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Abstract. The simplest bimodal combination of unimodal logics L1 and L2 is their

fusion, L1 ⊗L2, axiomatized by the theorems of L1 for �1 and of L2 for �2, and the rules

of modus ponens, necessitation for �1 and for �2, and substitution. Shehtman introduced

the frame product L1 × L2, as the logic of the products of certain Kripke frames: these

logics are two-dimensional as well as bimodal. Van Benthem, Bezhanishvili, ten Cate

and Sarenac transposed Shehtman’s idea to the topological semantics and introduced the

topological product L1 ×t L2, as the logic of the products of certain topological spaces. For

almost all well-studies logics, we have L1 ⊗L2 ( L1 × L2, for example, S4⊗ S4 ( S4× S4.

Van Benthem et al show, by contrast, that S4 ×t S4 = S4 ⊗ S4. It is straightforward to

define the product of a topological space and a frame: the result is a topologized frame,

i.e., a set together with a topology and a binary relation. In this paper, we introduce

topological-frame products L1×tf L2 of modal logics, providing a complete axiomatization

of S4×tf L, whenever L is a Kripke complete Horn axiomatizable extension of the modal

logic D: these extensions include T,S4 and S5, but not K or K4. We leave open the

problem of axiomatizing S4 ×tf K, S4 ×tf K4, and other related logics. When L = S4,

our result confirms a conjecture of van Benthem et al concerning the logic of products of

Alexandrov spaces with arbitrary topological spaces.
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1. Introduction

Consider two modal logics L1 and L2 in a unimodal language, i.e., a language
with one modal operator �. There are many natural ways to combine L1

and L2 to make a bimodal logic, i.e., a logic in a language with two modal
operators, �1 and �2. The simplest is to take their fusion, L1⊗L2, axioma-
tized by the theorems of L1 for �1 and of L2 for �2, and the rules of modus
ponens, necessitation for �1 and for �2, and substitution.

Shehtman [12] and van Benthem et al [14] introduce combinations which
are 2-dimensional as well as bimodal. More specifically, given two Kripke
frames 〈W1, R1〉 and 〈W2, R2〉, Shehtman defines a particular birelational
frame 〈W1 ×W2, R

′
1, R

′
2〉 as their product.1 He then introduces the frame
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1The precise definition of the product of two frames, as well as other definitions and
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product L1 × L2 of unimodal logics L1 and L2, as the bimodal logic of the
products of Kripke frames for L1 and L2. For almost all well-studied logics,
L1⊗L2 ( L1×L2.

2 Shehtman also introduces the commutator of two logics:
[L1,L2] =df L1 ⊗ L2 + com⊃ + com⊂ + chr , where

com⊃ = �1�2p ⊃ �2�1p (left commutativity),
com⊂ = �2�1p ⊃ �1�2p (right commutativity), and
chr = ♦1�2p ⊃ �2♦1p (Church-Rosser).

For logics that are Kripke complete and Horn axiomatizable, L1 × L2 =
[L1,L2] ([3], Theorem 5.9). These logics include those on the following
list of well-studied logics: K; D = K + ♦⊤; K4 = K + (�p ⊃ ��p);
D4 = D + (�p ⊃ ��p); D5 = D + (♦p ⊃ �♦p); D45 = D4 + (♦p ⊃ �♦p);
T = K + (�p ⊃ p); S4 = T + (�p ⊃ ��p); and S5 = S4 + (♦p ⊃ �♦p). For
convenience we write LIST = {K,K4,D,D4,D5,D45,S4,S5}.

Van Benthem et al transpose Shehtman’s idea to the topological seman-
tics for modal logics extending S4, and introduce the topological product
L1 ×t L2, as the logic of the products of certain topological spaces. We al-
ways have L1⊗L2 ⊆ L1×t L2 ⊆ L1×L2, for L1,L2 ⊇ S4. The main theorem
of [14] is that S4 ×t S4 = S4 ⊗ S4. It is easy to show, by contrast, that
S5⊗S5 ( S5×t S5 = S5×S5 and S4⊗S5 ( S4×t S5 ( S4×S5. (See Section
3, below.)

It is straightforward to define the product of a topological space and a
Kripke frame: the result is a topologized frame, i.e., a set together with a
topology and a binary relation.3 In this paper, we introduce the topological-
frame product L1×tf L2 of modal logics, analogous to L1×L2 and L1 ×t L2,
as the logic of the products of certain topological spaces with certain frames.
Our main result is that, if L is a Kripke complete Horn axiomatizable ex-
tension of D, then S4 ×tf L = S4 ⊗ L + com⊃ + chr . Thus, for such L, the
product S4×tf L is the e-commutator of S4 and L, as defined in [10], where
e-commutators are given a Kripke semantics. We note that our result fails
when L = K or K4: we leave the axiomatization of S4 ×tf K, S4 ×tf K4 and
related logics as an open problem.

