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Abstract

In the topological semantics for modal logic, S4 is well-known to be
complete wrt the rational line and wrt the real line: these are special
cases of S4’s completeness wrt any dense-in-itself metric space. The
construction used to prove completeness can be slightly amended to
show that S4 is not only complete, but strongly complete, wrt the ra-
tional line. But no similarly easy amendment is available for the real
line. In another paper, we prove that S4 is, in fact, strongly complete
wrt any dense-in-itself metric space, the real line being a particular
case. In the current paper, we give a proof of strong completeness tai-
lored to the particular case of the real line: we believe that it usefully
clarifies matters to work through a particular and important example.
We proceed in two steps: first, we show that S4 is strongly complete
wrt the space of finite and infinite binary sequences, equipped with
the Scott topology; and then we show that there is an interior map
from the real line to this space.

Keywords: modal logic, topological semantics, strong completeness,
real line.

In the topological semantics for modal logic ([5, 6, 8]), S4 is well-known to
be complete wrt the class of all topological spaces, as well as wrt a number
of particular topological spaces, notably the rational line, Q, and the real
line, R. The resuts for Q and R are special cases of the fact that S4 is
complete wrt any dense-in-itself metric space: see [8], Theorem XI, 9.1, which
is derived from [5, 6]. It is customary to strengthen completeness to strong
completeness, i.e., the claim that any consistent set of formulas is satisfiable
at some point in the space in question. As long as the language is countable,
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the construction used to prove completeness can be slightly amended to show
that S4 is not only complete, but strongly complete, wrt Q. But no similarly
easy amendment is available for R or for C: until [4], the questions of strong
completeness wrt R and wrt C were open. In [4] we prove that S4 is strongly
complete wrt to any dense-in-itself metric space – and therefore wrt R. In
the current paper, we give a proof of strong completeness tailored to the
particular case of the real line: we believe that it usefully clarifies matters to
work through a particular and important example.

Completeness wrt any given dense-in-itself metric space X is typically
proved by showing that any finite rooted reflexive transitive Kripke frame is
the image of an interior map from X. When X = Q, strengthening com-
pleteness to strong completeness is accomplished by slightly amending the
construction to show that any countable rooted reflexive transitive Kripke
frame is the image of an interior map from Q. But this strategy is not gen-
eralizable: because of the Baire Category Theorem, the countable rooted
reflexive transitive Kripke frame 〈N ≤〉, for example, is not the image of any
interior map from R (I owe this observation to Guram Bezhanishvili, David
Gabelaia, and Valentin Shehtman): see [4], Section 3, for details.

To show that S4 is strongly complete wrt R, we proceed in two steps.
First we show that S4 is strongly complete wrt the space 2≤ω of finite and
infinite binary sequences, equipped with the Scott topology: see Section 2, in
particular Lemma 2.4.1 Then we show that there is an interior map from R

to 2≤ω: see Section 3, in particular Lemma 3.1. Thus S4 is strongly complete
wrt R.

1 Basics

We begin by fixing notation and terminology. We assume a propositional lan-
guage with a countable set PV of propositional variables; standard Boolean
connectives &, ∨ and ¬; and one modal operator, �. A finite set of formu-
las is consistent iff either it is empty or the negation of the conjunction of
the formulas in it is not a theorem of S4; and an infinite set of formulas is
consistent iff every finite subset is consistent.

A Kripke frame is an ordered pair 〈X,R〉, where X is a nonempty set and
R ⊆ X ×X. We will somewhat imprecisely identify X with 〈X,R〉, letting

1I owe to Nick Bezhanishvili the observation that the topology used in Section 2 is the
Scott topology.

