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SUPERVALUATION FIXED-POINT LOGICS OF TRUTH

ABSTRACT. Michael Kremer defines fixed-point logics of truth based on Saul
Kripke’s fixed point semantics for languages expressing their own truth concepts.
Kremer axiomatizes the strong Kleene fixed-point logic of truth and the weak Kleene
fixed-point logic of truth, but leaves the axiomatizability question open for the
supervaluation fixed-point logic of truth and its variants. We show that the principal
supervaluation fixed point logic of truth, when thought of as consequence relation, is
highly complex: it is not even analytic. We also consider variants, engendered by a
stronger notion of ‘fixed point’, and by variant supervaluation schemes. A ‘logic’ is
often thought of, not as a consequence relation, but as a set of sentences – the
sentences true on each interpretation. We axiomatize the supervaluation fixed-point
logics so conceived.
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1. INTRODUCTION

One reaction to the liar paradox and its kin is the thought that the offending
sentences are neither true nor false. Kripke (1975) gives the first com-
prehensive semantic framework formalizing this idea. (See also Martin
and Woodruff (1975).) Suppose that L is a language with a distinguished
predicate T. Kripke considers models in which T is given a partial
interpretation: T is assigned a mutually exclusive extension and anti-
extension; there is no assumption that these are exhaustive, as there would
be if T were interpreted classically.

Given such a model, a sentence can be true, false, or neither. The precise
distribution of truth values (considering neither as a truth value) depends
on the scheme of evaluation used to determine the truth value of a sentence
in a model. Kripke explicitly considers the weak Kleene scheme, the
strong Kleene scheme, and the supervaluation scheme with two variants.
Given a scheme of evaluation, a fixed point is a model in which the true
sentences are precisely those in the extension of T and the false sentences
are precisely those in the antiextension of T. These are the models in
which T can be understood as meaning ‘true’.

For each valuation scheme, Kremer (1986, 1988) defines a fixed-point
logic of truth. He axiomatizes the strong Kleene fixed-point logic of truth
and the weak Kleene fixed-point logic of truth, but explicitly leaves open
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the question of whether the supervaluation fixed-point logics of truth are
axiomatizable. (This question is also asked in Kremer and Kremer (2003).)
In the current paper, we show that the principal supervaluation fixed point
logic of truth, when thought of as a consequence relation, is highly
complex: it is not even analytic. We also consider variants, engendered by
a stronger notion of ‘fixed point’, and by variant supervaluation schemes.
A ‘logic’ is often thought of, not as a consequence relation, but as a set of
sentences – the sentences true on each interpretation. We axiomatize the
supervaluation fixed-point logics so conceived. (These results refine a
theorem of Kremer and Kremer (2003): the consequence relations that are
shown in that paper to be nonaxiomatizable are in fact highly complex.)

2. FIXED-POINT SEMANTICS

If L is any first-order language, then a classical model for L is, as usual, an
ordered pair M=〈D, I〉, where D is a nonempty set and I is a function
assigning a member of D to each name of L, an n-ary function on D to each
n-ary function symbol of L, and a function from Dn to {t, f} to each n-ary
relation symbol of L. Suppose that M=〈D, I〉 is a classical model and that s
is an assignment (of values to the variables), i.e., a function s:Vbles→D,
where Vbles is the set of variables of L. Then CLM, s(A) is the classical truth
value, either t or f, assigned to the formula A relative to the assignment s.

Suppose that L is a first-order language with a distinguished predicate
T and with a quote name ‘A’ for every sentence A of L. We call such a
first-order language a truth language. Let Sent(L)={A: A is a sentence of
L}. The T-free fragment of L is the fragment of L with no occurrences of
T, except in the scope of quotation marks. The quote-name-free fragment
of L is the language just like L without quote names. A ground model for
L is a classical model M=〈D, I〉 for the T-free fragment of L, satisfying
the following conditions:

� Sent(L)⊆D; and
� I(‘A’)=A, for every A2Sent(L).
If M=〈D, I〉 is a ground model for L and h:D→{t, f}, then we define M+
h to be the classical model for all of L, just like M, except that M+h assigns
the function h to the predicate T.

Suppose thatM=〈D, I〉 is a ground model for L, and that h:D→{t, f, n}.
Then we will consider partial models M+h of all of L. Note that a classical
model is a special case of a partial model. We say that h≤h′ and that M+
h≤M+h′ iff h(d)=t[f]⇒h′(d)=t[f] for each d2D, and that h and M+h are
classical iff h:D→{t, f}. Suppose that M+h is a partial model and that s is
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an assignment. We define the truth value SVM+h, s(A) assigned to the for-
mula A (by the supervaluation scheme) as follows:

SVMþh; s Að Þ ¼t; if CLMþh0; s Að Þ ¼ t for every classical M þ h0 Q M þ h;

f ; if CLMþh0; s Að Þ ¼ f for every classical M þ h0 Q M þ h;

n; otherwise:

If A is a sentence (i.e. a formula with no free variables) then we write
SVM+h(A) for SVM+h, s(A) since s drops out as irrelevant.

A partial modelM+h (for L) is a fixed point (for L) iff h(A)=SVM+h(A)
for every A2Sent(L). (Kripke further stipulates that, in a fixed point, h(d)=
f for every d2D−Sent(L). We follow M. Kremer in suppressing this sti-
pulation: nonsentences can be false, true or neither.) The following theo-
rem is the core of Kripke’s fixed-point semantics for truth, as applied to the
supervaluation scheme. (Kripke proves this theorem for a wide variety of
valuation schemes.)

FIXED POINT THEOREM. (Kripke (1975)) If L is a truth language and
M is a ground model for L, then there is a fixed point M+h for L.

The now canonical proof of this theorem involves the construction of the
least fixed point, a fixed point which many have taken to be definitive of
Kripke’s theory of truth. (See Grover (1977), Haack (1978), Davis (1979),
Kroon (1984), Parsons (1984), Kirkham (1992), and Read (1994).) But M.
Kremer (1988) argues convincingly that T means ‘true’, not just in the
least fixed point, but in any fixed point: we refer the reader to his
discussion. Accordingly, for formulas A and B, we define

AîB iff for every fixed point M þ h and every assignment s;

if SVMþh; s Að Þ ¼ t then SVMþh; s Bð Þ ¼ t:

(Kremer allows multiple antecedents, interpreted conjunctively; and
multiple consequents, interpreted disjunctively. He also requires right-to-
left falsehood preservation as well as left-to-right truth preservation. Our
results would go through for î so conceived.)

There is a peculiarity here: whether AîB depends on the language that A
and B are expressed in. In particular, suppose that we pay more careful
attention to all the factors, and define

AîLB iff for every fixed point M þ h for L and every assignment s;

if SVMþh; s Að Þ ¼ t then SVMþh; s Bð Þ ¼ t:
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Then there are languages L and L′ and sentences A and B of both L and
L′ such that A^LB and AîL0B. This pathological behaviour of the
consequence relation îL is caused by our requirement that the sentences
of L be included in the universe of a ground model.

EXAMPLE. Let LA be the language of arithmetic, with the name 0 and
function symbols s, + and ×, enriched with a predicate T and quote names for
the sentences of LA. And let LA′ be the result of adding uncountably many
new constants to LA, as well as the resulting new quote names. Let PA− be
the conjunction of the axioms of Peano Arithmetic except the induction
axioms, and let Ind be the formula T0 & ∀x(Tx⊃Tssx)⊃∀xT2x. Then

(*) PA− & Ind^LAT ‘9xT2x’ _ T ‘9x:T2x’, and
(**) PA− & IndîLA0T ‘9xT2x’ _ T ‘9x:T2x’.

To see (*), order Sent(LA) in an ω-sequence A0, A1,..., An,..., making sure
that A2n=¬Ts

2n0 for each n, where sk0 is 0 preceded by k occurrences of s.
Let D=Sent(LA) and define three functions S, ⊕ and ⊗ on D as follows:
S(An)=An+1, and Am⊕An=Am+n, and Am⊗An=Am×n. Finally let M=〈D, I〉
be the ground model where I(0)=A0, I(s)=S, I(+)=⊕, I(×)=⊗, and I(‘A’)=A
for each A2Sent(LA). Let M+h be the least fixed point based on M.
Note that M+h, restricted to the T-free and quote-name-free fragment of
LA, is isomorphic to the standard (classical) model of arithmetic so that
SVM+h(PA

−)=t and SVM+h(Ind)=t, since all forms of induction are satis-
fied in every classical M+h′≥M+h. Also note that h(A2n)=n, for each
n 2 ℕ, since each A2n is a liar sentence. So there are classical h′ and h″≥
h such that, for each n 2 ℕ, we have h′(A2n) = t and h″(A2n)=f. So CLM+h′

(9xT2x)=CLM+h″(9x¬T2x)=t and CLM+h″(9xT2x)=CLM+h′(9x¬T2x)=f.
So SVM+h(9xT2x)=SVM+h(9x¬T2x)=n. So h(9xT2x)=h(9x¬T2x)=n,
since M+h is a fixed point. So there are classical h′, h″≥h such that h′
(9xT2x)=h′(9x¬T2x)=t and h″(9xT2x)=h″(9x¬T2x)=f, so that SVM+h′

(T‘9xT2x’∨T‘9x¬T2x’)=t and SVM+h″(T‘9xT2x’∨T‘9x¬T2x’)=f. So
SVM+h(T‘9xT2x’∨T‘9x¬T2x’)=n. So M+h is a fixed point in which the
premise is true but the conclusion is not.

To see (**), suppose thatM+h=〈D, I〉+h is a fixed point for the language
LA′ and that SVM+h(PA

− & Ind)=t and SVM+h(T‘9xT2x’∨T‘9x¬T2x’)≠t.
Then SVM+h(9xT2x)=SVM+h(T‘9xT2x’)≠t and SVM+h(9x¬T2x)=SVM+h

(T‘9x¬T2x’)≠t. Say that d2D is even if we have d=I(+)(d′, d′) for
some d′2D. Note that h(d)=n for every even d2D, otherwise either
SVM+h(9xT2x)=t or SVM+h(9x¬T2x)=t. We define the standard mem-
bers of D as follows: I(0) is standard, and if d is standard then so is
I(s)(d). Since h(d)=n for every even d2D, there is a classical
h′≥h so that h′(d)=t for every standard even d2D, and h′(d)=f for every
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nonstandard even d2D. Such nonstandard even d2D exist, becauseM+h is
an uncountable model in which PA− is true. So CLM+h′(Ind)=f. But this
contradicts the fact that SVM+h(PA

− & Ind)=t. ;
Given the peculiarity indicated by (*) and (**), we redefine î in a way

which is independent of the language L:

AîB iff for every truth language L of which A and B are both formulas;

and for every fixed point M þ h for L and for every assignment s;

if SVMþh; s Að Þ ¼ t then SVMþh; s Bð Þ ¼ t:

Thus, PA− & IndîLA0T ‘9xT2x’ _ T ‘9x:T2x’, but PA− & Ind^T ‘9xT2x’
_T ‘9x:T2x’.

