA 6.14. S4 is strongly complete for JU .

§7. For each dense-in-itself metric space X , a continuous function fX : X → 2≤ω.
The task of this section is construct, for each dense-in-itself metric space X , a continuous
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function f �X : X → 2≤ω. So fix a dense-in-itself metric space, X . We will begin by
defining

1. nonempty open sets Ob ⊆ X , for each b ∈ 2<ω, with b < b′ ⇒ Ob′ � Ob,

2. other nonempty sets Xb � Ob, for each b ∈ 2<ω, and

3. possibly empty sets Xb = ⋂
n Ob|n , for each b ∈ 2ω.

This will deliver pairwise disjoint sets Xb for each b ∈ 2≤ω, and we will have X =⋃
b∈2≤ω Xb. (The Xb will not necessarily form a partition of X , since there will be no

guarantee that Xb is nonempty when b ∈ 2ω.) We will then define the function fX : X →
2≤ω as follows: fX (x) is the unique b ∈ 2≤ω with x ∈ Xb. We will finally show that fX is
continuous.

Our construction will rely on the decomposition lemma, Lemma 7.1, below. As an
anonymous referee helpfully put it, this lemma allows us to produce Cantor-like subsets
of any open set in a dense-in-itself metric space. In particular, the lemma allows us to
decompose any open subset of a dense-in-itself metric space into three disjoint sets: a
Cantor-like set, which we heuristically think of as “middle”; and two open sets, which
we think of as “left” and “right”. After we state the decomposition lemma, we provide
Example 7.4 to show how this works when the initial open subset is the open unit interval,
and middle is the Cantor set without endpoints.

LEMMA 7.1. (The decomposition lemma, proved in Section §10., below). Suppose that
O ⊆ X is nonempty and open and that ε > 0. Then there are pairwise disjoint nonempty
sets L(O, ε) (L for left), R(O, ε) (R for right), and M(O, ε) (M for middle) such that

1. O = L(O, ε) ∪̇ R(O, ε) ∪̇ M(O, ε),

2. L(O, ε) and R(O, ε) are open,

3. ∂(L(O, ε))
= ∂(R(O, ε))
= Cl(M(O, ε))
= Cl(O) − (L(O, ε) ∪ R(O, ε)), and

4. (∀x ∈ O)(d(x, M(O, ε)) ≤ ε). (The ε-clause.)

REMARK 7.2. Without the ε-clause, Lemma 7.1 is a special case of Theorem III, 7.1, in
Rasiowa & Sikorski (1963). We added the ε-clause for the proof of Lemma 9.1,
below.

REMARK 7.3. Henceforth, we will assume that a choice has been made of L, R, and M,
considered as functions from (τX −{∅})×R+ toP(X), satisfying the clauses of Lemma 7.1.
We could proceed, instead, by keeping track of the parameters L, R, and M but that would
require a profusion of subscripts, superscripts, or other similar devices.

EXAMPLE 7.4. Suppose that O is the open unit interval (0, 1) and ε = 1
6 . Then we can

let M(O, ε) = M
(
(0, 1), 1

6

)
be the Cantor set without endpoints, as in Figure 4. As for(

(0, 1), 1
6

)
and

(
(0, 1), 1

6

)
, recall that one way to construct the Cantor set is to delete the

middle third of (0, 1), that is, delete
( 1

3 , 2
3

)
, and then to iterate this process, deleting the

middle thirds of the remaining undeleted closed or semi-closed intervals. Label the deleted
thirds with L (for ‘left’) and R (for right) as in Figure 5. We can then let

(
(0, 1), 1

6

)
be the

union of the subintervals labelled with L and
(
(0, 1), 1

6

)
be the union of the subintervals

labelled with R. Note that the clauses in Lemma 7.1 are all satisfied.
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Fig. 4. One choice for M((0, 1), 1
6 ): the Cantor set without the endpoints 0 and 1.

Fig. 5. Labelling deleted middle thirds with L and R.

Given Lemma 7.1, we define the Ob, for b ∈ 2<ω, recursively as follows:

O� =df X

Ob0 =df L

(
Ob,

1

|b| + 1

)

Ob1 =df R

(
Ob,

1

|b| + 1

)

For b ∈ 2<ω, we define

Xb =df M

(
Ob,

1

|b| + 1

)
.

Thus, (∀ b ∈ 2<ω)(Ob = Ob0 ∪̇ Ob1 ∪̇ Xb).16

REMARK 7.5. Note our use of the ε-clause: the further along you go in the construction,
the closer points in Ob are guaranteed to be to Xb. For example, (∀x ∈ O1101011)(d(x,
X1101011) ≤ 1

7 ). Of course, by making |b| large, we can make this distance as small as we
like: see (Case 2) in the proof of of Lemma 9.1.

Note the following facts about the Ob and the Xb:

LEMMA 7.6.