2



context or fiat determine R. A Kripke frame X is reflexive [transitive] iff R is:
for the rest of this paper, we will assume that all Kripke frames are reflexive
and transitive. A Kripke frame is rooted iff (∃r ∈ W )(∀w ∈ W )(rRw). A
subset O of X is open iff (∀x, y ∈ X)(x ∈ O & xRy ⇒ y ∈ O). A subset C of
X is closed iff X−C is open. The interior of a set S ⊆ X is the largest open
subset of S: Int(S) =df {x ∈ S : ∀y ∈ X, xRy ⇒ y ∈ S}. The closure of a
set S ⊆ X is the smallest closed superset of S: Cl(S) =df X − Int(X − S).
A topological space is an ordered pair 〈X, τ〉, where X is a nonempty set and
τ ⊆ P(X) is a topology on X. We will somewhat imprecisely identify X with
〈X, τ〉, letting context or fiat determine τ . Thus, for example, we identify R
with 〈R, τR〉, where τR is the standard topology on R. We take the basics
of point-set topology to be given, in particular the notion of the interior and
closure, Int(S) and Cl(S), of a subset S of a topological space.

A Kripke model [topological model ] is an ordered pair M = 〈X, V 〉, where
X is a Kripke frame [topological space] and V : PV → P(X). We will use the
term model to cover Kripke models and topological models. For any model
M = 〈X, V 〉, V is extended to all formulas as follows: V (¬A) = X − V (A);
V (A & B) = V (A) ∩ V (B); V (A ∨ B) = V (A) ∪ V (B); and V (�A) =
Int(V (A)). If Γ is a nonempty set of formulas, then V (Γ) =df

⋂
A∈Γ V (A); if

Γ is empty, then V (Γ) =df X.
Suppose that Γ is a set of formulas. If X is a Kripke frame or topological

space and x ∈ X, then we say that Γ is satisfiable at x in X iff there is some
model M = 〈X, V 〉 such that x ∈ V (Γ); and we say that Γ is satisfiable in X
iff Γ is satisfiable at some x in X. We say that S4 is complete wrt X iff every
finite consistent set of formulas is satisfiable in X, and strongly complete wrt
to X iff every consistent set of formulas is satisfiable in X.

The following completeness theorem follows from [8], Theorem XI, 9.1,
(vii), which itself derived from [5, 6]:

Theorem 1.1. S4 is complete wrt R.

Theorem 1.1 is well-known: there are new and more accessible proofs in
[1, 2, 7]. The current paper’s main result is a special case of the main
theorem, Theorem 1.2, in [4]:

Theorem 1.2. S4 is strongly complete wrt R.

Before we prove Theorem 1.2, we recall the standard notion of an interior
map, also sometimes called a p-morphism. A function from a topological
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space or Kripke frame to a topological space or Kripke frame is continuous
iff the preimage of every open set is open; is open iff the image of every open
set is open; and is an interior map iff it is a continuous open surjection.
Suppose that M = 〈X, V 〉 and M ′ = 〈X ′, V ′〉 are models, and that f is an
interior map from X to X ′. Then f is an interior map from M to M ′ iff, for
every p ∈ PV and x ∈ X, x ∈ V (p) iff f(x) ∈ V ′(p). The following lemma
and corollary are standard:

Lemma 1.3. If f is an interior map from M = 〈X, V 〉 to M ′ = 〈X ′, V ′〉,
then for every formula B and x ∈ X, x ∈ V (B) iff f(x) ∈ V ′(B).

Corollary 1.4. Suppose that each of X and X ′ is a Kripke frame or topo-
logical space, and that there is an interior map from X to X ′. Then if Γ is
satisfiable in X ′ then Γ is satisfiable in X.

Given Corollary 1.4, we can divide the work of proving Theorem 1.2 into
two parts. The first part is mainly logical: we show that S4 is strongly
complete for the space 2≤ω of finite and infinite binary sequences, equipped
with the Scott topology (Lemma 2.4). The second part is purely topological:
we show that there’s an interior map from R to 2≤ω. In fact, we will proceed
by showing that there’s an interior map from the open unit interval, I = (0, 1)
to 2≤ω: this suffices since there are many interior maps from R to I.