Two remarks before we get to the details. First, van Benthem et al
conjecture that the logic of products of Alexandrov spaces with arbitrary

terminological/notational conventions, are given in Section 2, below.
2There are trivial cases where L1⊗L2 = L1×L2, e.g. when either L1 or L2 is inconsistent

or is one of Ver = K +�⊥ or CL = K+ (p ≡ �p).
3Our ‘topologized frames’ are the topological frames or topological Kripke frames of, for

example, [1]. We coin a slightly different expression here, since the expression ‘topological
Kripke frame’ is first introduced in [2] for something more specific.
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topological spaces is S4 ⊗ S4 + com⊂ + chr . As we shall see, Alexandrov
spaces are a notational variant of transitive-reflexive Kripke frames. Thus,
along the way, we confirm the conjecture of van Benthem et al, since it is
equivalent to the claim that S4 ×tf S4 = S4 ⊗ S4 + com⊃ + chr .

Second, we mention the recent work of Kudinov [7, 8, 9]. In the unimodal
case, neighbourhood semantics is a well-known generalization of topological
semantics, allowing a topological-like semantics for logics much weaker than
S4, indeed much weaker than K. Kudinov defines neighbourhood products
L1 ×n L2 of modal logics, axiomatizing a large family of these. See Remark
3.6 and Problem 3.7, below, for more on neighbourhood products.

2. Technical details

For each n ≥ 1, let Ln be a propositional language with a set PV of propo-
sitional variables; standard Boolean connectives &, ∨ and ¬; a propositional
constant ⊤; and n modal operators, �1, . . . ,�n. For n = 1, we often write �

instead of �1. We use standard definitions of the Boolean connective ⊃, the
propositional constant ⊥, and the modal operators ♦i. A set L of formulas
of Ln is a normal n-modal logic (n-logic) iff every propositional tautology is
in L, (�i(p ⊃ q) ⊃ (�ip ⊃ �iq)) ∈ L for each i = 1, . . . , n, and L is closed
under modus ponens, necessitation for each �i, and substitution. Denote
the smallest n-logic by Kn. Say that the n-logic L1 extends or is an extension
of the n-logic L2 iff L1 ⊇ L2.

In general, for any n-logic L and any set ∆ of formulas of Ln, define the
extension L + ∆ of L as the smallest n-logic L′ such that L ∪ ∆ ⊆ L′. If
∆ = {A1, . . . , Ak}, we write L + Γ = L +A1 + . . .+An. For n = 1, we have
already mentioned a list of extensions of K.

Given 1-logics L1, . . . ,Ln all formulated in L1, their fusion L1 ⊗ . . .⊗Ln

is the the smallest set of formulas of Ln that contains ∪n
i=1L

′
i and is closed

under modus ponens, necessitation for each �i, and substitution – where L′
i

is the set of formulas of Ln got by replacing each occurrence of �1 in each for-
mula in Li by �i. Note that L1⊗ . . .⊗Ln is a normal n-modal logic. If L is a
1-logic, we write ⊗nL for L⊗ . . .⊗L repeated n times. Note that ⊗nK = Kn.

Topoframes. Here we generalize both the Kripke and the topological se-
mantics: this allows us to introduce various products of modal logics. We
assume familiarity with the basics of topology. An n-topoframe is an (n+1)-
tuple X = 〈X,Y1, . . . , Yn〉, where each Yi is either a topology on X or a
binary relation on X. If Yi is a topology, then we say that a set O ⊆ X

is i-open, i-closed, etc., if O is open, closed, etc., in the topological space
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〈X,Yi〉. We say that X is an n-frame iff every Yi is a binary relation on X

and that X is an n-space iff every Yi is a topology on X. If X = 〈X,Y1, Y2〉
where Y1 is a topology on X and Y2 is a binary relation on X, then we call X
a topologized frame. Suppose that S ⊆ X. For any binary relation Y on X,
define IntY (S) =df {x ∈ X : ∀y ∈ X(xY y ⇒ y ∈ S)}. And for any topol-
ogy Y on X, write IntY (S) for the topological interior, according to Y , of S.

Rooted frames. Suppose that X = 〈X,Y1, . . . , Yn〉 is an n-frame. A
path from x ∈ X to x′ ∈ X is a sequence x1, . . . , xm such that x1 = x and
xm = x′, and, for every k ∈ {1, . . . ,m−1}, xkYixk+1 for some i ∈ {1, . . . , n}.
We say that r ∈ X is a root of X iff, for every x ∈ X, there is a path from
r to x. We say that X is rooted iff it has a root.

Subframes. An n-frame X ′ = 〈X ′, Y ′
1 , . . . , Y

′
n〉 is a subframe of an n-frame

X = 〈X,Y1, . . . , Yn〉 iff X ′ ⊆ X and each Y ′
i = Yi∩(X ′×X ′). Write X ′ ⊑ X .

For any n-frame X , let SF(X ) =df {X ′ : X ′ ⊑ X}. For any class F of n-
frames let SF(F) =df {X : ∃X ′ ∈ F,X ⊑ X ′}.

Models. An n-model is an (n+ 2)-tuple

M = 〈X,Y1, . . . , Yn, V 〉,

where X = 〈X,Y1, . . . , Yn〉 is an n-topoframe and V : PV → P(X). We
extend V to all formulas of Ln by defining VM as follows:

VM(A) = V (A), if A ∈ PV

VM(⊤) = X

VM(¬A) = X − VM(A)
VM(A & B) = VM(A) ∩ VM(B)
VM(A ∨B) = VM(A) ∪ VM(B)
VM(�iA) = IntYi

(VM(A)).