1. Xb and Ob are nonempty, for each b ∈ 2<ω.

2. If b < b′, then Xb′ � Ob′ � Ob.

3. If b < b′, then Xb ∩ Xb′ = Xb ∩ Ob′ = ∅.

4. If b′ �≤ b �≤ b′, then Ob ∩ Ob′ = ∅.

5. If b �≤ b′, then Ob ∩ Xb′ = ∅.

6. If b �= b′, then Xb ∩ Xb′ = ∅.

LEMMA 7.7. (∀ b, b′ ∈ 2<ω)(b ≤ b′ ⇒ Cl(Xb) ⊆ Cl(Xb′)).

Proof. Fix b ∈ 2<ω. We will show (∀b′ ∈ 2<ω)(b ≤ b′ ⇒ Cl(Xb) ⊆ Cl(Xb′)) by
induction on the construction of b′ ≥ b. For the base case, assume that b′ = b. Then,
trivially, Cl(Xb) ⊆ Cl(X ′

b).

16 The Ob and the Xb depend on much more than b: they depend on the space X as well as the
choice of L, R, and M, from Lemma 7.1. Similar remarks apply to the Xb, defined below, for
b ∈ 2ω. See Remark 7.3.
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For the inductive step, suppose that Cl(Xb) ⊆ Cl(Xb′). We must show both that
Cl(Xb) ⊆Cl(Xb′0) and Cl(Xb) ⊆ Cl(Xb′1). For these, it suffices to show that Cl(Xb′) ⊆
Cl(Xb′0) and Cl(Xb′) ⊆ Cl(Xb′1). Note:

Cl(Xb′) = ∂(Ob′0) by Lemma 7.1, Clause 3,
= Cl(Ob′0) − Ob′0 since Ob′0 is open,
= Cl(Ob′0)

−(Ob′00 ∪ Ob′01 ∪ Xb0) by Lemma 7.1, Clause 1,
⊆ Cl(Ob′0) − (Ob′00 ∪ Ob′01)
= Cl(Xb′0) by Lemma 7.1, Clause 3.

Similarly, Cl(Xb′) ⊆ Cl(Xb′1). �
For b ∈ 2ω, define Xb =df

⋂
n∈N Ob|n . Notice that when the binary sequence b is

infinite, there is no guarantee that Xb is nonempty. Now, we have defined Xb for each
b ∈ 2≤ω. Note that the Xb are pairwise disjoint and that X = ⋃

b∈2≤ω Xb. So every x ∈ X
is a member of exactly one Xb. Define fX : X → 2≤ω as follows:

fX (x) is the unique b ∈ 2≤ω with x ∈ Xb.17

LEMMA 7.8. (∀b ∈ 2<ω)(∀x ∈ Ob)(b ≤ fX (x)).

Proof. Choose b ∈ 2<ω and x ∈ Ob. Suppose, for a reductio, that b �≤ fX (x). We
consider two cases. (Case 1) fX (x) ∈ 2<ω. Then Ob ∩ X fX (x) = ∅, since b �≤ fX (x) and
by Lemma 7.6, (5). But then, since x ∈ X fX (x), we have x �∈ Ob, a contradiction. (Case
2) fX (x) ∈ 2ω. Let n = |b|. Then b �= fX (x)|n , since b �≤ fX (x). So b �≤ fX (x)|n �≤ b,
since b and fX (x)|n are of the same length. So Ob ∩ O fX (x)|n = ∅. But x ∈ X fX (x) =⋂

k∈N O fX (x)|k ⊆ O fX (x)|n . So x �∈ Ob, a contradiction. �
LEMMA 7.9. The function fX : X → 2≤ω is continuous.

Proof. It suffices to show that the preimage, under fX , of any basis set in the topology
we have defined on 2≤ω is open. So it suffices to show that fX

−1[ �b� ] = Ob, for any
b ∈ 2<ω.

Choose b ∈ 2<ω, and let S = fX
−1[ �b� ]. By Lemma 7.8, Ob ⊆ S. To prove that

S ⊆ Ob, choose x ∈ S. Then fX (x) ∈ �b�, so that b ≤ fX (x). Recall that x ∈ X fX (x) :
so, to show that x ∈ Ob, it suffices to show that X fX (x) ⊆ Ob. If fX (x) ∈ 2<ω, then
X fX (x) ⊆ Ob, by Lemma 7.6, Clause 2. Suppose, on the other hand, that fX (x) ∈ 2ω.
Since b ≤ fX (x), we get b = fX (x)|k for some k ∈ N. Thus, X fX (x) = ⋂

n∈N O fX (x)|n ⊆
O fX (x)|k = Ob. �

§8. Strong completeness for each complete dense-in-itself metric space. The main
result of this section is

LEMMA 8.1. If X is a complete dense-in-itself metric space, then fX : X → 2≤ω is a
surjective interior map.