2 The space 2≤ω

For each n ≥ 0, let 2n be the set of binary sequences (sequences of 0’s and
1’s) of length n. Let 2<ω =df

⋃∞
n=0 2n, i.e., 2<ω is the set of finite binary

sequences. We write length(b) for the length of b ∈ 2<ω. Let 2ω be the set of
infinite binary sequences or order type ω. And let 2≤ω =df 2<ω ∪ 2ω. We use
Λ for the the empty binary sequence, i.e., the binary sequence of length 0.
We use b, b′, etc., to range over 2<ω; b,b′, etc., to range over 2ω; and b, b′,
etc., to range over 2≤ω. If b ∈ 2<ω and b ∈ 2≤ω, then we write bab for b
concatenated with b. We will write b0 and b1 for ba〈0〉 and ba〈1〉. Given any
b ∈ 2ω and any n ∈ N, the finite binary sequence b|n is the initial segment
of length n of b. Thus b|0 = Λ. Given b ∈ 2<ω and b ∈ 2≤ω, we say b ≤ b iff
b is an initial segment of b and b < b iff both b ≤ b and b 6= b. We will also
use ‘≤’ for ≤ restricted to 2<ω.

We identify 2<ω with the infinite binary tree, i.e., the countably infi-
nite rooted transitive reflexive Kripke frame 〈2<ω,≤〉. We can represent any
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branch of the tree 2<ω with as an infinite binary sequence b ∈ 2ω: b repre-
sents the branch whose nodes are b|0, b|1, b|2, . . ..

We impose a topology on 2≤ω, by taking as a basis all the sets of the
following form, where b ∈ 2<ω: [b] =df {b′ ∈ 2≤ω : b ≤ b′}. It is easy to check
that this is the Scott topology on 2≤ω: See [11], p 95, for a definition of the
Scott topology on any partially ordered set. The main task of the current
section is to prove that S4 is strongly complete wrt 2≤ω – see Lemma 2.4.

The following result, due orignally to Dov Gabbay and independently
discovered by Johan van Benthem, is well-known; for a proof see [3], Theorem
1:

Lemma 2.1. Any finite rooted reflexive transitive Kripke frame is the image
of 2<ω under some interior map.

Together with the fact that any finite consistent set Γ of formulas is satisfiable
in some finite rooted reflexive transitive Kripke frame, Lemma 2.1 entails that
S4 is complete wrt 2<ω. The proof of 2.1 can easily be strengthened to prove

Lemma 2.2. Any countable rooted reflexive transitive Kripke frame is the
image of 2<ω under some interior map.

Together with the fact that any consistent set Γ of formulas is satisfiable in
some countable rooted reflexive transitive Kripke frame, Lemma 2.1 entails

Lemma 2.3. S4 is strongly complete wrt 2<ω.

The remainder of this section uses Lemma 2.3 to prove

Lemma 2.4. S4 is strongly complete wrt 2≤ω.

Proof. Let Γ be a consistent set of formulas. Given Lemma 2.3, Γ is
satisfiable in 2<ω. So there is a Kripke model M = 〈2<ω, V 〉 such that
V (Γ) 6= ∅. We will define a V ∗ : PV → 2≤ω and to show that, in the
topological model M∗ = 〈2≤ω, V ∗〉, we have V ∗(Γ) 6= ∅.

First, we assign sets ∆b and Σb of formulas to each b ∈ 2≤ω. If b ∈ 2<ω

then ∆b = Σb =df {A : b ∈ V (A)}. Note, if b ∈ 2<ω, then Σb is consistent; Σb

is also complete in the following sense: for every formula A, either A ∈ Σb or
¬A ∈ Σb. If b ∈ 2ω, then let ∆b =df

⋃∞
n=0

⋂∞
m=n Σb|m = {A : (∃n ∈ N)(∀m ≥

n)(b|m ∈ V (A))}. Note that ∆b is consistent, so that we can let Σb be any
complete consistent superset of ∆b. We highlight some obvious points about
the Σb:
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Claim 1. Suppose that b ∈ 2<ω, b′ ∈ 2≤ω, b ≤ b′ and �A ∈ Σb. Then
�A ∈ Σb′ .