3. COMPLEXITY

Our main result is that î is highly complex. To state this result precisely,
we need some definitions. First assume that the first order language L has
countably many relational symbols of each arity, countably many non-
quote names, a distinguished unary predicate T and a quote name ‘A’ for each
A2Sent(L). (We assume that L has no function symbols.) Let L2 be the
second-order language constructed out of L as follows: first, remove the
quote names; second, treat each relational symbol of L (including T) as a
relational variable of the same arity in L2; and third, treat each individual
constant (not including the quote names) in L as an individual variable in L2.
In L2, there is nothing special about the predicate T, since T is treated in L2

as an ordinary unary second-order relational variable. A second-order
formula is k1

n ð~1
nÞ iff it is of the form Q1X1,..., QnXn A, where X1,..., Xn

are unary second-order relational variables, Q1,..., Qn is a string of alternating
quantifiers with Q1=∀ (9), and A is a quote-name-free formula containing no
second-order quantifiers – i.e., A is a quote-name-free formula of L. Given a
nonempty set D, an assignment of values to the individual variables (of L2) is
a function s assigning a member of D to each individual variable (of L2), and
an assignment of values to the relational variables (of L2) is a function S
assigning a function from Dn to {t, f} to each n-ary relational variable (of L2).
The truth of a formula A in D relative to s and S is defined in the standard
way. SOL is the set of formulas that are true in each domain D relative to any
assignments s and S. k2

2�SOL is the set of k1
2 formulas in SOL.

COMPLEXITY THEOREM. k1
2�SOL is recursively encodable in both î

and îL.
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Before we prove this theorem, we stress just how complex k1
2�SOL is.

It is a familiar fact that Peano’s axioms for the natural numbers,
expressed as a universal ðk1

1Þ formula of second-order logic, character-
ize the natural numbers up to isomorphism. Consequently, the set of all
true sentences of first-order number theory is recursively embeddable in
~1

1�SOL, showing that ~1
1�SOL is not in the arithmetical hierarchy.

However, we can state much stronger results. The set of existential
validities of second-order logic is so complex that no reasonable description
of its complexity exists; thus it is essentially impossible to give an upper
bound on the complexity of either î or îL. This follows from the work
of Hintikka, Montague and others. Hintikka (1955) gives a recursive
translation of formulas from the simple theory of types into ~1

1�SOL, that
preserves validity in both directions. The basic idea behind the translation
can be stated quite simply. Hintikka sets down a set of first-order axioms
describing the type structure, and adds a k1

1 sentence of second-order logic
expressing the fact that the full comprehension axiom holds at each type
level. The conjunction of these sentences can be written as a k1

1 sentence
∀X D, so any sentence from the simple theory of types can be expressed
as an equivalent ~1

1 second-order sentence of the form 9X(D⊃A).
Consequently, the set of all true sentences expressed in the language
of the simple theory of types, with the natural numbers as the ground
type, is recursively embeddable in~1

1�SOL, showing that î is not even
analytic.

Richard Montague (1965) extends Hintikka’s theorem to type theories
where the type levels go far beyond the level ω of the simple theory of
types. He shows that if all of the ordinals representing type levels in the
language are describable in a precise sense, that the recursive embedding
proved to exist by Hintikka can be generalized to this much more extended
type-theoretical hierarchy. He remarks about the set of second-order
logical truths:

It is natural, however, to ask whether this set occurs in some natural
extension of the Kleene arithmetical hierarchy, ... The next theorem,
which was derived from Theorem 6 byVaught andme, gives a negative
answer; indeed, we have the stronger result that in a ‘natural’ higher-
order language not even the set of Gödel numbers of existential second-
order logical truths is definable [Montague 1965, 263].

The complexity theorem itself is a direct corollary of the next lemma.
Before we state this lemma, we give a definition. Given a formula A of L
and a unary predicate G not occurring in A, let AG be the result of
restricting all the first order quantification in A to G.
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COMPLEXITY LEMMA. Suppose that ∀X9TA is a k1
2 formula, and

that G is some unary predicate of L not occurring in A. Also suppose that
t1,..., tn are all the terms occurring in A. (Note: the terms that can occur in
A are either individual constants of L or variables of L. Every formula
contains some term, so the list is not empty.) Then

(1) 8X9TA 2 k1
2� SOL iff

(2) ¬AG & Gt1 & ... & GtnîLT ‘9x Gx & Txð Þ’ _ T ‘9x Gx&:Txð Þ’ iff
(3) ¬AG & Gt1 & ... & GtnîT ‘9x Gx & Txð Þ’ _ T ‘9x Gx & :Txð Þ’.
Before we prove this lemma, it might be helpful to explain the ante-

cedent, ¬AG & Gt1 & ... & Gtn, and the consequent, T‘9x(Gx & Tx)’∨
T‘9x(Gx & ¬Tx)’, of (2) and (3). One way to understand these admittedly
obscure formulas is to consider a different situation: In this new situation,
wewill define a consequence relation with multiple antecedents andmultiple
consequents, by considering all partial models rather than simply fixed
points. Indeed we will generalize further: we will not assume that M=〈D, I〉
is a ground model, but only a classical model for the T-free fragment of L.
(Note that, in this generalized situation, quote names are not semantically
different from nonquote names.) So, given a classical model M=〈D, I〉 of
the T-free fragment of L, and a function h:D→{t, f, n}, we can consider
the partial model M+h of L. In this generalized situation, consider the
following consequence relation, where Γ and Δ are sets of formulas of L:

*íL$ iff for every partial model M þ h for L ðwhere M is a classical

model for the T�free fragment of LÞ and for every assignment s;

if SVMþh; s Að Þ ¼ t for every A 2 *; then SVMþh; s Bð Þ ¼ t for

some B 2 $:

Note that, in the context of this new definition, the predicate T is no
longer a plausible truth predicate: the only distinctive feature of T is that it
is allowed a partial rather than a classical interpretation. Given this new
consequence relation, we can prove the following, for any formula A of L
that does not contain any quote names:

8X9TA 2 k1
2�SOL iff:AíL9xTx; 9x:Tx:

Here is the proof. (⇒) Suppose that 8X9TA 2 k1
2�SOL but that

:A]L9xTx; 9x:Tx. Then there is some partial model M+h for L and some
assignment s, with SVM+h, s(¬A)=t and SVM+h, s(9xTx)≠t and SVM+h, s

(9x¬Tx)≠t. We will assume that M=〈D, I〉. Given the last two inequal-
ities, we know that M+h assigns to T both an empty extension and an
empty antiextension. In other words, h(d)=n for each d2D. We now
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specify assignments s′ and S of values to the individual and relational
variables of L2. Let s′(x)=s(x) for every variable x of L occurring in A, and
s′(c)=I(c) for every nonquote name c of L occurring in A (these are
variables in L2), and s′(v)=d for some arbitrarily chosen d2D, for every
other individual variable v of L2. Let S(T)(d)=f for every d2D (the value
assigned to T doesn’t really matter); and let S(Z)=I(Z) for every relational
symbol Z of L other than T. Since 8X9TA 2 k1

2�SOL, ∀X9TA is true in
D relative to s′ and S. So 9TA is true in D relative to s′ and S. So there is
some h′:D→{t, f} such that A is true in D relative to s′ and S, where S′ is just
like S except that S′(T)=h′. Now consider the classical model M+h′. Clearly
h≤h′. So, since SVM+h, s(¬A)=t we have SVM+h′, s(¬A)=t=CLM+h′, s (¬A).
But this contradicts our earlier claim that A is true in D relative to s′ and S.

(⇐) Suppose that :AíL 9xTx;9x:Tx but that 8X9TA =2k1
2�SOL.

Then there is a domain D, and assignments s and S such that 9TA is false
in D relative to s and S. Define a classical model M=〈D, I〉 for the
language L as follows, where d0 is some arbitrarily chosen member of D:

I(R) =S(R), for each n-ary relation R of L
I(c) =s(c), for each nonquote name c of L
I(‘B’)=d0, for each B2Sent(L)

Define h as follows: h(d)=n for each d2D. Notice that SVM+h(9xTx)=
SVM+h(9x¬Tx)=n. Define the assignment s′ of values to the individual
variables of L as follows: s′(x)=s(x), for each variable x of L. Thus SVM+h, s′

(9xTx)=SVM+h, s′(9x¬Tx)=n. So, since :AíL 9xTx; 9x:Tx, we have
SVM+h, s′(¬A)≠t. So SVM+h, s′(A)≠f. So there is some classical h′≥h such
that CLM+h′, s′(A)=t. Now we define an assignment S′ of values to the
second order variables of L2: S′(R)=S(R) for every R≠T, and S′(T)(d)=h′(d),
for each d2D. Since 9TA is false in D relative to s and S, A is false in D
relative to s and to S′. So A, taken as a first-order formula of the quote-
name-free fragment of L, is false in the classical model M+h′ relative to the
assignment s′. But this contradicts CLM+h′, s′(A)=t. ;

So, this is how a claim similar to the Complexity Lemma can be proved
when we generalize our semantic definition of consequence in two ways: first,
by not insisting that M be a ground model for L, but only a classical model
for the T-free fragment L; second, by making no reference to fixed points
M+h, but rather by considering all M+h. In this generalized situation, we
have a very simple sequent, :AíL 9xTx;9x:Tx, instead of the more cum-
bersome ¬AG & Gt1 & ... & GtnîLT ‘9x Gx & Txð Þ’ _ T ‘9x Gx & :Txð Þ.

Moving to the specialized case at hand, where M is a ground model for
L, and where the consequence relation is defined via only the fixed points,
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rather than all partial models M+h, presents special challenges. The main
challenge is that 9xTx and 9x¬Tx will be true in all fixed points: they
won’t ever take on the value n. This motivates the move to the sentences
9x(Gx & Tx) and 9x(Gx & ¬Tx): if the interpretation of G is constrained
in the right way, then we can get the effect in the more specialized context
that we got with the sentences 9xTx and 9x¬Tx above. In fact, the inter-
pretation of G will give us a useful subdomain of the domain D. Since we
are only considering fixed points, we can replace the multiple consequent

9x Gx & Txð Þ; 9x Gx & :Txð Þ
with the single sentence T‘9x(Gx & Tx)’∨T‘9x(Gx & ¬Tx)’: this sentence
will take on the value t in a fixed point iff at least one of 9x(Gx & Tx) or
9x(Gx & ¬Tx) does. This explains the new consequent, T‘9x(Gx & Tx)’∨
T‘9x(Gx & ¬Tx)’. As for the antecedent ¬AG & Gt1 &... & Gtn, we note
two things: (1) restricting the quantification in ¬A to G allows us to
restrict quantification to the subdomain determined by G; and (2) adding
the conjuncts Gt1,..., Gtn ensures that anything picked out by relevant
terms of L will be in the subdomain. Of course, to see how this really
works, we move on to the proof.