From Lemmas 8.1, 6.1, and Corollary 2.4, we get

17 As emphasized by an anonymous referee, this is somewhat imprecise notation, since the function
fX depends not only on X but also on the choice of L, R, and M, from Lemma 7.1. See Remark
7.3 and Footnote 16 above.
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THEOREM 8.2. S4 is strongly complete for any complete dense-in-itself metric space X.

Before we can prove Lemma 8.1, some preliminary notions. If S is a nonempty subset
of a metric space, then the diameter of S is diam(S) =df supremum{d(x, x ′) : x, x ′ ∈ S},
if this set is bounded above. If {d(x, x ′) : x, x ′ ∈ S} is not bounded above, then diam(S) =
∞. We will use the following lemma, a standard textbook exercise on metric spaces:

LEMMA 8.3. A metric space X is complete iff every decreasing sequence of nonempty
closed subsets of X with diameters tending to 0 has a nonempty intersection.

Proof of Lemma 8.1. Suppose that X is a complete dense-in-itself metric space. The
function fX is continuous by Lemma 7.9. We need to prove that fX is an open surjection.
Shortly, we will prove the following claim:

CLAIM 8.4. fX [O] = ⋃
b∈ fX [O]∩2<ω�b�, for any open O ⊆ X.

The openness of fX follows from Claim 8.4: the image of any open subset of X is
the union of open subsets of 2≤ω. The surjectivity of fX also follows from Claim 8.4:
fX [X ] = ⋃

b∈ fX [X ]∩2<ω�b� ⊇ ��� = 2≤ω. Before we prove Claim 8.4, a preliminary
claim:

CLAIM 8.5. For any open O ⊆ X, if b ∈ fX [O] ∩ 2<ω and b ≤ b′ ∈ 2<ω, then
∅ �= O ∩ Xb′ ⊆ O ∩ Ob.

Proof of Claim 8.5. Suppose that O ⊆ X is open, b ∈ fX [O] ∩ 2<ω, b′ ∈ 2<ω

and b ≤ b′. The fact that O ∩ Xb′ ⊆ O ∩ Ob follows from the fact that Xb′ ⊆ Ob

(Lemma 7.6, Clause (2)). To see that O ∩ Xb′ �= ∅, choose any x ∈ O with fX (x) = b,
and note: x ∈ Xb ⊆ Cl(Xb) ⊆ Cl(Xb′), by Lemma 7.7. So x ∈ O ∩ Cl(Xb′). So
O ∩ Xb′ �= ∅.

Proof of Claim 8.4. To see that fX [O] ⊆ ⋃
b∈ fX [O]∩2<ω�b�, choose b ∈ fX [O]. If

b ∈ 2<ω, then clearly b ∈ ⋃
b∈ fX [O]∩2<ω�b�, since b ∈ �b�. So assume that b ∈ 2ω. So

b = fX (x) for some x ∈ Xb ∩ O . Choose n ∈ N such that B(x, 2/(n + 1)) ⊆ O , and let
b′ = b|n . It suffices to show that b′ ∈ fX [O]: in that case b ∈ �b′� ⊆ ⋃

b∈ fX [O]∩2<ω�b�.
By the definition of Xb, we have x ∈ Ob′ . And by the definition of Xb′ , we have (∀y ∈
Ob′)(d(y, Xb′) ≤ 1/(|b′| + 1)). So d(x, Xb′) ≤ 1/(|b′| + 1) < 2/(n + 1). Choose y ∈ Xb′
with d(x, y) < 2/(n+1). Then fX (y) = b′ and b′ ∈ B(x, 2/(n+1)) ⊆ O . So b′ ∈ fX [O],
as desired.

Now we use Claim 8.5 to show that
⋃

b∈ fX [O]∩2<ω�b� ⊆ fX [O]. So choose b ∈ fX [O]∩
2<ω: we want to show that �b� ⊆ fX [O]. So choose b′ ∈ �b�: we want to show that
b′ ∈ fX [O]. On the one hand, if b′ ∈ 2<ω, then O ∩ Xb′ is nonempty, by Claim 8.5; so we
can choose x ∈ O ∩ Xb′ and note that b′ = fX (x) ∈ fX [O].

Suppose, on the other hand, that b′ ∈ 2ω. Let n = |b| so that b′|n = b. Choose any
x ∈ O such that fX (x) = b. So x ∈ O ∩ Ob = O ∩ Ob′|n , and x ∈ Xb′|n . We will now
inductively define a decreasing sequence,

C0 � C1 � · · · � Ck � · · · , (∗)

of nonempty closed subsets of X with diameters tending to 0. Let x0 = x , and choose any
positive r0 ∈ R+ so that C0 =df Cl(B(x0, r0)) � O ∩ Ob = O ∩ Ob′|n . Suppose that
rk ∈ R+ and xk ∈ Xb′|n+k are such that Ck = Cl(B(xk, rk)) � O ∩ Ob′|n+k . Recall that
Xb′|n+k ⊆ Cl(Xb′|n+k+1) (Lemma 7.7). So we can choose xk+1 ∈ B(xk, rk) ∩ Xb′|n+k+1 .
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Note that xk+1 ∈ B(xk, rk) ∩ Ob′|n+k+1 . So we can choose rk+1 ≤ rk/2 such that Ck+1 =df
Cl(B(xk+1, rk+1)) � B(xk, rk) ∩ Ob′|n+k+1 .