We often suppress the subscripted M and simply write V (A). We say that
M � A iff V (A) = X. Given an n-topoframe X = 〈X,Y1, . . . , Yn〉, we say
that X � A iff M � A for each n-model M = 〈X,Y1, . . . , Yn, V 〉. And if ∆
is a set of formulas of Ln, we say that X � ∆ iff X � A for each A ∈ ∆.
We read � as validates. If ∆ is a set of formulas of Ln, then Fr(∆) and
Top(∆) are the following classes of n-frames and n-spaces: Fr(∆) = {X is
an n-frame: X � ∆} and Top(∆) = {X is an n-space: X � ∆}. Given any
class X of n-topoframes, Log(X) =df {A : (∀X ∈ X)(X � A)}. Note that
Log(X) is an n-logic. We say that an n-logic L is sound [complete] for a class
X of n-topoframes iff L ⊆ Log(X) [Log(X) ⊆ L]. We say that L is sound [com-
plete] for an n-topoframe X iff L is sound [complete] for {X}. We say that
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an n-logic L is Kripke complete [topologically complete] iff there is some class
X of n-frames [n-spaces] such that L = Log(X). Note, then, that L is Kripke
complete [topologically complete] iff L = Log(Fr(L)) [L = Log(Top(L))]. It
is well-known that Kn = ⊗nK is the smallest Kripke complete n-logic. It is
also well-known that S4 is the smallest topologically complete 1-logic: this
result easily generalizes to the claim that ⊗nS4 is the smallest topologically
complete n-logic. Thus, the topological semantics – i.e., the current seman-
tics restricted to n-spaces – is best seen as a semantics for logics L ⊇ ⊗nS4.

Product topoframes. Given two 1-topoframes X1 = 〈X1, Y1〉 and X2 =
〈X2, Y2〉, we define the product X1 ×X2 as the topoframe 〈X1 ×X2, Y

′
1 , Y2

′〉,
where Y ′

i is a binary relation [topology] on X1×X2 iff Yi is a binary relation
[topology] on Xi and

If Y1 is a binary relation on X1 then 〈a, b〉Y ′
1
〈u, v〉 iff aY1u and b = v.

If Y2 is a binary relation on X2 then 〈a, b〉Y2
′〈u, v〉 iff bY2v and a = u.

If Y1 is a topology on X1 then {{O × {v}} : O ∈ Y1 and v ∈ X2}
is a basis for Y ′

1
.

If Y2 is a topology on X2 then {{{a} ×O} : a ∈ X1 and O ∈ Y2}
is a basis for Y2

′.

We call X1 × X2 a product topoframe. If both X1 and X2 are frames, then
X1×X2 is a product frame as defined in [12]. If both X1 and X2 are topological
spaces, then X1×X2 is a product space as defined in [14]. If X1 is a topological
space and X2 is a frame, then X1×X2 is a topologized frame, as defined above:
we call such topologized frames, product topologized frames. If X and X′ are
classes of 1-topoframes, then X × X′ =df {X × X ′ : X ∈ X and X ′ ∈ X′}.
Now we define three products of 1-modal logics L1 and L2: the frame product
L1 × L2 of [12], the topological product L1 ×t L2 of [14], and the topological
frame product L1 ×tf L2:

L1 × L2 =df Log(Fr(L1) × Fr(L2)).
L1 ×t L2 =df Log(Top(L1) × Top(L2)).

L1 ×tf L2 =df Log(Top(L1) × Fr(L2)).

These notions can be generalized to various ways of getting a topoframe
product of any list L1, . . . ,Ln of multimodal logics, inserting Top(Li) in some
dimensions and Fr(Li) in others. Frame products have been extensively stud-
ied: see [4, 3]. Much less is known about topological and topological-frame
products, though, as noted above, Kudinov [7, 8, 9] has made significant
progress on neighbourhood products, a natural generalization of topological
products.
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Alexandrov topologies. A topology on X is Alexandrov iff the arbi-
trary intersection of open sets is open, alternatively, iff every point has a
least open neighbourhood. Given any reflexive transitive relation Y on X,
say that a set O ⊆ X is open (in the frame 〈X,Y 〉) iff O is closed under
the relation Y , i.e., ∀a ∈ O,∀b ∈ X, (aY b ⇒ b ∈ O). Note that the family
τ(Y ) of open subsets of X is an Alexandrov topology and moreover that
Intτ(Y )(S) = IntY (S), for any S ⊆ X. Given any topology Y on X, define
the reflexive transitive relation R(Y ), the specialization preorder induced by
Y : uR(Y )v iff u ∈ Cl({v}), where Cl is topological closure according to Y .
Note: if Y is a topology on X then, Y is Alexandrov iff τ(R(Y )) = Y iff, for
any S ⊆ X, IntR(Y )(S) = IntY (S).

Thus, in effect, we can identify topoframes X = 〈X,Y1, . . . , Yn〉 and X ′ =
〈X,Y ′

1 , . . . , Y
′
n〉, where for each i, either Yi = Y ′

i ; or Yi is a reflexive transitive
relation and Y ′

i = τ(Yi); or Yi is an Alexandrov topology and Y ′
i = R(Yi).

And, for logics stronger than ⊗nS4, we can think of the topological semantics
as a generalization of the frame semantics.