PROOF OF THE COMPLEXITY LEMMA. (1)⇒(2): Suppose that ¬AG

& Gt1 & ... & Gtn ^L T ‘9x Gx & Txð Þ’ _ T ‘9x Gx&:Txð Þ’. Then for
some fixed point M+h=〈D, I〉+h for L and some assignment s of values to
the variables (of L) we have SVM+h, s(¬A

G)=SVM+h, s(Gti)=t and SVM+h

(T‘9x(Gx & Tx)’∨T‘9x(Gx & ¬Tx)’)≠t. Thus SVM+h(T‘9x(Gx & Tx)’)≠t
and SVM+h(T‘9x(Gx & ¬Tx)’)≠t. Thus SVM+h(9x(Gx & Tx))≠t and SVM+h

(9x(Gx & ¬Tx))≠t, since M+h is a fixed point.
Let D′={d: I(G)(d)=t}, which is nonempty since SVM+h, s(Gt1)=t. It

suffices to find assignments s′ and S of values to the individual and
relational variables of L2 so that 9TA is false in D′ relative to s′ and S. Let s′
(x)=s(x) for every variable x of L occurring in A, and s′(c)=I(c) for every
nonquote name c of L occurring in A (these are variables in L2), and s′(v)=d
for some arbitrarily chosen d2D′, for every other individual variable v of
L2. And for every relational symbol Z of L other than T, let S(Z)=I(Z)ªD′, i.e.
the function I(Z) restricted to the set D′; and let S(T)(d)=f for every d2D′.

To see that 9TA is false in D′ relative to s′ and S, suppose not. Then there
is some h′:D′→{t, f} such that A is true in D′ relative to s′ and S′, where S′ is
just like S except that S′(T)=h′. Consider the following classical model for
the quote-name-free fragment of L: M′=〈D′, I′〉 where I′(c)=s′(c) for every
nonquote name c of L, and I′(Z)=S(Z) for every relational symbol Z of L.
Clearly CLM′, s″(A)=t where s″ is s′ restricted to the variables of L.
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Define h″:D→{t, f} as follows:

h″ dð Þ ¼ h0 dð Þ if d 2 D0;
t if d 2 D� D0 and h dð Þ ¼ t;

f if d 2 D� D0 and h dð Þ 6¼ t:

We claim that h≤h″. If d2D−D′, then h(d)=t [f]⇒h″(d)= t [f], by
definition of h″. For d2D′, it suffices to show that h(d)=n. Note that if
h(d)=t and d2D′, then we would have SVM+h(9x(Gx & Tx))=t; and if
h(d)=f and d2D′, then we would have SVM+h(9x(Gx & ¬Tx))=t. In
either case we would contradict the above-noted fact that SVM+h(9x(Gx &
Tx))≠t and SVM+h(9x(Gx & ¬Tx))≠t. So M+h″≥M+h. Also, M+h″ is a
classical model for L.

So, since SVM+h, s(¬A
G)=SVM+h, s(Gti)=t, we have CLM+h″, s(A

G)=f.
But notice that this gives us a contradiction, since, for any formula B
whose names, free variables and relation symbols are the same as in A, we
have CLM′, s″(B)=CLM+h″, s(B

G): the reason is that BG is B restricted to G,
and M′ is that submodel of M (as far as the nonlogical constants in A are
concerned) whose domain is the extension of G.

(2)⇒(3): This follows directly from the definitions.
(3)⇒(1): Suppose that 8X9TA =2k1

2�SOL. Then there is a domain D,
and assignments s and S such that 9TA is false in D relative to s and S.
We can assume that D contains no sentences of L. Define a ground model
M=〈D′, I〉 for the language L as follows:

D′ = Sent(L)∪D
I(R) = S(R)∪{〈d1, ..., dn, f〉: some di2Sent(L)}, for each n-ary relation

R≠G of L
I(G) = (D×{t})∪(Sent(L)×{f})
I(c) = s(c), for each nonquote name c of L
I(‘B’) = B, for each B2Sent(L)

Let M+h be any fixed point for L assigning n to each nonsentence, i.e.
h(d)=n for each d2D=D′−Sent(L). The fixed point theorem can easily be
strengthened to show that such a fixed point exists. Notice that SVM+h (9x
(Gx & Tx))=SVM+h(9x(Gx & ¬Tx))=n. Thus SVM+h(T‘9x(Gx & Tx)’)=
SVM+h(T‘9x(Gx & ¬Tx)’)=n. Thus SVM+h(T‘9x(Gx & Tx)’∨T‘9x(Gx &
¬Tx)’)=n, as can be seen by considering any classical h′ and h″ such that
h′(9x(Gx & Tx))=h′(9x(Gx & ¬Tx))=t and h″(9x(Gx & Tx))=h″(9x(Gx &
¬Tx))=f.

Since SVM+h(T‘9x(Gx & Tx)’∨T‘9x(Gx & ¬Tx)’)=n, it suffices to
specify an assignment s′ of values to the variables of L, such that SVM+h, s′
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(¬AG & Gt1 & ... & Gtn)=t. Define s′ as follows: s′(x)=s(x), for each variable
x of L. Clearly, SVM+h, s′(Gti)=t, so it suffices to show that SVM+h, s′(A

G)=f.
Suppose not. Then there is some classical h′′′ ≥ h such that CLM+h′′′, s′

(AG)=t. Now we define an assignment S′ of values to the second-order
variables of L2: S′(R)=S(R) for every R≠T, and S′(T)(d)=h′′′(d), for each
d2D. Since 9TA is false in D relative to s and S, A is false in D relative to
s and to S′. So A, taken as a first-order formula of the quote-name-free
fragment of L, is false in the classical model M′=〈D, I′〉 relative to the
assignment s″, where I′(R)=S′(R) for each relational symbol R of L; I′(c)=
s(c) for each nonquote name c of L; and s″(x)=s(x) for each variable x of L.

But notice that this gives us a contradiction, for the same reason that we
got a contradiction at the end of the (1)⇒(2) proof above: for any formula B
whose names, free variables and relation symbols are the same as in A, we
have CLM′, s″(B)=CLM+h′′′, s′(B

G). ;

4. THE SET OF SENTENCES TRUE IN EVERY MODEL

One conception of the ‘logic’ generated by a semantics is the set of
sentences true in every model. Thus, given a truth language L, we might
want to axiomatize the set {A: A is a sentence of L and îA}.

DEFINITION: THE SUPERVALUATION FIXED POINT LOGIC OF
TRUTH. For each truth language L, Let SVFPLTL (the supervaluation
fixed point logic of truth in the language L) be the set of sentences
axiomatized as follows:

SOUNDNESS THEOREM. If A2SVFPLTL then both îA and îLA.

PROOF. Routine. ;

COMPLETENESS THEOREM.

(1) If îA then A2SVFPLTL.
(2) If L is countable and îLA then A2SVFPLTL.
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COROLLARY. If L is countable then îL A iff îA.
Completeness (1) follows from Completeness (2) by the following

considerations. Suppose that L is some language (possibly uncountable)
and that A=2SVFPLTL. Let L′ be the sublanguage of L whose nonlogical
vocabulary (other than T and quote names) consists of the vocabulary
occurring in A, both in and not in the scope of quotation marks. L′ is
countable, and A=2SVFPLTL′. (This relies on the fact that SVFPLTL is a
conservative extension of SVFPLTL′.) So, by Completeness (2), ^LA.
Thus ⊭A, as desired. So our remaining task is to prove Completeness (2).

As usual, we prove completeness by starting with a sentence A=2SVFPLTL,
and then by building a theory Γ so that A=2Γ and so that a model can be
constructed from Γ in such a way that A is not true in that model.
Unfortunately, we have to be somewhat careful about our constructions.
Before proving completeness, we state some definitions and lemmas.

DEFINITIONS. Given a set Γ of sentences, CN(Γ) is the set of classical
consequences of Γ and CNT (Γ) is the result of closing Γ under both
classical consequence and the T rules. CN5 *ð Þ is the result of closing Γ
under both classical consequence and the following ω-rule: From A[t/x]
for every term t to infer ∀xAx. A set Γ of sentences is a theory iff Γ=CN
(Γ). Γ is T-closed (ω-closed) iff it is closed under the T rules (ω-rule). A
theory is consistent iff it is classically consistent. A theory Γ is witnessing
iff for every sentence of the form ∀xCx, there is a sentence of the form
(Ct⊃∀xCx)2Γ, where t is a closed term. Note: witnessing implies ω-
closure, i.e. if a theory Γ is witnessing then Γ is ω-closed. A theory Γ is
almost complete iff either A2Γ or ¬A2Γ for every sentence A in the T-
free fragment of the language. A theory Γ is complete iff either A2Γ or
¬A2Γ for every sentence A in the language. Given a theory Γ and two
closed terms (either quote names or other terms) t and t′, we say that
t �* t0 iff the sentence (t= t′)2Γ. tj j*¼df t0 : t �* t0f g. Note that, if A and
B are distinct sentences, then ‘A’ ‘B’ for every consistent theory Γ⊇
SVFPLTL.

MORE DEFINITIONS. Given a truth language L and a partial model M+
h for L, let Th(M+h)={A is a sentence of L: SVM+h(A)=t}. A ground
model M=〈D, I〉 is explicit iff for every d2D there is a name c (which can
be a quote name) such that I(c)=d. A partial model M+h is explicit iff the
ground model M is.

MORE DEFINITIONS. Given an almost complete consistent witnessing
theory Γ⊇{‘A’≠‘B’: A and B are distinct sentences of L}, define M* þ h*,
the canonical partial model for Γ, as follows. First let D=Sent
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(L)∪ tj j*
�

: t is a closed term of L and t ‘A’ for any sentence A}. For
each closed term t, define

Note that b‘A’À=A. Moreover, note that the well-definedness of b‘AÀ
depends on the fact that Γ ⊇ {‘A’≠‘B’: A and B are distinct sentences
of L}. Now let

LEMMA 1. If Γ is a complete consistent witnessing theory and Γ⊇
{‘A’≠‘B’: A and B are distinct sentences of L} then M* þ h* is classical.
Moreover, CLM*þh* Að Þ ¼ t iff A 2 * for every sentence A of L.

PROOF. The classicalness ofM þ h follows straight from the definition.
The second part is a slight adaptation of the textbook theorem canonically
stated when the objects in the model are equivalence classes of closed
terms. ;

LEMMA 2. If Γ is an ω-closed theory and B is a sentence, then CN(Γ∪
{B}) is ω-closed.

PROOF. Suppose that A[t/x]2CN(Γ∪{B}) for every closed term t. Then
(B⊃A[t/x])2Γ for every closed term t. So ∀x(B⊃Ax)2Γ, since Γ is ω-
closed. So (B⊃∀xAx)2Γ. So ∀xAx2CN(Γ∪{B}), as desired. a
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LEMMA 3. If Γ is an ω-closed theory such that A=2Γ, and if Cx is a
formula with one free variable, then there is a closed term t (which can be
a quote name) such that A=2CN5 * [ Ct � 8xCxf gð Þ.

PROOF. Given Lemma 2, it suffices to show that there is a closed term t
(which can be a quote name) such that A=2CN(Γ∪{Ct⊃∀xCx}). Suppose
not. Then, for every closed term t, the sentence ((Ct⊃∀xCx)⊃A)2Γ. So
∀x((Cx⊃∀xCx)⊃A)2Γ. So A2Γ, since A is a classical consequence of
∀x((Cx⊃∀xCx)⊃A). ;

LEMMA 4. If the language L is countable and M+h is an explicit partial
model for L, then Th M þ hð Þ ¼ CN5 A : A is an atomic sentence andfð
SVMþh Að Þ ¼ tg [ :A : A is an atomic sentence and SVMþh Að Þ ¼ ff gÞ.