Notice that the each Ck is closed and nonempty, and that the sequence of Ck’s satisfies
(∗). Notice also that diam(Ck) ≤ rk and that rk → 0, so that diam(Ck) → 0. So, by
Lemma 8.3, there is a y ∈ ⋂

k Ck . Also note that each Ck ⊆ O , so that y ∈ O . Finally,
notice that each Ck ⊆ Ob′|n+k , so that y ∈ ⋂

k Ob′|n+k But
⋂

k Ob′|n+k = ⋂
m Ob′|m , since

the Ob′|m ’s are decreasing: Ob′|0 ⊇ Ob′|1 ⊇ Ob′|2 ⊇ · · · . So y ∈ ⋂
m Ob′|m = Xb′ . So

fX (y) = b(y) = b′. So b′ ∈ fX [O], as desired. �

§9. Strong completeness for each dense-in-itself metric space. As seen in Section
§8, if X is a complete dense-in-itself metric space, then fX : X → 2≤ω is a surjective
interior map: thus, strong completeness is transferred from 2≤ω to X , backwards via fX .
Unfortunately, there is no general guarantee that fX will be a surjective interior map: for
example, if the cardinality of X is less than 2ℵ0 , then fX cannot be a surjection and also
cannot be an interior map.18

9.1. Algebraic semantics to the rescue. Fix any free ultrafilter U on N. Recall, from
Section §6, the embedding hU from I(2<ω) into I(2≤ω). As noted in Section 6.1., hU is
also an embedding from I(2<ω) into the algebra JU of U-convergent sets, for which S4 is
therefore strongly complete (see Lemma 6.14).

Recall also that the function fX : X → 2≤ω induces a function h fX : P(2≤ω) → P(X)
as follows: for S ∈ P(2≤ω), h fX (S) = fX

−1[S]. Since fX is continuous, the function
h fX is guaranteed to be a continuous Boolean homomorphism from I(2≤ω) into I(X),
by Lemma 5.1. The function h fX is not, however, guaranteed to be an embedding from
I(2<ω) into I(X). But instead of considering h fX , let h∗ be the restriction of h fX to AU .19

LEMMA 9.1. h∗ is an embedding from JU into I(X).

Proof. Since h fX is a continuous Boolean homomorphism, so is h∗. That h∗ is an
embedding follows from Claims 9.2 and 9.3, below.

CLAIM 9.2. The function h∗ is one–one. Proof. Consider S, S′ ∈ AU , and suppose that
h∗(S) = h∗(S′). So fX

−1[S] = fX
−1[S′]. To show that S = S′ it suffices to show that

S ∩ 2<ω = S′ ∩ 2<ω, since S and S′ are U-convergent. To see that S ∩ 2<ω ⊆ S′ ∩ 2<ω, let
b ∈ S∩2<ω. Since b ∈ 2<ω, the set Xb is nonempty (Lemma 7.6, (1)). Choose any x ∈ Xb.
Note that x ∈ fX

−1[S], since fX (x) = b ∈ S. So x ∈ fX
−1[S′]. So b = fX (x) ∈ S′. So

b ∈ S′ ∩ 2<ω, as desired. Similarly, S′ ∩ 2<ω ⊆ S ∩ 2<ω.

CLAIM 9.3.For every U-convergent set S ⊆2≤ω, we have I ntX (h∗(S)) ⊆ h∗(I nt2≤ω(S)).
Proof. Suppose that S ⊆ 2≤ω is U-convergent, and also that x ∈ I ntX (h∗(S)).
We want to show that x ∈ h∗(I nt2≤ω(S)) = h fX (I nt2≤ω(S)). Recall that h fX (I nt2≤ω(S)) =
fX

−1[I nt2≤ω(S)]. So we want to show that fX (x) ∈ I nt2≤ω(S). First, since x ∈

18 To see this second point, note that, by the definition of fX , the empty sequence � is in fX [X ],
that is, the range of fX . If fX were an interior map, then the set fX [X ] would have to be open in
2≤ω, but the only open set in 2≤ω containing � is 2≤ω itself. So fX would have to be surjective.
An anonymous referee conjectured that fX will always be an interior map from X to fX [X ],
considered a subspace of 2≤ω. But nothing in the construction in Section §7 guarantees this.