Claim 2. Suppose that b ∈ 2ω and �A ∈ Σb. Then (∃n ∈ N)(∀b′ ∈
2≤ω)(b|n ≤ b′ ⇒ �A ∈ Σb′).

Define V ∗(p) = {b ∈ 2≤ω : p ∈ Σb}. Now we will show that, for every
formula A,

(∗) for every b ∈ 2≤ω, b ∈ V ∗(A) iff A ∈ Σb.

The proof is by induction on the construction of A. If A ∈ PV then (∗)
follows from the fact that V ′(p) = {x ∈ X : p ∈ Σb(x)}; and if A is of the
form ¬B, (B & C) or (B ∨C), then (∗) follows from the fact that each Σb(x)

is consistent and complete. So suppose that A is of the form �B and that

(∗B) for every b ∈ 2≤ω, b ∈ V ∗(B) iff B ∈ Σb.

We want to show,

(∗�B) for every b ∈ 2≤ω, b ∈ V ∗(�B) iff �B ∈ Σb.

Proof of (⇒). Choose b ∈ 2≤ω and assume that b ∈ V ∗(�B). So there is
some b′ ∈ 2<ω such that b ∈ [b′] ⊆ V ∗(B). So [b′]∩ 2<ω ⊆ V (B), by (∗B) and
the definition of the Σb. So [b′]∩ 2<ω ⊆ V (�B), by the definition of V (�B).
Also b′ ≤ b. So �A ∈ Σb, by Lemma 1.

Proof of (⇐). Choose b ∈ 2≤ω and assume that �B ∈ Σb. Then there is
anm ∈ N such that (∀n ≥ m)(�B ∈ Σb|n). So�B ∈ Σb|m . So b|m ∈ V (�B).
So, for every b′ ∈ 2<ω, if b|m ≤ b′ then b′ ∈ V (B). So, for every b′ ∈ 2<ω, if
b|m ≤ b′ then B ∈ Σb′ . But then, by the definition of Σb′′ for b′′ ∈ 2ω, we
have for every b′′ ∈ 2<ω, if b|m ≤ b′′ then B ∈ Σb′′ . So, by (∗B), for every
b∗ ∈ [b|m], b∗ ∈ V ∗(B). So b ∈ [b|m] ⊆ V ∗(�B), as desired.

Given (∗), to see that Γ is satisfiable in 2≤ω, simply choose b ∈ 2<ω with
b ∈ V (Γ). Note: Γ ⊆ Σb, so that b ∈ V ∗(Γ), by (∗).
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Figure 1: The Cantor set without the endpoints 0 and 1.

3 An interior map from I = (0, 1) to 2≤ω

Our remaining work is purely topological: we want to prove

Lemma 3.1. There is an interior map from R to 2≤ω.

Let I = (0, 1) be the open unit interval. As noted in the introductory
remarks, it suffices to prove

Lemma 3.2. There is an interior map from I to 2≤ω.

We will prove Lemma 3.2 by partitioning I into nonempty pairwise dis-
joint sets Xb, one for each b ∈ 2≤ω. We will then define F : I → 2≤ω as
follows: F(x) = the unique b ∈ 2≤ω such that x ∈ Xb. The trick is to do this
in such a way that F is an interior map.

First, some preliminaries. For subsets of I, we will interpret interior,
Int, and closure, Cl, as relativized to I. Let C be the Cantor set without
the endpoints 0 and 1. So C is the set of all real numbers that have a ternary
expansion of the form 0.a1a2a3 . . . ak . . . where each ak is either 0 or 2, and
where not all the ak’s are 0 (so that 0 6∈ C) and not all the ak’s are 2 (so that
1 6∈ C): we will find it useful to represent real numbers as ternary expansions.
Figure 1 pictorially represents C, which is closed (in the space I).
C can be got from progressively deleting open intervals from I = (0, 1)