The identification of an Alexandrov space with its corresponding reflexive
transitive frame carries through under products. Suppose that X1 = 〈X1, Y1〉
is a topological space, that X2 = 〈X2, Y2〉 is an Alexandrov space, and that
X ∗
2 is the reflexive transitive frame 〈X2, R(Y2)〉. Then, if X1 × X2 = 〈X1 ×

X2, Y1
′, Y2

′〉. Then X1 × X ∗
2 = 〈X1 ×X2, Y1

′, R(Y2
′)〉. Let Alex be the class

of Alexandrov 1-spaces. Note: If X ⊆ Alex and X∗ is the corresponding
class of reflexive transitive 1-frames, then, for any class X′ of 1-topoframes,
Log(X′ × X) = Log(X′ × X∗) and Log(X× X′) = Log(X∗ × X′).

3. Results

In general L1 ⊗ L2 ⊆ L1 × L2,
L1 ⊗ L2 ⊆ L1 ×tf L2, and
L1 ⊗ L2 ⊆ L1 ×t L2.

If L1 ⊇ S4 then L1 ×tf L2 ⊆ L1 × L2.
If L1,L2 ⊇ S4 then L1 ×t L2 ⊆ L1 ×tf L2.

Also, since Top(S5) ⊆ Alex S4 ×t S5 = S4 ×tf S5; and
S5 ×t S5 = S5 ×tf S5 = S5 × S5.

Recall Shehtman’s [12] definition, given in Section 1, of the commutator,
[L1,L2], of L1 and L2. It is often easy to construct models to show that
L1 ⊗ L2 ( [L1,L2], for example when L1,L2 ∈ LIST. For the main result
concerning frame products, we need the notion of a Horn axiomatizable logic.
The following characterization is lifted almost verbatim from [3], Section 5.1,
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p. 228. Consider the first-order classical language with equality and a binary
predicateR. A formula in this language is positive iff it is built up from atoms
using only & and ∨. A universal Horn sentence is a sentence of the form
∀x∀y∀z1 . . . ∀zn(B ⊃ Rxy), where B is a positive formula. A formula in our
modal language L1 is a Horn formula iff there is a universal Horn sentence
AH such that X � A iff X � AH , for every 1-frame X . A formula in our
modal language L1 is variable-free if it contains no propositional variables,
i.e., its only atomic subformula is ⊤. A 1-logic L is Horn axiomatizable iff it
is axiomatizable by only Horn and variable-free formulas, i.e., if L = K + ∆,
where ∆ is a set of Horn and variable-free formulas. All the logics in LIST
are Horn axiomatizable. The main result for frame-product logics is

Theorem 3.1. ([3], Theorem 5.9) L1 × L2 = [L1,L2], if L1,L2 are Kripke
complete and Horn axiomatizable.

Much less is known about topological products. It is a nontrivial theorem
of [14] that

Theorem 3.2. S4 ×t S4 = S4 ⊗ S4.

On the relationship between frame and topological products, the main result
of [6] is

Theorem 3.3. If L1 and L2 are Kripke complete extensions of S4, then
L1 ×t L2 = L1 × L2 iff L1 ) S5 or L2 ) S5 or L1 = L2 = S5.

Our focus here is on topological-frame products: we provide complete-
ness results for S4 ×tf L, when L is a Kripke complete Horn axiomatizable
extension of D. As already noted, S4 ×tf S5 = S4 ×t S5, so we also provide
a completeness result for the topological product S4 ×t S5.

For any 1-logics L1 and L2, Kurucz and Zakharyaschev [10] define the
e-commutator of L1 and L2 as follows:

[L1,L2]
EX = L1 ⊗ L2 + com⊃ + chr .

Shehtman [13] suggests the term semiproducts for such logics. Our main
theorem is

Theorem 3.4. S4×tf L = [S4,L]EX, if L is a Kripke complete Horn axiom-
atizable extension of D.

Remark 3.5. The claim that [S4,L]EX ⊆ S4×tf L is a soundness claim and
follows from the more general fact that [L1,L2]

EX ⊆ L1 ×tf L2, which is easy
to check.
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Remark 3.6. Theorem 3.4 fails for L = K and L = K4. For a counterex-
ample to the claim that S4×tf K ⊆ [S4,K]EX, note that (�2⊥ → �1�2⊥) ∈
(S4 ×tf K) − [S4,K]EX. Ditto with K replaced by K4. Kudinov [9], Proposi-
tion 3.5, uses the same example (with the subscripts switched) to show that
K×nK 6⊆ K⊗K, where K×nK is the neighbourhood product of K with itself.

To see that (�2⊥ → �1�2⊥) 6∈ [S4,K4]EX, consider the 2-frame X =
〈X,Y1, Y2〉, where X = {0, 1, 2}, Y1 = {〈0, 0〉, 〈0, 1〉, 〈1, 1〉, 〈2, 2〉}, and Y2 =
{〈1, 2〉}. Since Y1 is reflexive and transitive and Y2 is (trivially) transitive,
X � S4 ⊗ K4. It is easy to check that X � com⊃ and X � chr , but that
X 6� (�2⊥ → �1�2⊥).

The fact that (�2⊥ → �1�2⊥) ∈ (S4 ×tf K), follows from a much more
general fact adapted from [9], Lemma 3.6, with the same proof:

1. if A is a variable- and �1-free formula, then A ⊃ �1A ∈ S4 ×tf K; and

2. if A is a variable- and �2-free formula, then A ⊃ �2A ∈ S4 ×tf K.