PROOF. If M+h is classical, then the result is standard. Suppose that M+
h is nonclassical. Let * ¼ CN5 A : A is an atomic sentence and SVMþhfð
Að Þ ¼ tg [ :A : A is an atomic sentence and SVMþh Að Þ ¼ ff gÞ. Then
Γ⊆Th(M+h), because

� {A: A is an atomic sentence and SVM+h(A)=t}⊆Th(M+h),
� {¬A: A is an atomic sentence and SVM+h(A)=f}⊆Th(M+h), and
� Th(M+h) is closed under classical consequence and under the ω-rule

(the latter, because M+h is explicit).
Also note that, if A and B are distinct sentences, then ‘A’≠‘B’2Γ, since M
is a ground model.

To see that Th(M+h)⊆Γ, suppose that A=2Γ. List the formulas whose
only free variable is x as follows: C1x,..., Cnx,... Build ω-closed theories
Γ0⊆ ... ⊆Γn⊆... with A=2Γn as follows:
� Γ0=Γ
� Assume that Γn is an ω-closed theory and that A=2Γn. Let *nþ1 ¼

CN5 * [ Cntn � 8xCnxf gð Þ, where the closed term tn is chosen so that
A=2Γn+1. This can be done by Lemma 3.

Let *5 ¼ [n*n. Note that *5 is witnessing. Now find, by standard
methods, a complete theory $ � *5 such that A=2Δ. Δ is a complete,
consistent, witnessing theory and if C and B are distinct sentences, then
‘C’≠‘B’2Δ. So, by Lemma 1, M$ þ h$ is classical and CLM$þh$ðCÞ ¼ t
iff A2Δ, for every sentence C. In particular, CLM$þh$ Að Þ ¼ f .

Note that M$ þ h$ is isomorphic to M+h′ for some classical h′≥h. So
CLM+h′ (A)=f. So SVM+h(A)≠t, as desired. a

Remark. This proof relies on the countability of the language in the
construction of *5 . At each step (n+1), the fact that we can cite Lemma 3

PHILIP KREMER AND ALASDAIR URQUHART420



in order to find an appropriate term tn depends on the fact that Γn is ω-
closed. If the language were uncountable, then the construction would
have to be carried into the transfinite. But then we could not be sure that,
at the limit steps, the relevant theories are ω-closed: a union of an
increasing sequence of ω-closed theories, each excluding A, is guaranteed
to be a theory excluding A, but is not guaranteed to be ω-closed.

MORE DEFINITIONS. Suppose that L is a truth language, and that M=
〈D, I〉 is a ground model for L. Given any nonempty H⊆{t, f, n}D, define
limH:D→{t, f, n} as follows:

limH dð Þ ¼ t f½ � if h dð Þ ¼ t f½ � for some h 2 H and h dð Þ ¼ f t½ � for no h

2 H

n otherwise

Define the supervaluation jump operator σM:{t, f, n}
D→{t, f, n}D as

follows:

�M hð Þ dð Þ ¼ h dð Þ if d =2 Sent Lð Þ
¼ ValM Að Þ if d ¼ A 2 Sent Lð Þ

For each ordinal α define ��
M as follows:

�0M hð Þ ¼ h

��þ1
M hð Þ ¼ �M ��

M hð Þ� �

��M hð Þ ¼ lim ��
M hð Þ : �G�� �

for limit ordinals �

LEMMA 5.

(1) If h≤h′ then σM(h)≤σM(h′)
(2) If h≤σM(h) then for any ordinals α and β, ��

M hð Þ � ��
M hð Þ

(3) If h≤σM(h) then there is some ordinal α such that ��þ1
M hð Þ ¼ ��

M hð Þ.

Proof. These are standard results in the literature on fixed-point semantics.

PROOF OF COMPLETENESS (2). Assume that L is countable and that
A=2SVFPLTL. We need to show that ^LA. We will assume that the
variables of L are x0,... xn,.... Extend L to a language L′ as follows: first add
countably many new nonquote names c0,... cn,...; next add quote names to
L′ so that ‘B’ is a quote name of L′ for every sentence B of L′. Thus L′ will
not only contain the new nonquote names c0,... cn,... but also, for example,

;
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the quote names ‘(c1=c2)∨(c3=c4)’ and ‘T‘Tc7’’. List the formulas of L′
with only the free variable x0 as C0,... Cn,.... For any such formula C and
any term t, let Ct be the result of replacing the free occurrences of x0 in C
with t. We claim that A=2CNT (SVFPLTL′∪{Cncn⊃∀x0Cnx0: n 2 ℕ}).

To show this, we define a one-one translation Tr:Sent(L′)→Sent(L).
First, define the depth of a sentence B of L′ as follows: if B has no quote
names then depth(B)=0; if max{depth(C): ‘C’ occurs in B}=n, then depth
(B)=n+1. Now, assuming that Tr(B) has been defined for every sentence
B of L′ of depthGn, we will define Tr(B) for B of depth n. Beginning with
B, let

B′ = B, if B is of depth 0
= the result of replacing in B every quote name ‘C’ which does
not itself occur in the scope of quotation marks with the quote
name ‘Tr(C)’.

Next, get B″ by replacing every bound variable xk in B′ that does not
occur in the scope of quotation marks with the variable x2k. If no new
name cm occurs in B″, then let Tr(B)=B″. Otherwise, choose the greatest
m 2 ℕ such that cm occurs in B″. Get the formula B‴ by replacing each ck
in B″ by x2k+1. And let Tr(B)=9x19x3...9x2m+1B‴.

Clearly Tr:Sent(L′)→Sent(L) is one-one. Also, for every B2Sent(L),
notice that B and Tr(B) differ only in their bound variables, both in and
out of the scope of quotation marks: for example, suppose that R is a
binary relation symbol in L and that G is a unary predicate symbol of L
and that B is the sentence ∀x7Rx7‘9x3Gx3’; then Tr(B) is the sentence
∀x14Rx14‘9x6Gx6’. Thus B2SVFPLTL iff Tr(B)2SVFPLTL, for every B2
Sent(L). So, in particular, Tr(A)=2SVFPLTL.

We claim that, for every sentence B, if B2CNT(SVFPLTL′∪{Cncn⊃
∀x0Cnx0: n 2 ℕ}) then Tr(B)2SVFPLTL. We prove this by induction on the
length of proof of B in CNT (SVFPLTL′∪{Cncn⊃∀x0Cnx0: n 2 ℕ}). First,
suppose that B is the sentence ‘C’≠‘D’ where C and D are distinct. Then
Tr(B) is sentence ‘Tr(C)’ ≠ ‘Tr(D)’ which is in SVFPLTL, since Tr(C) and Tr
(D) are distinct. Next, suppose that B is Cncn⊃∀x0Cnx0. Then Tr(B)=9
x19x3... 9x2m+1(C′x2n+1⊃∀x0C′x0) for some formula C ′ and some m≥n. In
this case Tr(B)2SVFPLTL since Tr(B) is a classical theorem. Next suppose
that Tr(B1)2SVFPLTL and that B2 is a classical consequence of B1. Then Tr
(B2) is a classical consequence of Tr(B1) so that Tr(B2)2SVFPLTL. Similarly,
if Tr(B1)2SVFPLTL andB2 follows from B1 by an application of one of the T
rules, then Tr(B2) follows from Tr(B1) by the same T rule, so that Tr(B2)2
SVFPLTL. Thus, as desired, if B2CNT (SVFPLTL′∪{Cncn⊃∀x0Cnx0:
n 2 ℕ}) then Tr(B)2SVFPLTL, for every sentence B of L′. Thus A=2
CNT (SVFPLTL′∪{Cncn⊃∀x0Cnx0: n 2 ℕ}), since Tr(A)=2SVFPLTL.
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Note that CNT (SVFPLTL′ ∪{Cncn⊃∀x0Cnx0: n 2 ℕ}) is among the
theories Σ satisfying

(1) SVFPLTL′⊆Σ,
(2) For each formula Cx with one free variable, there is a name c such

that (Cc⊃∀xCx)2Σ,
(3) A=2Σ, and
(4) Σ is T-closed.

Also notice that the union of any increasing chain of theories satisfying
(1)–(4) is also a theory satisfying (1)–(4). So we can choose a maximal
theory Γ satisfying (1)–(4). Note that Γ is a consistent witnessing theory
and that the sentence ‘C’≠‘B’2Γ for distinct sentences C and B of Γ. If
we can prove that Γ is almost complete, then we can define M* þ h*, the
canonical partial model for Γ.

To see that Γ is almost complete, suppose that B is in the T-free fragment
of L′ and that neither B nor ¬B2Γ. Now either A=2CN(Γ∪{B}) or A=2CN
(Γ∪{¬B}). Suppose that A=2CN(Γ∪{B}) (the other case is treated
similarly). We claim that CN(Γ∪{B}) is T-closed. To see this, suppose
that C⊃D2CN(Γ∪{B}), where C is in the T-free fragment of L′. Then
(B⊃(C⊃D))2Γ so that B & C⊃D2Γ, so that B & C⊃T‘D’2Γ, since (B
& C) is in the T-free fragment of L′, and since Γ is T-closed. Thus C⊃
T‘D’2CN(Γ∪{B}). Similarly CN(Γ∪{B}) is closed under the other T
rules. But the T-closedness of CN(Γ∪{B}) contradicts the maximality of Γ
with respect to properties (1)–(4). So Γ is almost complete.

So we can define M* þ h*, the canonical partial model for Γ. Actually,
we only need the ground model M*. Let h(d)=n for each d 2 D*. For
each ordinal α, define h� ¼ ��M hð Þ. Note that h � �M

*
hð Þ so that, by

Lemma 5 (2), if α≤β then h� � h�. Note also that h� dð Þ ¼ n for each
d 2 D* � Sent L0ð Þ.

By induction on α we will prove that

(5) {B: B2Sent(L′) and h� Bð Þ ¼ t}⊆Γ.

When α=0, the result is given. Suppose that α is a limit ordinal and that
{B: B2Sent(L′) and h� Bð Þ ¼ t}⊆Γ for every βGα. Now choose any sen-
tence B and suppose that h� Bð Þ ¼ t. Then h� Bð Þ ¼ t for some βGα, so that
B2Γ by the inductive hypothesis. Finally, suppose that � ¼ � þ 1 and that
{B: B2Sent(L′) and h� Bð Þ ¼ t}⊆Γ. Note that h� Bð Þ ¼ h�þ1 Bð Þ ¼
t iff B 2 Th M* þ h�

� �
, for any B2Sent(L′). So in order to show that {B:

B2Sent(L′) and h� Bð Þ ¼ t}⊆Γ, it suffices to show that Th M*þð h�Þ � *.
By Lemma 4, Th M* þ h�

� � ¼ CN5 B : B is an atomic sentence andfð
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SVM*þh� Bð Þ ¼ tg [ B : B is an atomic sentence and SVM*þh� Bð Þ¼ fgÞ�
.