as follows: delete the open interval (0.1, 0.2), which is the middle third of
I, leaving (0, 0.1] ∪ [0.2, 1). Then delete the middle thirds of each of these:
delete the open interval (0.01, 0.02) from (0, 0.1] and delete the open inter-
val (0.21, 0.22) from [0.2, 1): this leaves (0, 0.01] ∪ [0.02, 0.1] ∪ [0.2, 0.21] ∪
[0.22, 1). More precisely, a middle third is any open interval of the form
(0.a1a2 . . . an1, 0.a1a2 . . . an2), where n ≥ 0 and where ak = 0 or 2 for all
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Figure 2: Labelling deleted middle thirds with L and R. The labels appear
above the labelled middle thirds: for clarity, we have written the labels of
larger middle thirds in larger fonts. The set R is represented by thicker lines.

k ≤ n. It is well-known that if we take what’s left undeleted after we
carry out this process of deleting middle thirds ad infinitum, then we get
C = I −

⋃
{J : J is a middle third}. Label the deleted middle thirds with

L and R, for left and right, as in Figure 2. And let L be the union of the
middle thirds labeled L, and R be the union of the middle thirds labeled R.

Now suppose that J ⊆ I is an open interval. Let fJ : I → J be the
unique increasing linear function from I onto J . We define L(J), R(J), and
C(J) as the images under fJ of L, R, and C respectively. Thus L(J), R(J),
and C(J) are copies of L, R, and C, respectively. Finally, suppose that O ⊆ I
is open. We say that an open interval J ⊆ O is a maximal open interval in
O iff, for any open interval J ′ ⊆ O, if J ∩ J ′ 6= ∅ then J ′ ⊆ J . Note that O
is the disjoint union of the maximal open intervals in O. We define

L(O) =
⋃

J is a maximal open interval in O

L(J),

and similarly for R(O) and C(O). So L(O) is the union of copies of L, and
similarly for R(O) and C(O). Note the following:

Lemma 3.3. 1. L(O), R(O), and C(O) are pairwise disjoint;

2. L(O) and R(O) are open;

3. O = L(O) ∪̇ R(O) ∪̇ C(O); and
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4. Cl(L(O))− L(O)
= Cl(R(O))−R(O)
= Cl(C(O))
= Cl(O)− (L(O) ∪R(O)).

5. If J is a maximal open interval in O, then J ∩ C(O) is nonempty.

If S ⊆ I and there is some open interval J ⊆ S, then we define the width of
S as follows: width(S) = sup{length(J) : J is an open interval and J ⊆ S}.
Note the following:

Lemma 3.4. If O is an open subset of I, then width(R(O)) = width(O)/3
and width(L(O)) = width(O)/9.

Our next task will be to define nonempty openOb ⊆ I and other nonempty
sets Xb ⊆ I for each b ∈ 2<ω, and also to define nonempty sets Xb ⊆ I for
each b ∈ 2ω. Once this has been done, we will have a partition of I into sets
Xb for each b ∈ 2≤ω. We will define F : 2≤ω → I as follows: F(b) = the
unique x ∈ R such that x ∈ Xb. And we will show that F is an interior map.

Define the Ob, for b ∈ 2<ω, recursively as follows:

OΛ =df I
Ob0 =df L(Ob)

Ob1 =df R(Ob)

For b ∈ 2<ω, we define Xb =df C(Ob): If b = Λ, then Xb is simply C, the
Cantor set without endpoints; and if b is some other finite binary sequence,
then Xb is a union of infinitely many copies of C. Note that each L(Ob) and
R(Ob) is open in I; that each L(Ob), R(Ob), and C(Ob) is nonempty; and
that, (∀b ∈ 2<ω)(Ob = Ob0 ∪̇ Ob1 ∪̇ Xb). Note the following facts about the
Ob and the Xb:

Lemma 3.5. 1. Xb and Ob are nonempty, for each b ∈ 2<ω.