Problem 3.7. Axiomatize S4 ×tf L when L = K or K4, or more generally
when L is Kripke complete and Horn axiomatizable but not an extension of
D. Kudinov [9] solves a similar problem, axiomatizing the neighbourhood
product L1 ×n L2 for a subset of Horn axiomatizable logics, the so-called
HTC-logics, which include K, K4 and S4 but not S5. In particular, let
∆ = {A ⊃ �1A : A is a variable- and �1-free formula} ∪ {A ⊃ �2A : A is
a variable- and �2-free formula}. Then, L1 ×n L2 = (L1 ⊗ L2) + ∆ for any
HTC-logics L1 and L2, and if L1,L2 ⊇ D, then L1 ×n L2 = (L1 ⊗ L2). We
conjecture, in the current case, that S4×tf K = [S4,K]EX + ∆, and similarly
for K4.

Remark 3.8. In private correspondence, Valentin Shehtman has empha-
sized a connection between certain bimodal logics and quantified modal logic.
In particular, under a simple translation, [S4,S5]EX is the one-variable frag-
ment of QS4, standard quantified S4 without identity. Given a quantified
modal language with a unary predicate p for every p ∈ PV , translate p

to px; translate Boolean connectives to themselves; translate �1 to �; and
translate �2 to ∀x. Then A ∈ [S4,S5]EX iff ∀xA ∈ QS4, where A is the
translation of A. Given the main completeness theorem in [11] for QS4 in
the topological semantics (Chapter XI, Proposition 10.2), we also have A ∈
S4×t S5 = S4×tf S5 iff ∀xA ∈ QS4: thus S4×t S5 = S4×tf S5 = [S4,S5]EX.
We know of no similar application of the topological completeness of QS4
for proving the more general Theorem 3.4.4

4The proof in the current paper of Theorem 3.4 does borrow some ideas from a com-



Topological-frame products of modal logics 9

...
...

Q× {0}

Q× {1}

Q× {2}

Q× {3}

Q× {4}

( )

( )

( )

( )

( )

Figure 1. A countermodel for com⊂ in Q×N : V (p) is in grey.

Before our main task, a few easy claims. Here, L ∈ LIST − {S4,S5}:

S4 ⊗ S5 ( S4 ×t S5 = S4 ×tf S5 ( S4 × S5.
S4 ⊗ S4 = S4 ×t S4 ( S4 ×tf S4 ( S4 × S4.
S4 ⊗ L ( S4 ×tf L ( S4 × L.

If we replace ‘(’ by ‘⊆’, then the above claims follow immediately from
what has already been noted. As for the inequalities, first note that com⊃ ∈
S4×tf K, which can be easily checked; and com⊃ 6∈ S4⊗S5, which is already
known. Thus S4 ⊗ L ( S4 ×tf L, for L ∈ LIST. Second note that com⊂ ∈
S4×K, which can be easily checked; and com⊂ 6∈ S4×tf S5, which we show
below. Thus S4 ×tf L ( S4 × L, for L ∈ LIST. It remains to show that
com⊂ 6∈ S4 ×tf S5.

Let Q = 〈Q, τQ〉, where τQ is the standard topology on the set Q of
rational numbers; and let N = 〈N, Ru〉, where Ru is the universal binary
relation on N. Thus Q � S4 and N � S5. For each n ∈ N, let

On = {x ∈ Q :
−1

n+ 1
< x <

1

n+ 1
}.

Note that each On is open in Q. Write Q×N as 〈Q ×N, τQ
′, Ru

′〉, and let
M be a 2-model 〈Q×N, τQ

′, Ru
′, V 〉, where

V (p) =
⋃

n∈N

On × {n}.

pleteness proof for QS4, in particular, the proof of the main theorem in [5], that QS4 is
complete for the rational line with a countable domain for the quantifiers.



10 Philip Kremer

See Figure 1 for a picture. It is easy to check that V (�2�1p) = {0}×N but
that V (�1�2p) = ∅.

4. p-morphisms

Let X = 〈X,Y1, . . . , Yn〉 and X ′ = 〈X ′, Y ′
1 , . . . , Y

′
n〉 be n-topoframes, with

i ∈ {1, . . . , n} and ϕ : X → X ′. Fix i ∈ {1, . . . , n}. If each of Yi and
Y ′
i is either an Alexandrov topology or a reflexive and transitive relation,

then ϕ is i-continuous iff the preimage of every set open in 〈X ′, Y ′
i 〉 is open

in 〈X,Yi〉; ϕ is i-open iff the image of every set open in 〈X,Yi〉 is open
in 〈X ′, Y ′

i 〉; and ϕ is an i-p-morphism from X to X ′ iff it is i-continuous
and i-open. If each of Yi and Y ′

i is a binary relation on X, then ϕ is i-
monotone iff (∀a, b ∈ X)(aYib⇒ ϕ(a)Y ′

i ϕ(b));5 is i-lifting iff (∀a ∈ X)(∀c ∈
X ′)(ϕ(a)Y ′

i c ⇒ (∃b ∈ X)(aYib & ϕ(b) = c));6 and ϕ is an i-p-morphism
from X to X ′ iff it is i-monotone and i-lifting.