19 The function h∗ : AU → P(X) depends on a host of parameters: on the ultrafilter U , on the
topological space X , and even on L , R, and M as in Footnotes 16 and 17.
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I ntX (h∗(S)), there is some positive r ∈ R such that x ∈ B(x, r) ⊆ h∗(S) = h fX (S).
To show that fX (x) ∈ I nt2≤ω(S), we consider two cases.

(Case 1) fX (x) ∈ 2<ω. It suffices to show that � fX (x)� ⊆ S. That is, it suffices to show
that (∀b ∈ 2≤ω)(if fX (x) ≤ b, then b ∈ S). And since S is U-convergent, it suffices to
show that (∀b ∈ 2<ω)(if fX (x) ≤ b, then b ∈ S). So choose b ∈ 2<ω such that fX (x) ≤ b.
By Lemma 7.7, we have Cl(X fX (x)) ⊆ Cl(Xb), in which case X fX (x) ⊆ Cl(Xb). Also,
x ∈ X fX (x), by definition of fX . So x ∈ Cl(Xb). So there is some y ∈ B(x, r) ∩ Xb ⊆
h fX (S) ∩ Xb. Since y ∈ Xb, we have fX (y) = b. And since y ∈ h fX (S), we have
fX (y) ∈ S. So b ∈ S, as desired.

(Case 2) fX (x) ∈ 2ω. Remark: It was for this case that we added the ε-clause,
that is, Clause (4), to Lemma 7.1. See Remarks 7.2 and 7.5. Recall that x ∈ X fX (x) =⋂

n∈N O fX (x)|n . Choose n ∈ N such that 1/(n + 1) < r/2. Note that fX (x)|n ≤ fX (x),
so that fX (x) ∈ � fX (x)|n�. So to show that fX (x) ∈ I nt2≤ω(S), it suffices to show that
� fX (x)|n� ⊆ S. That is, it suffices to show that (∀b ∈ 2≤ω)(if fX (x)|n ≤ b, then b ∈ S).
And since S is U-convergent, it suffices to show that (∀b ∈ 2<ω)(if fX (x)|n ≤ b, then
b ∈ S). So choose b ∈ 2<ω such that fX (x)|n ≤ b.

Clearly, x ∈ O fX (x)|n . So d(x, X fX (x)|n ) ≤ 1/(n + 1), by the definition of X fX (x)|n as

X fX (x)|n =df M

(
O fX (x)|n ,

1

| fX (x)|n | + 1

)
= M

(
O fX (x)|n ,

1

n + 1

)
.

So d(x, X fX (x)|n ) < r/2. Choose y ∈ X fX (x)|n with d(x, y) < r/2. By Lemma 7.7,
X fX (x)|n ⊆ Cl(Xb). So y ∈ Cl(Xb). Choose any z ∈ Xb with d(y, z)< r/2. So d(x, z)< r .
So z ∈ B(x, r) and fX (z) = b. So z ∈ h fX (S) and fX (z) = b. So fX (z) ∈ S and
fX (z) = b. So b ∈ S, as desired. �

Given Lemma 6.4, we have an embedding hU from I(2<ω) into JU . And given Lemma
9.1, we have an embedding h∗ from JU into I(X). Thus, h∗◦hU is an embedding from
I(2<ω) into I(X). This is what was promised in Lemma 5.7 and suffices for Theorem 5.5
and hence for our main result, Theorem 2.2.

§10. A proof of the decomposition lemma. The proof here of Lemma 7.1 is adapted
from the proof in Rasiowa & Sikorski (1963) of Theorem III, 7.1, itself derived from Tarski
(1938), and McKinsey & Tarski (1944). We had to add minor considerations in order to
ensure the ε-clause. Before we launch into the proof, some preliminary definitions and
lemmas. A subset S of a topological space X is nowhere dense iff I nt (Cl(S)) = ∅. If
ε > 0, then a subset S of a metric space X is an ε-set iff d(x, y) ≥ ε for any pair of distinct
points x, y ∈ S. If S ⊆ S′ ⊆ X , where X is a metric space, then S is a maximal ε-subset
of S′ if S is not a proper subset of any other ε-set contained in S′. Our first two lemmas
concern nowhere dense sets and ε-sets.

LEMMA 10.1.