Note that Γ is ω-closed, since Γ is witnessing. So it suffices to show that
{B: B is an atomic sentence and SVM*þh� Bð Þ ¼ t}∪{¬B: B is an atomic
sentence and SVM*þh� Bð Þ ¼ f}⊆Γ. Note that, if B is an atomic sentence
in the T-free fragment of L′ then SVM*þh� Bð Þ ¼ t f½ � iff B 2 * :B 2 *½ �.
So it suffices to show that {Tt: t is a closed term and SVM*þh� Ttð Þ ¼ t}∪
{¬Tt: Tt is a closed term and SVM*þh� Ttð Þ ¼ f}⊆Γ. So suppose that t is a
closed term and SVM*þh� Ttð Þ ¼ t. Then h� th ið Þ ¼ t. So 〈t〉=B for some
B2Sent(L′). So B2Γ, by the inductive hypothesis. So T‘B’2Γ, since Γ is
T-closed. Also note that, since 〈t〉=B, the sentence (t=‘B’)2Γ. So Tt2Γ.
Similarly, if t is a closed term and SVM*þh� Ttð Þ ¼ f then ¬Tt2Γ. And this
suffices to complete the inductive proof of (5).

Now by Lemma 5, there is some ordinal α such that the partial model
M* þ h� is a fixed point, so that SVM*þh� Bð Þ ¼ h� Bð Þ for each sentence B
of L′. So, since A=2Γ, we have SVM*þh� Að Þ 6¼ t, by (5) above. Now
M* ¼ D*; I*h i is a ground model for the language L′, but we can easily use
it to define a ground model M for the language L as follows: M ¼ D*; Ih i
where I agrees with I* on every constant, every relation symbol and every
quote name in L. Clearly SVMþh� Að Þ 6¼ t. So ^LA, as desired. ;

Remark. We have not closed the question of whether îLA ) A 2
SVFPLTL for uncountable languages L, although we assert here that it
just must be true!

Remark. Another conception of the ‘logic’ generated by a semantics is
the set of sentences false in no model, i.e. the set A : :Aî?f g. Note that
this ‘logic’ is not closed under classical logical consequence: both sen-
tences b=‘¬Tb’⊃Tb and b=‘¬Tb’⊃¬Tb are in this set, but the sentence
b≠‘¬Tb’ is not. We leave the complexity question open.

5. VARIANT DEFINITIONS OF CONSEQUENCE

So far, we have followed Kremer (1986) in taking a fixed point to be a
partial model M+h where h(A)=SVM+h(A) for every A2Sent(L). As noted
in Section 2 above, Kripke (1975) further requires that, in a fixed point,
h(d)=f for each d2D−Sent(L). We call such a fixed point a Kripkean fixed
point, and define variants of îL and î:

Aî0
LB iff for every Kripkean fixed point M+h for L and every

assignment s, if SVM+h, s(A)=t then SVM+h, s(B)=t.
Aî0 B iff for every language L (with a distinguished predicate T

and quote names) of which A and B are both

).¬
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formulas, and for every Kripkean fixed point M+
h for L and for every assignment s, if SVM+h, s(A)=t
then SVM+h, s(B)=t.

Analogously to Section 2, above, we have PA− & Indî0
LA0T ‘9xT2x’ _

T ‘9x:T2x’ and PA− & Ind^0T ‘9xT2x’ _ T ‘9xT2x’. The proofs are
identical. As for the relationship between these consequence relations and
those of Section 2, it is clear that AîLB ) Aî0

LB and AîB ) Aî0B. But
we have the following counterexample to the converses.

EXAMPLE. Consider the truth language L with no nonquote names, one
binary function symbol p (think of a symbol for the pairing function), two
unary predicates G and H in addition to the unary predicate T and quote
names for all the sentences. Let A and B be the following sentences:

A¼df 8x Hx � Txð Þ & 8x Tx � Gx _ Hxð Þ & 8x8yGpxy &
8x8y8z8w pxy ¼ pzw � x ¼ z & y ¼ wð Þ &
8x8y8z Tpxy & Tpzy � x ¼ zð Þ � 9y Gy & 8x Hx � :Tpxyð Þð Þ

B¼df T ‘9x Gx & Txð Þ’ _ T ‘9x Gx & :Txð Þ’
Then we claim that,

(*) Aî0B and Aî0
LB, but

(**) A^B and A^LB.

For (*), it suffices to show that Aî0B. So suppose not. Then for some
language L′ of which A and B are both sentences, and for some Kripkean
fixed point M+h=〈D, I〉+h for L′, we have SVM+h(A)=t and SVM+h(B)≠
t. Define four subsets of D as follows:

G={d2D: I(G)(d)=t}
H={d2D: I(H)(d)=t}
T={d2D: h(d)=t}
N={d2D: h(d)=n}

Also define the function p:D×D→D as I(p).
Note:

(1) G⊆N, since SVM+h(B)≠t. To see this, note (1.1) d2G and h(d)=t⇒
SVM+h(9x(Gx & Tx))=t⇒SVM+h(T ‘9x(Gx & Tx)’)=t (sinceM+h is a
fixed point) ⇒SVM+h(T ‘9x(Gx & Tx)’∨T ‘9x(Gx & ¬Tx)’)=t; and
(1.2) d2G and h(d)=f⇒SVM+h(9x(Gx & ¬Tx))=f⇒SVM+ h(T ‘9x(Gx
& ¬Tx)’)=f⇒SVM+h(T ‘9x(Gx & Tx)’∨T ‘9x(Gx & ¬Tx)’)=t.

(2) H⊆T, since SVM+h(∀x(Hx⊃Tx))=t. If there were a d2H−T, then
there would be a classical extension M+h′ of M+h, such that h′(d)=
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f, in which case CLM+h′(∀x(Hx⊃Tx))=f, which would contradict
SVM+h(∀x(Hx⊃Tx))=t.

(3) N∪T⊆G∪H, since SVM+h(∀x(Tx⊃Gx∨Hx))=t. If there were a
d2(N∪T)−(G∪H), then there would be a classical extensionM+h′ of
M+h, such that h′(d)=t, in which case CLM+h′(∀x(Tx⊃Gx∨Hx))=f,
which would contradict SVM+h(∀x(Tx⊃Gx∨Hx))=t.

(4) G=N and H=T. This follows from (1), (2) and (3) and the fact that
N∩T=∅.

(5) p(d, d′)=2T. This follows from (4) and from the fact that SVM+h

(∀x∀yGpxy)=t.
(6) If p(d1, d2)=p(d3, d4) then d1=d3 and d2=d4, since SVM+h(∀x∀y∀ z∀w

(pxy=pzw⊃x=z & y=w))=t.

Since the model is Kripkean, we have T∪N⊆Sent(L′). Also, clearly the
cardinality of T is the same as the cardinality of Sent(L′), since A∨¬A2T
for every A2Sent(L′). So there is an onto function k:T→N. Let K={p(d, d′):
d′=k(d)}. Note:

(7) p(d, d′)2K iff d′=k(d). (Proof of ⇒): Suppose that p(d, d′)2K.
Then, for some d″ and d‴p(d, d′)=p(d″, d‴) and d‴=k(d″). So d′ =
d‴=k(d″)=k(d), by (6). This proves (⇒). The converse follows from
the definition of K.

Since K⊆N, there is a classical M+h′≥M+h such that T ′={d: h′(d)=t}=
T∪K. Note:

(8) If p(d, d′)2T′ and if p(d, d″)2T′ then d′=d″. To see this, suppose
that p(d, d′)2T′ and that p(d, d″)2T′. Then p(d, d′)2K and p(d, d″)
2K, by (5). So d′=d″ by (7).

So CLM+h′(∀x∀y∀z(Tpxy & Tpzy⊃x=z))=t. So CLM+h′(9y(Gy & ∀x
(Hx⊃¬Tpxy)))=t. So we can choose a d2G=N such that, for every d′2H=
T, we have p(d, d′)=2T′, in which case p(d, d′)=2K, in which case d′≠k(d). But
this contradicts the fact that k:T→N is onto. This suffices for the proof of (*).

For (**), it suffices to show that A^LB. So we want to construct a fixed
point for L that makes A true, but that does not make B true. The idea is
simple: we want D=Sent(L)∪E, where E is some uncountable set; we
want the truth values of all the nonsentences (i.e. elements of E) to be n;
and we want the extension of H to be the set of sentences with the truth
value t; and finally we want the extension of G all the sentences with truth
value n together with the members of E. The actual construction is tricky,
since we will build the extension of G and H as well as the interpretation
of T up together.
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First, choose some uncountable set E disjoint from Sent(L) and let D=
Sent(L)∪E. Next, choose a one-one and onto (pairing) function p:D×
D→E. Given G, H⊆D, we will use the notation G+H for the classical
ground model M=〈D, I〉 where p=I(p), G={d2D: I(G)(d)=t} and H=
{d2D: I(H)(d)=t}. And given non-overlapping T, F⊆D, we will use the
notation T+F for the function from D to {t, f, n} where (T+F)(d)=t [f] iff
d2T [F]. Thus G+H+T+F is a partial model for L, where G, H, T, F⊆D
and T∩F=∅.

We define a function π on partial models of the form G+H+T+F as
follows. π(G+H+T+F)=G′+H′+T ′+F′, where

G′=E∪{C2Sent(L): SVG+H+T+F(C)=n}
H′={C2Sent(L): SVG+H+T+F(C)=t}
T′=H′
F′={C2Sent(L): SVG+H+T+F(C)=f}

Later, we will define, using π, a sequence of partial models: this
sequence will culminate in our desired partial model.

Recall the definition of the depth of a sentence, given in the com-
pleteness proof, above: if the sentence X has no quote names then depth
(X)=0; if max{depth(C): ‘C’ occurs in X}=n, then depth(X)=n+1. Given
any set K⊆D and any n 2 ℕ, let K G n ¼ K \ C 2 Sent Lð Þ: depth Cð ÞG ngf
and K	n ¼ K \ C 2 Sent Lð Þ: depth Cð Þnf g. We say that a partial model G
+H+T+F is n-separated iff
� G∪H∪F=D, and
� H=T, and
� G, H and F are pairwise disjoint
� E⊆G
� and GQn, HQn, TQn and FQn are all infinite.

We say that Gþ Hþ Tþ F ¼n G
0 þ H0 þ T0 þ F0 iff G G n ¼ G0

G n, HGn ¼
H0

Gn, TGn ¼ T0
Gn and F<n ¼ F0<n.

Given any two partial models M+h=〈D, I〉+h and M′+h′=〈D′, I′〉 + h′
for L and any n 2 ℕ, we say that a function Ψ:D→D′ is an n-isomorphism
from M+h to M′+h′ iff

� Ψ is one-one and onto,
� Ψ (I(p)(d, d′))=I′(p)(Ψ (d), Ψ (d′)), for every d, d′2D;
� I′(G)(Ψ (d))=I(G)(d), for every d2D;
� I′(H)(Ψ (d))=I(H)(d), for every d2D;
� h′(Ψ (d))=h(d), for every d2D; and
� Ψ(C)=C for every sentence C of depth Gn.
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We say that M+h and M′+h′ are n-isomorphic iff there is an n-
isomorphism between them.