Finally, ϕ is a p-morphism from X to X ′ iff ϕ is an i-p-morphism for
every i ∈ {1, . . . , n}. We say that X ′ is a p-morphic image of X iff there is
a surjective p-morphism from X to X ′.

Lemma 4.1. Suppose that X and X ′ are n-topoframes and that X ′ is a
p-morphic image of X . Then X � A iff X ′ � A, for every variable-free
formula A.

Lemma 4.2. Suppose that X is an n-topoframe and that X is a class of
n-topoframes each of which is a p-morphic image of X . Then Log(X ) ⊆
Log(X).

Lemma 4.3. Suppose that X = 〈X,Y1, Y2〉 is a topologized frame and X ′ =
〈X ′, Y ′

1 , Y
′
2〉 is a rooted 2-frame, where Y ′

1 is reflexive and transitive and r
is a root. Suppose that ϕ : X → X ′ is a p-morphism from X to X ′ with
r ∈ ϕ[X], the image of X under ϕ. Then ϕ is surjective.

Proof. Suppose that x ∈ X ′. We want to show that x ∈ ϕ[X]. Since X ′

is rooted, there is a path x1, . . . , xm such that x1 = r and xm = x, and, for
every k ∈ {1, . . . ,m − 1}, either xkY

′
1xk+1 or xkY

′
2xk+1. It will suffice to

show, by induction on k ∈ {1, . . . ,m}, that each xk ∈ ϕ[X]. For the base
case, we have x1 ∈ ϕ[X], since x1 = r. For the inductive step, suppose that
xk ∈ ϕ[X], with k < m. Then either xkY

′
1xk+1 or xkY

′
2xk+1. To show that

5Note: if Yi and Y ′
i are reflexive transitive relations, then ϕ is i-monotone iff ϕ is

i-continuous.
6Note: if Yi and Y ′

i are reflexive transitive relations, then ϕ is i-open iff ϕ is i-lifting.
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xk+1 ∈ ϕ[X], we consider two cases.

Case (1). xkY
′
1xk+1. Since ϕ is 1-open, ϕ[X] is open in the frame 〈X,Y ′

1〉.
That is, ϕ[X] is closed under the relation Y ′

1 :

∀a ∈ ϕ[X],∀b ∈ X ′, (aY ′
1b⇒ b ∈ ϕ[X]).

So xk+1 ∈ ϕ[X], since xk ∈ ϕ[X] and xkY
′
1xk+1.

Case (2). xkY
′
2xk+1. Choose y ∈ X with ϕ(y) = xk. Since ϕ is 2-lifting,

(∀a ∈ X)(∀c ∈ X ′)(ϕ(a)Y ′
2c⇒ (∃b ∈ X)(aY2b & ϕ(b) = c)).

So (∃b ∈ X)(yY2b & ϕ(b) = xk+1), since ϕ(y)Y ′
2xk+1. So xk+1 ∈ ϕ[X], as

desired.

A final p-morphism lemma that will prove useful is a restatement of
Lemma 6.2 (ii) in [5]:

Lemma 4.4. Each countable rooted reflexive and transitive 1-frame is a
p-morphic image of Q.

5. Expanding relativized product frames

Suppose that F is a class of subframes of product 2-frames. Given Kripke
complete 1-logics L1 and L2, Kurucz and Zakharyaschev [10] define the
F-relativized product

(L1 × L2)
F =df Log(F ∩ SF(Fr(L1) × Fr(L2))).

One class of particular interest in [10] is the class EX of expanding relativized
product frames (ERPF’s): a 2-frame X = 〈X,S1, S2〉 is an ERPF iff there
are 1-frames X1 = 〈X1, R1〉 and X2 = 〈X1, R2〉 such that

• X ⊑ X1 × X2, and

• for all 〈x1, x2〉 ∈ X and x ∈ X1, if x1R1x then 〈x, x2〉 ∈ X.

Figure 2 represents a product frame X1×X2 ∈ Fr(S4)×Fr(S5) together with
a subframe which is an ERPF.

We need the notion of a subframe logic for the next result: an n-logic L
is a subframe logic iff SF(Fr(L)) ⊆ Fr(L). By Theorem 6 in [10],



12 Philip Kremer

Figure 2. To the left is an example of a product frame of the form
X1 × X2 = 〈X1 × X2, R1

′, R2
′〉 ∈ Fr(S4) × Fr(S5). R1

′ is the reflexive transitive clo-
sure of the relation given by the thin diagonal arrows, and R2

′ is the reflexive transitive
symmetric closure of the relation given by the thick vertical lines. A copy of X1 is shaded
in grey. To the right is an expanding relativized product frame that is a subframe of
X1 × X2.