2. If b ≤ b′ then Xb′ ⊆ Ob′ ⊆ Ob.

3. If b < b′ then Xb ∩Xb′ = Xb ∩Ob′ = ∅.

4. If b′ 6≤ b 6≤ b′ then Ob ∩Ob′ = ∅.

5. If b 6≤ b′ then Ob ∩Xb′ = ∅.
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6. If b 6= b′ then Xb ∩Xb′ = ∅.

7. width(Ob) ≤ 1/3length(b).

Lemma 3.6. (∀b, b′ ∈ 2<ω)(b ≤ b′ ⇒ Cl(Xb) ⊆ Cl(Xb′)).

Proof. The fact that (∀b ∈ 2ω)(Cl(Xb) ⊆ Cl(Xb0)) follows immediately
from the following, for any b ∈ 2ω:

1. Ob0 = Ob00 ∪̇ Ob01 ∪̇ Xb0 (Lemma 3.3, Clause 3),

2. Cl(Xb0) = Cl(Ob0)− (Ob00 ∪Ob01) (Lemma 3.3, Clause 4), and

3. Cl(Xb) = Cl(Ob0)−Ob0 (Lemma 3.3, Clause 4).

Similarly (∀b ∈ 2ω)(Cl(Xb) ⊆ Cl(Xb1)). This suffices for the lemma.

For b ∈ 2ω, define Xb =df

⋂
n∈NOb|n .

Lemma 3.7. I =
⋃̇

b∈2≤ωXb.

Proof. The Xb are pairwise disjoint, by Lemma 3.5. To see that I =⋃
b∈2≤ω Xb, suppose that x ∈ I, but suppose that x 6∈ Xb for any b ∈ 2<ω.

It will suffice to find a b ∈ 2ω such that x ∈ Xb: we will inductively de-
fine bn ∈ 2<ω, each of length n, so that b0 ≤ b1 ≤ . . . ≤ bn ≤ bn+1 ≤ . . .,
and so that x ∈ Obn for each n. Let b0 = Λ, the empty sequence. As-
sume that x ∈ Obn . Then x ∈ Obn0 ∪̇ Obn1 ∪̇ Xbn . But x 6∈ Xbn . So
x is a member of exactly one of Obn0 and Obn1. Let bn+1 be whichever of
bn0 and bn1 is such that x ∈ Obn+1 . Note that each bn has length n, that
b0 ≤ b1 ≤ . . . ≤ bn ≤ bn+1 ≤ . . . and that x ∈ Obn for each n. Let b be the
unique member of 2ω such that b|n = bn. Then note that x ∈

⋂
nOb|n = Xb,

as desired.

Given Lemma 3.7, every x ∈ I is in exactly one of the Xb. Let F(x) =df

the unique b ∈ 2≤ω such that x ∈ Xb. Our final task is to show that F is an
interior map.

F is continuous since the preimage of [b], where b ∈ 2<ω, is Ob. We want
to prove that F is both open and a surjection: see Corollary 3.11. First, some
preliminary lemmas. For S ⊆ I, we use Img(S) for the image of S under F.

Lemma 3.8. Suppose that J ⊆ I is an open interval, b ∈ Img(J) ∩ 2<ω,
b′ ∈ 2<ω and b ≤ b′. Then b′ ∈ Img(J).
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Proof. Choose x ∈ J with F(x) = b. Then x ∈ Xb. So x ∈ Cl(Xb′), by
Lemma 3.6. So there is some y ∈ Xb′∩J . So b′ ∈ Img(J), since F(y) = b′.

Lemma 3.9. Suppose that J ⊆ I is an open interval, b ∈ Img(J) ∩ 2<ω,
b′ ∈ 2ω and b ≤ b′. Then b′ ∈ Img(J).

Proof. Let n = length(b), so that b = b′|n. We will now inductively
choose open intervals J0, J1, ... ⊆ J ∩ Ob and points x0 ∈ J0, x1 ∈ J1, . . . so
that F (xk) = b′|n+k, for each k ≥ 0.