Now we have the tools to prove the following:
(#) Suppose that G+H+T+F and G′+H′+T ′+F′ are n-separated and
that Gþ Hþ Tþ F ¼n G

0 þ H0 þ T0 þ F0. Then � Gþ Hþ Tþ Fð Þ ¼nþ1

� G0 þ H0 þ T0 þ F0ð Þ.
To prove (#), suppose that G+H+T+F and G′+H′+T ′+F′ are n-separated

and that Gþ Hþ Tþ F ¼n G
0 þ H0 þ T0 þ F0. Given the definition of

π, it suffices to define an n-isomorphism Ψ from G+H+T+F to G′+H′+
T ′+F′. Before we can construct Ψ, we distinguish some subsets of E. Let
E0={p(X, Y): X, Y2Sent(L)} and let En+1={p(d, d′): d2En}∪En. First,
construct a function Φ:Sent(L)→Sent(L) by pasting together,

� the identity function on {C2Sent(L): depth(C)Gn}
� a one-one onto function from GQn to G

0
Qn.

� a one-one onto function from HQn ¼ TQn to H
0
Qn ¼ T

0
Qn.

� a one-one onto function from FQn to F
0
Qn.

Construct Ψ by setting Ψ(C)=Φ(C) for C2Sent(L), and by setting

� Ψ (p(X, Y))=p(Ψ (X), Ψ (Y)) for X, Y2Sent(L);
� Ψ (p(d, d′))=p(Ψ (d), Ψ (d′)) for d, d′2E0;
� Ψ (p(d, d′))=p(Ψ (d), Ψ (d′)) for d, d′2En+1 − En;
� Ψ (d)=d, for d 2 E � [n 2 ℕEn.

Note that Ψ is, as desired, an n-isomorphism. Thus (#) is proved.
Next, we define a sequence of partial models Gn+Hn+Tn+Fn as follows.

G0 ¼ D
H0 ¼ T0 ¼ F0 ¼ ;:
Gnþ1 þ Hnþ1 þ Tnþ1 þ Fnþ1 ¼ � Gn þ Hn þ Tn þ Fnð Þ:

First we claim that, if n≥1, then Gn+Hn+Tn+Fn is m-separated for
each m≤n. Clearly the first four conditions for m-separatedness are
satisfied. As for the fifth condition, first note that each of Gnð ÞQm, Hnð ÞQm,
Tnð ÞQm, and Fnð ÞQm is closed under double negation, so it suffices to show
that they are not empty. For any k 2 ℕ and sentence C, define the sentence
T kC as follows: T 0C=C and Tk+1C=T‘TkC’. Then notice that Tm∀x(x=
x)∨¬Tm∀x(x=x)2 Hnð ÞQm¼ Tnð ÞQm, and Tm∀x(x=x) & ¬T m∀x(x=x)
2 Fnð ÞQm. Also, an easy inductive argument shows that ∀x(Gx⊃Tx) 2
Gk for each k. So ((Tm∀x(x=x) & ¬Tm∀x(x=x))∨∀x(Gx⊃Tx))2 Gnð ÞQm.
Thus, as desired, if n≥1, then Gn+Hn+Tn+Fn is m-separated for each m≤n.
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By induction on n, we will prove

##ð ÞGnþ1 þ Hnþ1 þ Tnþ1 þ Fnþ1 ¼n Gnþ2 þ Hnþ2 þ Tnþ2 þ Fnþ2;
for each n 2 ℕ:

This is vacuously true for n=0. For the inductive step, assume that
Gnþ1 þ Hnþ1 þ Tnþ1 þ Fnþ1 ¼n Gnþ2 þ Hnþ2 þ Tnþ2 þ Fnþ2. The fact
that Gnþ2 þ Hnþ2 þ Tnþ2 þ Fnþ2 ¼nþ1 Gnþ3 þ Hnþ3 þ Tnþ3 þ Fnþ3 fol-
lows from (#) and from the n-separatedness of the partial models
Gnþ2 þ Hnþ2 þ Tnþ2 þ Fnþ2 and Gnþ3 þ Hnþ3 þ Tnþ3 þ Fnþ3.

Now define the partial model G+H+T+F as follows:

G = d : 9m 2 ℕð Þ 8n 	 mð Þ d 2 Gnð Þf g ¼ [m \n 	 m Gn

H=[m \n 	 m Hn

T =[m \n 	 m Tn

F =[m \n 	 m Fn

We will show that � Gþ Hþ Tþ Fð Þ ¼ Gþ Hþ Tþ F. It suffices
to show that � Gþ Hþ Tþ Fð Þ ¼m Gþ Hþ Tþ F, for each m. Given
(##), if C is a sentence of depth m, then either 8n 	 mþ 2ð Þ C2 GnÞð or
8n 	 mþ 2ð Þ C=2 GnÞð , and similarly for H, T and F in place of G. So
Gþ Hþ Tþ F ¼m Gmþ2 þ Hmþ2 þ Tmþ2 þ Fmþ2. Thus, by (#), � Gþð
Hþ Tþ FÞ ¼mþ1 Gmþ3 þ Hmþ3 þ Tmþ3 þ Fmþ3. But by (##), Gmþ2þ
Hmþ2 þ Tmþ2 þ Fmþ2 ¼mþ1 Gmþ3 þ Hmþ3 þ Tmþ3 þ Fmþ3. So � Gþ Hþð
Tþ FÞ ¼m Gþ Hþ Tþ F. So � Gþ Hþ Tþ Fð Þ ¼ Gþ Hþ Tþ F. But in
this case, the partial model G+H+T+F is a fixed point: SVGþHþTþFðCÞ ¼
t f½ � iff C 2 T F½ �, for each sentence C. Note that this fixed point was
carefully constructed so SVGþHþTþF Að Þ ¼ t and SVGþHþTþF Bð Þ ¼ n. ;

Remark. The above example and the example from Section 2 show that
î, îL, î0 and î0

L are all distinct.

As for the issue of complexity, let the first and second order languages
L and L2 be as in Section 3.

COMPLEXITY THEOREM.

(1)
Q1

2
�SOL is recursively encodable in î0.

(2) î0
L
is

Q1
2
�hard.
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Here is what we mean when we say that î0
L is

Q1
2� hard. First treat î0

L
as a set of ordered pairs, in particular A;Bh i : Aî0

LB
� �

. To say that î0
L is

Q1
2
� hard is to say that for any

Q1
2
set X of natural numbers, there is a one-

one recursive function f : ℕ ! Sent Lð Þ 
 Sent Lð Þ such that, for every
n 2 ℕ, we have n 2 X iff f nð Þ 2 î0

L.
Part (1) of the Complexity Theorem is a corollary to a lemma ana-

logous to the Complexity Lemma of Section 3.

COMPLEXITY LEMMA. Suppose that ∀X9TA is a
Q1

2
formula, and

that G is some unary predicate of L not occurring in A. Also suppose that
t1,..., tn are all the terms occurring in A. (Note: the terms that can occur in
A are either individual constants of L or variables of L. Every formula
contains some term, so the list is not empty.) Then

8X9TA 2 Y1
2
� SOL iff :AG & Gt1 & . . . & Gtnî0T ‘9x Gx & Txð Þ’ _ T ‘9x Gx&:Txð Þ’:

Proof. (⇒) Suppose that ¬AG & Gt1 & ... & Gtn^0T ‘9x Gx & Txð Þ’_
T ‘9x Gx:Txð Þ’. Then for some language L′ which includes all the vocabulary
on the right and left-hand sides of the turnstile, we have ¬AG & Gt1 &... &
Gtn^

0
L0T ‘9x Gx & Txð Þ’ _ T ‘9x Gx & :Txð Þ’. At this point, the proof

follows the proof of (1)⇒(2) in Section 3, with straightforward adjustments
added to deal with the fact that we’re working in L′ instead of L.

(⇐) This proof is somewhat similar to the proof of (3)⇒(1) in Section 3,
except that, in the construction of the fixed point, we have to make sure
that we construct a Kripkean fixed point, unlike in Section 3. So suppose
that 8X9TA =2 Q1

2�SOL. Then there is a domain D, and assignments s
and S such that 9TA is false in D relative to s and S. Let κ be the
cardinality of D, and expand L to a language L′ by adding κ many new
constants c� : �G�f g to L, and also adding the new quote names. We
might as well assume that the domain D is precisely the following set of
sentences of L0: :Tc� :f �G�g, since only the cardinality of D is really at
issue in falsifying ∀X9TA.

Define a ground model M=〈D′, I〉 for the language L as follows:
D′ = Sent(L′) (note that D⊆D′)
I(R) = S(R)∪{〈d1,..., dn, f〉: some di=2D}, for each n-ary relation

R≠G of L
I(G) = (D×{t})∪((D′−D)×{f})
I(c) = s(c), for each nonquote name c of L
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I c�ð Þ = :Tc�, for the new nonquote names c�
I(‘A’) = A, for each A2Sent(L′)

Let M+h be any fixed point for L′. M will be Kripkean since there are
no nonsentences in D. Note that h(d)=n for each d2D, since the members
of D are liar sentences. Notice that SVM+h(9x(Gx & Tx))=SVM+h(9x(Gx
& ¬Tx))=n. Thus SVM+h(T‘9x(Gx & Tx)’)=SVM+h(T‘9x(Gx & ¬Tx)’)=
n. Thus SVM+h(T‘9x(Gx & Tx)’∨T‘9x(Gx & ¬Tx)’)=n, as can be seen
by considering any classical h′ and h″ such that h′(9x(Gx & Tx))=h′(9x
(Gx & ¬Tx))=t and h″(9x(Gx & Tx))=h″(9x(Gx & ¬Tx))=f. Since SVM+h

(T‘9x(Gx & Tx)’∨T‘9x(Gx & ¬Tx)’)=n, it suffices to specify an
assignment s′ of values to the variables of L, such that SVM+h, s′(¬A

G &
Gt1 &... & Gtn)=t. The proof that this can be done is exactly as in the
proof of (3)⇒(1) in Section 3. a

Part (2) of the Complexity Theorem is weaker than Part (1) for the
following reason: given that the language L is countable, we cannot get
the effect of full second-order quantification but only of second-order
quantification over countable sets. In particular, define ω-SOL as the set
of second-order formulas true in each countable domain (relative to any
assignments s and S′) and define

Q1
2-ω-SOL as the set of

Q1
2 formulas in

ω-SOL. Then we can prove a weaker complexity lemma, analogous to the
above lemma:

8X9TA 2 Y1

2
�5 �SOL iff :AG & Gt1 & . . . & Gtnî

0
LT ‘9x Gx & Txð Þ’ _ T ‘9x Gx & :Txð Þ’:

The proof of (⇒) runs as in the proof of (1)⇒(2) in Section 3: the
countability of the new domain D′={d: I(G)(d)=t} is guaranteed since
I(G)(d)=t⇒h(d)=n, in which case d must be a sentence, if we are taking
the fixed point to be a Kripkean fixed point. The proof of (⇐) runs as in
the proof of (⇐) above, with the following exceptions: we know that D is
countable; rather than add new constants to L, we can just assume that D=
{¬Tc: c2C} for some countable set C of constants already in L. Given
both directions of the biconditional, we can infer that

Q1
2�5�SOL is

encodable in î0
L. And this suffices for Part (2) of the Complexity

Theorem, given the following lemma:

LEMMA.
Q1

2�5 �SOL is
Q1

2�hard.