Lemma 5.1. (L1 × L2)
EX = [L1,L2]EX, if L1 ∈ {K,K4,T,S4,S5} and L2 is

a Kripke complete Horn axiomatizable subframe logic.7

Lemma 5.1 fails when L2 is not a subframe logic, since [S4,L]EX 6⊆ (S4×L)EX.
For example, if L ∈ {D,D4}, then ♦2⊤ ∈ [S4,L]EX but ♦2⊤ 6∈ (S4 × L)EX.
But even when L2 is not a subframe logic, the claim that (L1 × L2)

EX ⊆
[L1,L2]EX still goes through, as long as L2 is Kripke complete and Horn
axiomatizable. The proof of this in [10] gives us a result that we will find
very useful. Let CT be the class of countable 2-frames. And let SR be the
class of strongly rooted subframes of product 2-frames, in the following sense:
a subframe X of a product frame X1×X2 is strongly rooted iff X1 has a root
r1 and X2 has a root r2 such that 〈r1, r2〉 is a root of X . Then

Lemma 5.2. ([10]) Suppose that L1 ∈ {K,K4,T,S4,S5} and L2 is Kripke
complete and Horn axiomatizable. Then every countable rooted X ∈
Fr([L1,L2]EX) is the p-morphic image of some

X ′ ∈ EX ∩ CT ∩ SR ∩ SF(Fr(L1) × Fr(L2)).

Note the following immediate corollary to Lemmas 5.2 and 4.1, where 2SER

is the class of 2-frames 〈X,R1, R2〉 such that R2 is serial:

7In [10], the statement of the theorem omits the necessary stipulation that L2 be a
subframe logic.
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Corollary 5.3. Suppose that L is a Kripke complete and Horn axiomatiz-
able extension of D. Then every countable rooted X ∈ Fr([S4,L]EX) is the
p-morphic image of some

X ′ ∈ EX ∩ 2SER ∩ CT ∩ SR ∩ SF(Fr(S4) × Fr(L)).

Proof. Suppose that L is a Kripke complete and Horn axiomatizable exten-
sion of D and that X is countable and rooted and ∈ Fr([S4,L]EX). By Lemma
5.2, X is the p-morphic image of some X ′ ∈ EX∩CT∩SR∩SF(Fr(S4)×Fr( L)).
Note that X � ♦2⊤, since L ⊇ D and X ∈ Fr([S4,L]EX). So X ′ � ♦2⊤, by
Lemma 4.1. So X ′ ∈ 2SER.

We add one more lemma about [L1,L2]EX. Let ROOTED be the class of
rooted 2-frames.

Lemma 5.4. Suppose that L1 and L2 are Kripke complete and Horn axiom-
atizable 1-logics. Then

[L1,L2]EX = Log(CT ∩ ROOTED ∩ Fr([L1,L2]
EX)).

Proof. By an argument nearly identical to the proof of Proposition 5.7 in
[3], [L1,L2]

EX is Kripke complete. That is, [L1,L2]EX = Log(Fr([L1,L2]
EX)).

The following three claims suffice for our result:

(1) [L1,L2]
EX = Log(CT ∩ Fr([L1,L2]

EX)),

(2) Log(CT ∩ Fr([L1,L2]
EX)) ⊆ Log(CT ∩ROOTED ∩ Fr([L1,L2]

EX)), and

(3) Log(CT ∩ ROOTED ∩ Fr([L1,L2]
EX)) ⊆ Log(CT ∩ Fr([L1,L2]EX)).

Re Item (1). Let LR be the first-order classical language with equality
and a binary predicate R; and let LR1,R2

be the first-order classical language
with equality and two binary predicates R1 and R2. Recall that each Li =
K + ∆i, where ∆i is a set of Horn and variable-free formulas in the modal
language L1, for i = 1 or 2. By the definition of Horn formula (page 7), for
each Horn formula A of the modal language L1, there is a sentence A∗ in
LR such that X � A iff X � A∗, for every 1-frame X . Similarly, by Lemma
5.6 in [3], for each variable-free formula A of the modal language L1, there
is a sentence A∗ in LR such that X � A iff X � A∗, for every 1-frame X .
For i = 1 or 2, let Γi = {A∗ : A ∈ ∆i}. For i = 1 or 2, let Σi be the set of
sentences in LR1,R2

got by replacing R in the sentences of Γi with Ri.
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Recall that [L1,L2]EX = L1 ⊗ L2 + com⊃ + chr . Thus, [L1,L2]EX = K2 +
∆1 + ∆′

2 + com⊃ + chr , where ∆′
2 the set of formulas of L2 got by replacing

each occurrence of �1 in each formula in ∆2 by �2. Let Com and Chr be
the following sentences of LR1,R2

:

Com ∀x∀y∀z(R2xy & R1yz ⊃ ∃u(R1xu & R2uz))

Chr ∀x∀y∀z(R2xy & R1xz ⊃ ∃u(R1yu & R2zu))

As noted in [3], Section 5.1, for any 2-frame X , we have X � com⊃ iff
X � Com and X � chr iff X � Chr . Thus, the class Fr([L1,L2]

EX) of frames
is defined by the following set of sentences in LR1,R2

: Σ1∪Σ2∪{Com ,Chr}.
Thus Fr([L1,L2]

EX) is first-order definable in the language LR1,R2
. Theorem

1.6 in [3] says that if L is a n-modal logic and L = Log(F) for some class F

of frames definable in a first order language with n binary relation symbols
and equality, then L is determined by the class of its countable frames, i.e.,
L = Log(CT ∩ Fr(L)). Therefore, [L1,L2]

EX = Log(CT ∩ Fr([L1,L2]EX)).