1. The union of finitely many nowhere dense sets is nowhere dense.

2. If O is open and S is nowhere dense, then Cl(O) = Cl(O − S).

Proof. (1) It suffices to show that the union of two nowhere dense sets is nowhere dense.
It can easily be checked that, for any two sets S1 and S2, I nt (S1 ∪ S2) ⊆ I nt (S1)∪Cl(S2).
Now suppose that S1 and S2 are nowhere dense, that is, I nt (Cl(S1)) = I nt (Cl(S2)) = ∅.
Note: I nt (Cl(S1 ∪ S2)) = I nt (Cl(S1) ∪ Cl(S2)) ⊆ I nt (Cl(S1)) ∪ Cl(Cl(S2)) ⊆ ∅ ∪
Cl(S2) ⊆ Cl(S2). Thus, I nt (Cl(S1 ∪ S2)) ⊆ I nt (Cl(S2)) = ∅.
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(2) Suppose that O is open and S is nowhere dense. Clearly, Cl(O − S) ⊆ Cl(O). So it
suffices to show that Cl(O) ⊆ Cl(O − S). Suppose that x ∈ Cl(O) − Cl(O − S). Since
x �∈ Cl(O − S), there is an open set O ′ with x ∈ O ′ and with O ′ ∩ (O − S) = ∅. So
(O ′ ∩ O) − S = ∅. So (O ′ ∩ O) ⊆ S. Also, since x ∈ O ′ and x ∈ Cl(O), the open set
(O ′ ∩ O) is nonempty. So Cl(S) has a nonempty interior, contradicting S being nowhere
dense. �

LEMMA 10.2. (Rasiowa & Sikorski, 1963, pp. 106–107).

1. Every ε-set is closed.

2. Every ε-set in a dense-in-itself metric space is nowhere dense.

3. Every subset of a metric space has a maximal ε-subset.

4. If S is a maximal ε-subset of S′, then (∀x ∈ Cl(S′))(d(x, S) ≤ ε).

5. If O is an open subset of a dense-in-itself metric space X and ε > 0, then there
are disjoint closed nowhere dense sets S1, S2, S3 ⊆ O such that (∀x ∈ Cl(O))
(d(x, Si ) ≤ ε).

Proof. (1) Suppose that S is an ε-set in a metric space X , and that x ∈ Cl(S). Then
B(x, ε/2) ∩ S is nonempty. Note that (∀y, z ∈ B(x, ε/2))(if y �= z, then d(y, z) < ε/2)
and (∀y, z ∈ S)(if y �= z, then d(y, z) ≥ ε). So B(x, ε/2) ∩ S has at most one member,
say y. Note that y = x : otherwise B(x, d(x, y)/2) would be an open set containing x and
disjoint from S, which contradicts x ∈ Cl(S). So x ∈ S.

(2) Suppose that S is an ε-set in a dense-in-itself metric space X . Since S is closed, it
suffices to show that I nt (S) is empty. Suppose that x ∈ I nt (S). Then x ∈ B(x, ε/2) ⊆
S. Since X is dense-in-itself, {x} is not open, in which case (∃y ∈ B(x, ε/2))(y �= x).
Note that d(x, y) < ε/2, since y ∈ B(x, ε/2)). On the other hand y ∈ S, since y ∈
B(x, ε/2)) ⊆ S: therefore, d(x, y) ≥ ε, since S is an ε-set and x ∈ S. A contradiction.

(3) Suppose that S is a subset of a metric space X . Let E be the class of ε-subsets of S.
Note that E is nonempty, since ∅ ∈ E . Also, the union of any increasing chain (ordered by
set inclusion) of members of E is a member of E . So E has a maximal member.

(4) Suppose that S is a maximal ε-subset of S′, and x ∈ Cl(S′) but (d(x, S) > ε).
S′ is nonempty, since x ∈ Cl(S′). So S is also nonempty: this follows from the fact that any
singleton subset of S′ is an ε-subset of S′, so that any maximal ε-subset of S′ is nonempty.
So d(x, S) is finite. Let δ = d(x, S)−ε. Since x ∈ Cl(S′), there is a point y ∈ B(x, δ)∩S′.
Now, d(x, S) ≤ d(y, S)+d(x, y) < d(y, S)+δ = d(y, S)+d(x, S)−ε. So d(y, S) > ε.
So y �∈ S, and S ∪ {y} is an ε-subset of S′. But this contradicts the maximality of the
ε-subset S.

(5) Suppose that O is an open subset of a dense-in-itself metric space X and that ε > 0.
Let S1 be a maximal ε-subset of O , S2 a maximal ε-subset of O − S1, and S3 a maximal
ε-subset of O −(S1 ∪ S2). S1, S2, and S3 are clearly disjoint. By (1) and (2), they are closed
and nowhere dense. By Lemma 10.1, Cl(O) = Cl(O − S1) = Cl(O − (S1 ∪ S2)). So, by
(4), (∀x ∈ Cl(O))(d(x, Si ) ≤ ε), for i = 1, 2, or 3. �

LEMMA 10.3. (A separation lemma, simplifying Rasiowa & Sikorski (1963, p. 105,
6.1)). Suppose that C1 and C2 are disjoint closed subsets of a metric space X = 〈X, d〉.
Then there is an open set O such that C1 ⊆ O and Cl(O) ∩ C2 = ∅.

Proof. It suffices to show this in the case where C1 and C2 are nonempty. Let O =
{x ∈ X : d(x, C1) < d(x, C2)/2}. To see that C1 ⊆ O , suppose that x ∈ C1. Then
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d(x, C1) = 0. On the other hand, since C2 is closed and x �∈ C2, d(x, C2) > 0. So x ∈ O
as desired.