Proof. If our second-order language L2 had a name o (‘zero’) and an
unary function symbols s, and binary function symbols + and ×, then we
could proceed as follows with our proof. Suppose that X is a

Q1
2 set of
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natural numbers. Let Arith be the conjunction of the second-order axioms
of Peano Arithmetic: Arith characterizes, up to isomorphism, the standard
model of arithmetic. So, since X is

Q
1
2, there is a

Q
1
2 formula B(x)=

∀X9TA(X, T, x) with a free individual variable x and no other free
variables so that, for each n 2 ℕ we have n2X iff B(sno) is true in the
standard model of arithmetic, where sno is o prefixed by n occurrences of
s. Thus, for each n 2 ℕ we have n2X iff (Arith⊃B(sno))2ω-SOL. Note
that, since Arith is a

Q
1
1 formula and B(sno) is a

Q
1
2 formula, there is a

Q1
2

formula Cn which is equivalent to (Arith⊃B(sno)), i.e. (Cn≡(Arith⊃B
(sno)))2SOL: moreover, the function from the B(sno))’s to the Cn’s is
recursive. Thus, for each n 2 ℕ we have n 2 X iff Cn 2

Q1
2�5�SOL.

And note that the map from ℕ to the sentences of L2, taking n to Cn, is
recursive.

Unfortunately this proof does not quite work, since our second-order
language L2 has no names and no function symbols – L2 does not even
have functional variables. So the above proof has to be modified by
letting some specified individual variable v stand in for the constant o,
and some binary relational variable stand in for s, and some ternary
relational variables stand in for + and ×. ;

Analogously to our Soundness and Completeness Theorems in Section 4,
we have the following.

SOUNDNESS THEOREM. If A2SVFPLTL then î0A and î0
LA.

COMPLETENESS THEOREM.

(1) If î0A then A2SVFPLTL.
(2) If L is countable and î0

LA then A2SVFPLTL.

COROLLARY.

(1) î0A iff îA.
(2) If L is countable then îLA iff îA iff î0

LA iff î0A.

As before, soundness is routine and Completeness (1) follows from
Completeness (2).

Before we proceed to the proof of Completeness (2), we need some
new notions. Recall the definition of the depth of a sentence, given in the
proof of Completeness (1) in Section 4, and repeated in the Example in
Section 5. Fix any truth language L. Suppose that M þ h ¼ D; Ih i þ h
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and M 0 þ h0 ¼ D0; I 0h i þ h0 are two partial models of L. We say that
M þ h �n M 0 þ h0 iff SVMþh Bð Þ ¼ SVM 0þh0 Bð Þ for every sentence B of
depth ≤ n. Also, we generalize the definition of an n-isomorphism
between two models: a function Ψ:D→D′ is an n-isomorphism from M+
h to M′+h′ iff

� Ψ is one-one and onto,
� Ψ(C)=C for every sentence C of depth G n.
� I′(c)=Ψ(I(c)) for every nonquote name c
� Ψ(I( f )(d1, ..., dn))=I′( f )(Ψ(d1), ..., Ψ(dn)) for every n-ary function

symbol f and every d1, ..., dn2D
� I(R)(d1, ..., dn)=I′(R)(Ψ(d1), ..., Ψ(dn)) for every n-ary relation symbol f

and every d1, ..., dn2D
� h(d)=h′(Ψ(d)), for every d2D

We say that M+h and M′+h′ are n-isomorphic iff there is an n-
isomorphism between them. Note that if M+h and M′+h′ are n-
isomorphic then M þ h �n M 0 þ h0.

Suppose thatΦ:Sent(L)→Sent(L). Then we say that M þ h �6 ; n M 0þ
h0 iff SVM+h(B)= SVM′+h′(Φ(B)) for every sentence B of depth ≤n.

If M þ h ¼ D; Ih i þ h is a partial model for L and Ψ:D→Sent(L) is
one-one and onto, then MΨ þ hΨ ¼ Sent Lð Þ; IΨh i þ hΨ is the partial
model satisfying the following:

� IΨ ‘E’ð Þ ¼ E, for each sentence E
� IΨðcÞ ¼ Ψ Iðcð ÞÞ, for each nonquote name c
� IΨ fð Þ E1; . . . ;Emð Þ ¼ Ψ I fð Þ Ψ�1 E1ð Þ; . . . ;Ψ�1 Emð Þ� �� �

, for each n-ary
function symbol f and for E1,..., Em2Sent(L)

� IΨ Rð Þ E1; . . . ;Emð Þ ¼ I Rð Þ Ψ�1 E1ð Þ; . . . ;Ψ�1 Emð Þ� �
, for each n-ary

relation symbol R and for E1,..., Em2Sent(L)
� hΨ Eð Þ ¼ h Ψ�1 Eð Þ� �

for E2Sent(L).
Note that Ψ is a 0-isomorphism between M+h and MΨ þ hΨ, so that

MΨ þ hΨ �0 M þ h. We also define the sets TΨ ¼ E : SVMΨþhΨ Eð Þ ¼ tf g,
NΨ ¼ E : SVMΨþhΨ Eð Þ ¼ nf g, and FΨ ¼ E : SVMΨþhΨ Eð Þ ¼ ff g. And we
define the set DΨ;n ¼ d 2 D� Sent Lð Þ : Ψ dð Þis of depth > nf g.

Finally, we say that a sentence B is a constituent of a formula C iff ‘B’
occurs in C, possibly in the scope of quotation marks. A constituent
occurrence of B in C is an occurrence of B in the quote name ‘B’.

PROOF (SKETCH) OF COMPLETENESS (2). Suppose that L is a
countable truth language and that A=2SVFPLTL. Recall the construction,
in Section 4, of a fixed point M þ h ¼ D;Ih i þ h, in which A is not true.
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Define D′=D−Sent(L), and define T={d2D: h(d)=t}, F={d2D: h(d)=f}
and N={d2D: h(d)=n}. An inspection of the construction in Section 4
reveals that M+h satisfies the following:

� D is countably infinite.
� D′∩T is infinite.
� D′∩F is infinite.
� If Sent(L)∩N is nonempty, then D′∩N is infinite.
� If Sent(L)∩N is empty, then D′∩N is either empty or infinite.

At this point, we consider three cases.

(Case 1) M is nonclassical and Sent(L)∩N is nonempty. It suffices to
construct a one-one onto function Ψ:D→Sent(L) so that

(1) Ψ(A)=A,
(2) M þ h �Ψ;n MΨ þ hΨ for each n, and
(3) MΨ þ hΨ is a fixed point.

MΨ þ hΨ will be a Kripkean fixed point, since the domain of the
ground model MΨ ¼ Sent Lð Þ. Also, we will have the following, where n
is the depth of A: SVMþh Að Þ ¼ SVMΨþhΨ Ψ Að Þð Þ by (2). Thus SVMþh Að Þ ¼
SVMΨþhΨ Að Þ, by (1). Thus SVMΨþhΨ Að Þ 6¼ t. Thus ^0

LA as desired.
Our function Ψ will be the limit in some sense of a sequence {Φn:D→

Sent(L)} of functions, which we will construct by induction. But first,
choose B2Sent(L)∩T and C2Sent(L)∩N, both of depth 0, making sure that

� neither B nor C is a constituent nor a subformula of A or of each other, and
� for each n and for each (quote or nonquote) name c occurring in A (in-

cluding those in the scope of quotation marks), I(C)≠¬nB and I(C)≠¬nC.

Note that ¬2nB2Sent(L)∩T, and ¬2n+1B2Sent(L)∩F, and ¬2nC2Sent
(L)∩N, for each n 2 ℕ, since M+h is a fixed point.

Now define a function Φ:Sent(L)→Sent(L) as follows:

Φ(¬2n ±B) = ¬4n±B
Φ(¬2nC) = ¬4nC
Φ(E) = the result of replacing constituent occurrences of ¬2n±B [¬2nC]

with ¬4n±B [¬4nC]. Here, we are assuming that all the oc-
currences of ¬ are indicated. Thus, for example, Φ(G‘¬¬C’∨
T‘T‘¬¬¬B’’)=G‘¬¬¬¬C’∨T‘T‘¬¬¬¬¬B’’.

Let U=rangeΦ and V ¼ Sent Lð Þ � rangeΦ. And let V9n ¼ E 2f
V : depth Eð Þ > ng and V�n ¼ E 2 V : depth Eð Þ � nf g. Note that the
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depth of Φ(E) is the same as the depth of E. Also note that Φ(A)=A, since
neither ±B nor C is a constituent of A.

Now we define our sequence of functions {Φn:D→Sent(L)}. Define
Φ0:D→Sent(L) by patching together

� Φ:Sent(L)→Sent(L)
� A one-one function from D′∩T to V∩T
� A one-one function from D′∩N to V∩N
� A one-one function from D′∩F to V∩F

Note that M þ h �Φ;0 MΦ0 þ hΦ0 , since M þ h �0 MΦ0 þ hΦ0 and since
Φ(E) is logically equivalent to E, for sentences E of depth 0. Note also that
each of the sets DΦ0;0 \ T, DΦ0;0 \ N, and DΦ0; 0 \ F is infinite, as is each
of V>0 \ TΦ0 ;V>0 \ NΦ0 , and V>0 \ FΦ0 .

Now suppose that we have defined the one-one onto functionΦn:D→Sent
(L), so that each of the sets DΦn;n \ T, DΦn;n \ N, and DΦn;n \ F is infinite.
Also suppose that Φn(E)=Φ(E), for each E2Sent(L). Choose Φn+1:D→
Sent(L) by insuring that,

� Φn+1(E)=Φ(E), for each E2Sent(L),
� Φn+1(d)=Φn(d), if d2D′ and Φn(d) is of depth ≤ n,
� Φn+1 maps DΦn, n∩T one-one and onto V>n \ TΦn
� Φn+1 maps DΦn, n∩N one-one and onto V>n \ NΦn
� Φn+1 maps DΦn, n∩F one-one and onto V>n \ FΦn .

We can construct this mapping, since each of the sets V>n \ TΦn ,
V>n \ NΦn , and V>n \ FΦn is infinite. To see this, note that, for each m9n,
we have Tm::B _ :Tm::B 2 V9n \ TΦn , Tm¬¬B & :Tm::B 2 V>n

\FΦn , and (Tm¬¬B∨¬Tm¬¬B) & C 2 V>n \ NΦn .
We make a number of observations about the Φn. We will not prove

the claims whose proofs are straightforward.