First, choose x0 ∈ J such that F(x0) = b = b′|n. Since x0 ∈ J ∩ Ob|n ,
we can choose an open interval J0 so that x0 ∈ J0 and Cl(J0) ⊆ J ∩ Ob|n .
Suppose that we have chosen an open interval Jk and a point xk ∈ Jk with
F (xk) = b′|n+k. Then b′|n+k ∈ Img(Jk). So b′|n+k+1 ∈ Img(Jk), by Lemma
3.8. So there is an xk+1 ∈ Img(Jk) with F(xk+1) = b′|n+k+1. Note that
xk+1 ∈ Xb′|n+k+1

⊆ Ob′|n+k+1
. So xk+1 ∈ Jk ∩ Ob′|n+k+1

. So we can choose an
open interval Jk+1 with xk+1 ∈ Jk+1 and Cl(Jk+1) ⊆ Jk ∩Ob′|n+k+1

.
Note: Cl(Jk+1) ⊆ Jk for each k ≥ 0. So 〈Cl(Jk)〉k is a decreasing sequence

of closed intervals. So
⋂

k Cl(Jk) is nonempty. Also,
⋂

k Cl(Jk) ⊆ J and⋂
k Cl(Jk) ⊆

⋂
k Ob′|n+k

. So there is a point x ∈
⋂

k Cl(Jk) ⊆ J ∩ Xb′ . So
F(x) = b′ and x ∈ J . So b′ ∈ Img(J).

Lemma 3.10. Suppose that J ⊆ I is an open interval and b ∈ Img(J)∩ 2ω.
Then there is a b′ ∈ Img(J) ∩ 2<ω with b′ ≤ b.

Proof. Suppose that J ⊆ I is an open interval and b ∈ Img(J) ∩ 2ω.
Choose x ∈ J with F(x) = b, and choose a positive real number d so that
(x−d, x+d) ⊆ J . Choose n ∈ N with 1/3n < d and let b′ = b|n ∈ 2<ω. Note
that x ∈ Ob′ ∩ (x− d, x+ d); also, width(Ob′) < d, by Lemma 3.5, clause (7).
Let J ′ be any maximal open interval in Ob′ with x ∈ J ′, and note two things
about J ′: (1) J ′ has length ≤ width(Ob′) < d, since J ′ is an open interval
and J ′ ⊆ Ob′ ; and (2) J ′ ∩ C(Ob′) is nonempty, by Lemma 3.3, Clause (5).
By (2), there is an x′ ∈ J ′ ∩Xb′ , and by (1) J ′ ⊆ (x − d, x + d). So x′ ∈ J
and F(x′) = b′. So b′ ∈ Img(J).

Corollary 3.11. F is an open surjection.

Consider any interval J ⊆ I. By Lemma 3.8 and 3.9, if b ∈ Img(J)∩ 2<ω

then [b] ⊆ Img(J). So
⋃

b∈Img(J)∩2<ω [b] ⊆ Img(J).

Also note that if b ∈ Img(J), then there is some b′ ≤ b such that b′ ∈
Img(J) ∩ 2<ω: this follows from Lemma 3.10 if b ∈ 2ω; and it is trivial if
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b ∈ 2<ω, since we can just let b′ = b. Thus, if b ∈ Img(J) then there exists
b′ ∈ 2<ω with b ∈ [b′] ⊆ Img(J). Thus Img(J) ⊆

⋃
b∈Img(J)∩2<ω [b]. Thus

Img(J) =
⋃

b∈Img(J)∩2<ω [b].
So the image of any open interval J ⊆ I is open. So the function F is

open. Also, Img(I) =
⋃

b∈Img(I)∩2<ω [b] ⊇ [Λ] = 2≤ω. So F is a surjection.

Thanks to the audience at the Ninth International Tbilisi Symposium on Lan-
guage, Logic and Computation in Kutaisi, Georgia, for listening to me present the
more general paper, [4]. Special thanks to each of David Gabelaia, Nick Bezhan-
ishvili, Roman Kontchakov and Mamuka Jibladze, for indulging me by letting me
explain the proof in detail in the case considered by this paper, R.
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