To see that Cl(O) ∩ C2 = ∅, suppose that x ∈ Cl(O) ∩ C2. Note that x �∈ C1, since
x ∈ C2. So, since C1 is closed and x �∈ C1, d(x, C1) > 0. Let δ = d(x, C1)/3. Since
x ∈ Cl(O), there is some y ∈ O ∩ B(x, δ). So d(x, y) < δ. Note:

d(y, C2) ≤ d(x, C2) + d(x, y) < d(x, C2) + δ.
So d(x, C2) > d(y, C2) − δ.
Also, d(y, C2) > 2(d(y, C1)), since y ∈ O .
So d(x, C2) > 2(d(y, C1)) − δ.
Also, d(x, C1) ≤ d(y, C1) + d(x, y) < d(y, C1) + δ.
So 2(d(y, C1)) > 2(d(x, C1)) − 2δ.
So d(x, C2) > 2(d(x, C1)) − 3δ = d(x, C1) > 0.
So x �∈ C2, since C2 is closed. A contradiction.

Finally, to see that O is open, let x ∈ O . And let ε = (d(x, C2) − 2(d(x, C1)))/3. Note
that ε > 0, since d(x, C1) < d(x, C2)/2. It will suffice to show that B(x, ε) ⊆ O . So,
choose y ∈ B(x, ε). Note:

d(x, C2) ≤ d(y, C2) + d(x, y) < d(y, C2) + ε.
So d(y, C2) > d(x, C2) − ε.
Also d(y, C1) ≤ d(x, C1) + d(x, y) < d(x, C1) + ε.
So d(y, C2) − 2(d(y, C1)) > (d(x, C2) − ε) − 2(d(x, C1) + ε) = (d(x, C2) −

2(d(x, C1))) − 3ε = 0.
So d(y, C2) > 2(d(y, C1)).
So y ∈ O , as desired. �

COROLLARY 10.4. (A separation corollary). Suppose that C1, C2 and C3 are disjoint
closed subsets of a metric space X = 〈X, d〉. Then, there are open sets O1 and O2 such
that C1 ⊆ O1, C2 ⊆ O2 and such that Cl(O1), Cl(O2) and C3 are disjoint.

Proof. Suppose that C1, C2 and C3 are disjoint closed subsets of a metric space X =
〈X, d〉. Note that C1 and C2 ∪ C3 are disjoint closed subsets of X . So, by Lemma 10.3,
there is an open set O1 such that C1 ⊆ O1 and Cl(O1) is disjoint from C2 ∪ C3. Note that
C2 and Cl(O1) ∪ C3 are disjoint closed subsets of X . So, again by Lemma 10.3, there is
an open set O2 such that C2 ⊆ O2 and Cl(O2) is disjoint from Cl(O1) ∪ C3. Note that
Cl(O1), Cl(O2) and C3 are disjoint, as desired. �

Proof of Lemma 7.1. Suppose that X is a dense-in-itself metric space, that O ⊆ X
is nonempty and open and that ε > 0. By induction on n ∈ N, we will define, for each
n ∈ N, three disjoint subsets of O: Ln (L for left), Rn (R for right), Mn (M for middle),
so that for each n ∈ N,

1. Ln and Rn are open;

2. Mn is closed and nowhere dense;

3. the following sets are disjoint: X − O , Cl(Ln), Cl(Rn), Mn ;

4. (∀m < n)(Cl(Lm) ⊆ Ln & Cl(Rm) ⊆ Rn & Mm ⊆ Mn);

5. if n > 0, then (∀x ∈ Cl(O) − (Ln ∪ Rn))(d(x, Ln) ≤ ε/n & d(x, Rn) ≤
ε/n & d(x, Mn) ≤ ε/n);

6. if n > 0, then Ln , Rn , and Mn are nonempty.
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After defining the Ln , Rn , and Mn , we will define L(O, ε), R(O, ε), and M(O, ε), and
show that these three sets have the properties in the statement of the lemma we are proving.

Let L0 = R0 = M0 = ∅. Suppose that disjoint Ln , Rn , and Mn have been defined so
that (1)–(6) hold. By Lemma 10.2(5), there are disjoint closed nowhere dense subsets L ′

n ,
R′

n , and M ′
n of the open set On = O − (Cl(Ln)∪ Cl(Rn)∪ Mn), such that, if Y = L ′

n , R′
n ,

or M ′
n ,

(∀x ∈ Cl(On))(d(x, Y ) ≤ ε/(1 + n)). (∗)

Let Mn+1 = Mn ∪ M ′
n . Note that the following three sets are closed and disjoint:

Cl(Ln) ∪ L ′
n , Cl(Rn) ∪ R′

n , Mn+1 ∪ (X − O). So, by Corollary 10.4, there are open
sets Ln+1 and Rn+1 such that Cl(Ln) ∪ L ′

n ⊆ Ln+1 and Cl(Rn) ∪ R′
n ⊆ Rn+1 and the

following three sets are disjoint: Cl(Ln+1), Cl(Ln+1), Mn+1 ∪ (X − O). So the following
four sets are disjoint: Cl(Ln+1), Cl(Ln+1), Mn+1, (X − O). Note that (1)–(3) hold for
n +1. Also, given the inductive hypothesis that (4) holds for n, it is easy to see that (4) also
holds for n + 1, since Cl(Ln) ⊆ Ln+1, Cl(Rn) ⊆ Rn+1, and Mn ⊆ Mn+1.

To show that (5) holds for n + 1, it suffices, given (∗), to show that Cl(O) − (Ln+1 ∪
Rn+1) ⊆ Cl(On). Recall that On = O − (Cl(Ln) ∪ Cl(Rn) ∪ Mn) = (O − (Cl(Ln) ∪
Cl(Rn)) − Mn . So, by Lemma 10.1 (2), Cl(On) = Cl(O − (Cl(Ln) ∪ Cl(Rn))). So it
suffices to show that Cl(O) − (Ln+1 ∪ Rn+1) ⊆ Cl(O − (Cl(Ln) ∪ Cl(Rn))). Here goes:

Cl(O) − (Ln+1 ∪ Rn+1)
⊆ Cl(O) − (Cl(Ln) ∪ Cl(Rn)), since Cl(Ln) ⊆ Ln+1 and Cl(Rn) ⊆ Rn+1,
⊆ Cl(O) − Cl(Ln ∪ Rn)
⊆ Cl(O − Cl(Ln ∪ Rn)) (#)
⊆ Cl(O − Cl(Ln) ∪ Cl(Rn)).

The step marked (#) is justified because for any two subsets S1 and S2 of a topological
space, Cl(S1) − Cl(S2) ⊆ Cl(S1 − Cl(S2)). This can easily be checked.

To show that (6) holds for n + 1, it suffices to note that L1, R1, and M1 are nonempty:
this follows from the fact that L ′

1, R′
1, and M ′

1 are nonempty, which follows from their
definition.

Now define

L(O, ε) =df
⋃

n Ln

R(O, ε) =df
⋃

n Rn

M(O, ε) =df O − (L(O, ε) ∪ R(O, ε)).

Note that
⋃

n Mn ⊆ M(O, ε).
The sets L(O, ε), R(O, ε), and M(O, ε) are nonempty: this follows from the fact that

L ′
1 ⊆ L(O, ε), R′

1 ⊆ R(O, ε), and M ′
1 ⊆ M(O, ε). It is also obvious that L(O, ε), R(O, ε),

and M(O, ε) are pairwise disjoint, and that O = L(O, ε) ∪̇ R(O, ε) ∪̇ M(O, ε): this is
Clause (1) of the lemma. As for Clause (2) of the lemma, it suffices to note that each of
L(O, ε) and R(O, ε) is the union of open sets.

We now turn to Clause (4) of the lemma, the ε-clause. By (∗) above,

(∀x ∈ Cl(O0))(d(x, M ′
0) ≤ ε).

But O0 = O , and M ′
0 = M1 ⊆ M(O, ε). So (∀x ∈ O)(d(x, M(O, ε)) ≤ ε), as desired.

We finally turn to Clause (3) of the lemma. Let C be the following closed set: Cl(O) −
(L(O, ε) ∪ R(O, ε)). It follows from (5), above, that

(∀x ∈ C)(d(x, L(O, ε)) = d(x, R(O, ε)) = d(x, M(O, ε)) = 0). (†)
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So C ⊆ Cl(L(O, ε)). Indeed, since C is disjoint from L(O, ε), we have C ⊆ Cl(L(O, ε))−
L(O, ε) = ∂(L(O, ε)). On the other hand, L(O, ε) ⊆ Cl(O) − R(O, ε). Since the right-
hand side of this inclusion is closed, Cl(L(O, ε)) ⊆ Cl(O) − R(O, ε). So ∂(L(O, ε)) =
Cl(L(O, ε)) − L(O, ε) ⊆ C . So ∂(L(O, ε)) = C . Similarly, ∂(R(O, ε)) = C . Thus,

∂(L(O, ε)) = ∂(R(O, ε)) = Cl(O) − (L(O, ε) ∪ R(O, ε)).

As for Cl(M(O, ε)), it follows from (†) that C ⊆ Cl(M(O, ε)). Also, by the definition
of M(O, ε), we have M(O, ε) ⊆ C . So, since C is closed, we have Cl(M(O, ε)) ⊆ C .
Thus Cl(M(O, ε)) = C = Cl(O) − (L(O, ε) ∪ R(O, ε)). �
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