(4) Φn(E)=Φ(E), for each E2Sent(L).
(5) Each of the sets DΦin; n \ T, DΦn; n \ N, and DΦn; n \ F is infinite.
(6) Φ�1

n Eð Þ ¼ Φ�1
k Eð Þ for each sentence E of depth ≤k≤n.

(7) MΦn þ hΦn �k MΦk þ hΦk , for each k≤n. This is proved by induction
on k. The base case is trivial. For the inductive step, it suffices to
show that MΦnþ1 þ hΦnþ1 �n MΦn þ hΦn . And for this it suffices to
note that the function Φnþ1 � Φ�1

n is an n-isomorphism from
MΦn þ hΦn to MΦnþ1 þ hΦnþ1 .

Given (6), above, we can define a function Ψ:D→Sent(L):

Ψ(d) = E if for some k, for every n≥k, Φn(d)=E.
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Note that Ψ�1 Eð Þ ¼ Φ�1
n Eð Þ for each sentence E of depth n. As noted

above, we will be done if we can show,

(1) Ψ(A)=A,
(2) M þ h �Ψ;n MΨ þ hΨ for each n, and
(3) MΨΨþ hΨΨ is a fixed point.

Re (1). Note that Φn(E)=Φ(E), for each E2Sent(L) and each n. So
Ψ(E)=Φ(E), for each E2Sent(L). Also Φ(A)=A. So Ψ(A)=A, as desired.

The proofs of (2) and (3) still need to be filled in. But the proof of (2)
will rely on the fact that Φ’s mapping of, for example, ¬¬B to ¬¬¬¬B will
be compensated for by mapping G‘¬¬B’ to G‘¬¬¬¬B’. And the proof of
(3) will rely on the claim that M6 0 þ h6 0 is, in a sense, a fixed point
relative to sentences of depth G n: if E is of depth G n, then E will be
t f ;n½ � iff hΦ0 Eð Þ ¼ t f ;n½ �. This will complete Case 1.

(Case 2) M+h is classical. Thus D′∩N is empty. Then the construction
in Case 1 can be repeated, with a slight simplification: all mention of C
and of N can be excised.
(Case 3) M+h is nonclassical and Sent(L)∩N is empty. Choose any
classical partial model M þ h0QM þ h. Note that, for any sentence E,
SVM+h(E)=t or f, since Sent(L)∩N is empty. Also, for any sentence E,
SVM+h(E)=t [f]⇒SVM+h′(E)=t [f], since M þ h0QM þ h. Thus, for any
sentence E, SVM+h′(E)=SVM+h(E). Also, for any sentence E, h′(E)=h
(E), since Sent(L)∩N is empty. So M+h′ is a classical fixed point,
making the same sentence true [false] asM+h. In particular SVM+h(A)=
f. Note that this case now reduces to Case 2. a

6. VARIANT SUPERVALUATION SCHEMES

As mentioned above, Kripke defines two variants of the supervaluation
scheme. Fix a truth language L. Suppose that M=〈D, I〉 is a ground
model. Thus Sent(L)⊆D. We say that h:D→{t, f, n} is weakly consistent
iff the set {A2Sent(L): h(A)=t} is consistent. We say that h is strongly
consistent iff the set {A2Sent(L): h(A)=t}∪{¬A2Sent(L): h(A)=f} is
consistent. Note that if h(A)=t or f for every A2Sent(L), then h is
strongly consistent iff the set {A2Sent(L): h(A)=t} is a complete
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consistent theory. If h is weakly consistent we define, for each assignment
s and formula A,

SV1Mþh; s Að Þ ¼ t; if CLMþh0; s Að Þ ¼ t for every classical M þ h0QM þ h;

where h0 is weakly consistent;

f ; if CLMþh0; s Að Þ ¼ f for every classical M þ h0QM þ h;

where h0 is weakly consistent;

n; otherwise:

If h is strongly consistent, the definition of SV2M+h, s(A) is analogous,
with the word ‘weakly’ replaced by the word ‘strongly’.

This produces two new evaluation schemes, at least for partial models
M+h, where h is weakly (for SV1) or strongly (for SV2) consistent. A
partial modelM+h (for L) is an SV1-fixed point (for L) iff h(A) = SV1M+h

(A) for every A2Sent(L). Similarly for SV2-fixed point. The fixed point
theorem holds for SV1- and SV2-fixed points. An SV1-fixed point [SV2-
fixed point] is Kripkean iff h(d)=f for every d2D−Sent(L). Analogously
to the definitions in Section 3 and Section 5, we define consequence
relations:

Aî1LB iff for every SV1-fixed point M+h for L and every assign-
ment s, if SV1M+h, s(A)=t then SV1M+h, s(B)=t.

Aî1B iff for every truth language L of which A and B are both for-
mulas, and for every SV1-fixed point M+h for L and for
every assignment s, if SV1M+h, s(A)=t then SV1M+h, s(B)=t.

Aî0
1LB iff for every Kripkean SV1-fixed point M+h for L and every

assignment s, if SV1M+h, s(A)=t then SV1M+h, s(B)=t.
Aî0

1B iff for every language L (with a distinguished predicate T and
quote names) of which A and B are both formulas, and for
every Kripkean SV1-fixed point M+h for L and for every
assignment s, if SV1M+h, s(A)=t then SV1M+h, s(B)=t.

The consequence relations î2L, î2, î0
2L and î0

2 are defined
analogously.

Analogously to Section 2, Section 3 and Section 5, we have the fol-
lowing results (1)–(6) for î1L, î1, î

0
1L and î0

1. For (1) and (2), LA and
LA′ are the languages in the example in Section 2; for (3)–(5), L is the
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first-order language specified in Section 3; and for (6), L is the language
of the counterexample in Section 5.

(1) PA− & Ind ^1LAT ‘9xT2x’ _ T ‘9x:T2x’ thus PA�& Ind ^1T ‘9xT2x’ð
_ T9x:T2xÞ

(2) PA− & Ind^1LA0T ‘9xT2x’ _ T ‘9xT2x’.
(3)

Q1
2�SOL is recursively encodable in both î1 and î1L.

(4)
Q1

2�SOL is recursively encodable in î0
1.

(5) î0
1L is

Q1
2� hard.

(6) Aî0
1B and Aî0

1LB, but Aî1B and A^1LB, where

A¼df 8x Hx � Txð Þ&8x Tx � Gx _ Hxð Þ & 8x8yGpxy &

8x8y8z8w pxy ¼ pzw � x ¼ z&y ¼ wð Þ &
8x8y8z Tpxy & Tpzy � x ¼ zð Þ � 9y Gy & 8x Hx � :Tpxyð Þð Þ; and

B¼df T ‘9x Gx & Txð Þ’ _ T ‘9x Gx & :Txð Þ’:

The arguments for (1) to (6) are almost exactly the same as the arguments
for the analogous claims in Section 2, Section 3 and Section 5, except that a
few more considerations must be adduced. Consider, for example, (1) and
(2). First, in the proofs, the occurrences of ‘SV’ must be replaced by
‘SV1’. To prove (1) we have to alter the proof of (*) in the example in
Section 2, from the middle, as follows, with the additional considerations
in italics: “Also note that h(A2n)=n, for each n 2 ℕ, since each A2n is a liar
sentence. Clearly there is a weakly consistent classical h″≥h such that, for
each n 2 ℕ, we have h″(A2n)=f. Moreover there is a weakly consistent
classical h′≥h such that, for each n 2 ℕ, we have h′(A2n)=t, because the
set of A2k’s is logically consistent with Th(M+h). So CLM+h′ (9xT2x)=
CLM+h″(9x¬T2x)=t and CLM+h″(9xT2x)=CLM+h′(9x¬T2x)=f. So SV1M+h

(9xT2x)=SV1M+h(9x¬T2x)=n. So h(9xT2x)=h(9x¬T2x)=n, since M+h is
a fixed point. So there are weakly consistent classical h′,
h″≥h such that h′(9xT2x)=h′(9x¬T2x)=t (since 9xT2x and 9x¬T2x are
consistent with Th(M+h)) and h″(9xT2x)=h″(9x¬T2x)=f, so that SV1M+h′

(T‘9xT2x’∨T‘9x¬T2x’)=t and SV1M+h″(T‘9xT2x’∨T‘9x¬T2x’)=f. So
SV1M+h(T‘9xT2x’∨T‘9x¬T2x’)=n. So M+h is a fixed point in which
the premise is true but the conclusion is not.”

To prove (2) we have to alter the proof of (**) in the example in
Section 2, by adding to the last few lines as follows, with the additional
considerations in italics: “We define the standard members of D as follows:
I(0) is standard, and if d is standard then so is I(s)(d). Since SV1M+h
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(9x¬T2x)≠t, there is a weakly consistent h″≥h such that h″(d)=t every
even d2D. So the set {A2Sent(LA′): A is even}∪Th(M+h) is consistent.
So the set {A2Sent(LA′): A is even and standard}∪Th(M) is consistent. So
there is a weakly consistent classical h′≥h so that h′(d)=t for every
standard even d2D, and h′(d)=f for every nonstandard even d2D. Such
nonstandard even d2D exist, because M+h is an uncountable model in
which PA− is true. So CLM+h′(Ind)=f. But this contradicts the fact that
SV1M+h(PA

− & Ind)-t.”
Similar amendments to the proofs of the complexity lemmas yield (3),

(4) and (5), above; and to the proofs in the counterexample of Section 5
yield (6). As for the axiomatizability of “the set of true sentences”, we
have the following.

SOUNDNESS AND COMPLETENESS (SV1). (1) î1 A iff î0
1 A iff A

2 SV1FPLTL, where SV1FPLTL is defined by the following axiom, in
addition to the axioms and rules of SVFPLTL.

Weak consistency axiom: ¬(T ‘A1’ &... & T ‘An’) is an axiom, where
¬(A1 &... & An) is a classical theorem.

(2) If L is countable, then î1L A iff î0
1L A iff î1 A iff î0

1 A iff A 2
SV1FPLTL.

PROOF. This is proved by straightforwardly amending the proofs of the
soundness and completeness theorems for îL, î

0
L, î, and î0. a

As for SV2, we have the following:

SOUNDNESS AND COMPLETENESS (SV2). (1) î2 A iff î0
2 A iff

A 2 SV2FPLTL, where SV2FPLTL is defined by the following axioms, in
addition to the axioms and rules of SVFPLTL.

Strong consistency axioms : T ‘A � B’ & T ‘A’ � T ‘B’

T ‘:A’ � :T ‘A’

(2) If L is countable, then î2L A iff î0
2L A iff î2 A iff î0

2 A iff A
2 SV2FPLTL.

PROOF. Again, this is proved by straightforwardly amending the proofs
of the soundness and completeness theorems for îL, î

0
L, î, and î0. a

SUPERVALUATION FIXED-POINT LOGICS OF TRUTH 439



Unfortunately, we have found proofs neither for the analogues of the
complexity theorems, nor of the distinctness of the consequence relations
î2L, î2, î

0
2L and î0

2. So we conclude with two open questions:

OPEN QUESTIONS.

(1) Are î2L, î2, î
0
2L and î0

2 distinct?
(2) What is the complexity of î2L, î2, î

0
2L and î0

2?
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