Re Items (2) and (3). Item (2) is trivial. As for Item (3), suppose that
A 6∈ Log(CT ∩ Fr([L1,L2]EX)), where A is in the language L2. Then, for
some frame X = 〈X,Y1, Y2〉 ∈ CT ∩ Fr([L1,L2]

EX) and some model M =
〈X,Y1, Y2, V 〉, we have V (A) 6= X. Choose x ∈ X − V (A) and let X ′ =
〈X ′, Y ′

1 , Y
′
2〉 be the subframe of X with root x: X ′ = {y ∈ X : there is a path

from x to y} and Y ′
i is Yi restricted to X ′. And let M′ = 〈X ′, Y ′

1 , Y
′
2 , V

′〉,
where V ′(p) = V (p) ∩X ′ for each propopsitional variable p. By a standard
inductive argument, we have V ′(B) = V (B)∩X ′, for each formula B of L2.
So x ∈ X ′−V ′(A). So X ′ 6� A, where X ′ ∈ CT∩ROOTED∩Fr([L1,L2]

EX).

6. Universal Horn sentences

Consider the first-order classical language with equality and a binary predi-
cate R. We will appeal to the following claim about universal Horn sentences,
as defined on page 7.

Lemma 6.1. Suppose that Γ is a set of universal Horn sentences in the
first-order classical language and that X = 〈X,R〉 is a frame. Then

1. There is a smallest relation R∗ on X such that R ⊆ R∗ and X ∗ � Γ,
where X ∗ = 〈X,R∗〉; and

2. if X ′ = 〈X ′, R′〉 is a frame with X ′ � Γ, then any monotone function
from X to X ′ is also a monotone function from X ∗ to X ′.
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Proof. The following proof is adapted from the proof of Lemma 5.8 in [3].
We start by defining a sequence R0 ⊆ R1 ⊆ . . . ⊆ Rn . . . of relations on X

as follows:

R0 = R

Rn+1 = Rn ∪ {〈a, b〉 ∈ X ×X : 〈X,Rn〉 
 ∃z1 . . . ∃znB(a, b, z1, . . . , zn)

for some B with ∀x∀y∀z1 . . . ∀zn(B ⊃ Rxy) ∈ Γ}.

Let
R∗ =df

⋃

n∈N

Rn.

Note, for Item (1) that R∗ is the smallest relation on X such that R ⊆ R∗

and X ∗ � Γ, where X ∗ = 〈X,R∗〉.
As for Item (2), suppose that ϕ is a monotone function from X to X ′,

where X ′ = 〈X ′, R′〉 is a frame with X ′ � Γ. It will suffice to prove that ϕ is
a monotone function from each Xn = 〈X,Rn〉 to X ′. By assumption, this is
so for n = 0. Suppose that ϕ is a monotone function from Xn to X ′, and con-
sider Xn+1. Suppose that 〈a, b〉 ∈ Rn+1: we want to show that 〈ϕ(a), ϕ(b)〉 ∈
R′. Since 〈a, b〉 ∈ Rn+1, we have 〈X,Rn〉 
 ∃z1 . . . ∃znB(a, b, z1, . . . , zn),
where ∀x∀y∀z1 . . . ∀zn(B ⊃ Rxy) ∈ Γ. Choose c1, . . . , cn ∈ X such that
Xn = 〈X,Rn〉 
 B(a, b, c1, . . . , cn). Since B is positive and since ϕ is a
monotone function from Xn to X ′, we have

X ′ 
 B(ϕ(a), ϕ(b), ϕ(c1), . . . , ϕ(cn)).

And since X ′ 
 Γ and

∀x∀y∀z1 . . . ∀zn(B ⊃ Rxy) ∈ Γ,

we have X ′ 
 Rϕ(a)ϕ(b). Thus 〈ϕ(a), ϕ(b)〉 ∈ R′, as desired.

7. Proving Theorem 3.4

First note that if L is inconsistent, i.e., if L is the set of formulas of L1, then
it is trivial that S4 ×tf L = [S4,L]EX, since each of S4 ×tf L and [S4,L]EX

is then inconsistent, i.e., they are each the set of formulas of L2. So we
will prove Theorem 3.4 for consistent Kripke complete Horn axiomatizable
L ⊇ D. Note that, for any such L, there is a set ∆L of Horn formulas such
that L = D+∆L: the reason is that the addition of variable-free formulas not
already in D will produce the inconsistent logic in L1. Now, assume a first-
order classical language with a binary predicate R and equality, as on Page
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7. For each Horn formula A, let AH be the corresponding universal Horn
sentence in the first-order language. And for each consistent Kripke complete
Horn axiomatizable L ⊇ D with L = D + ∆L, let ΓL = {AH : A ∈ ∆L}.

Let N∗ be the set of finite sequences of natural numbers. We use Λ for
the empty sequence in N∗ and 〈n〉 for the sequence, of length 1, consisting
of the natural number n ∈ N. For a ∈ N∗, we write a = 〈a0, . . . , aln(a)−1〉,

where ln(a) is the length of a. For a, b ∈ N∗, we write ab for a concatenated
with b. And for a ∈ N∗ and n ∈ N, we write an for a concatenated with 〈n〉.
Let ⊳ be the relation ⊳ =df {〈a, an〉 : a ∈ N∗ & n ∈ N}. Let N ∗ = 〈N∗,⊳〉.
For each consistent Kripke complete Horn axiomatizable extension L of D,
let RL be the smallest relation on N∗ such that ⊳ ⊆ RL and NL � ΓL, where
NL = 〈N∗, RL〉: such an RL exists, by Lemma 6.1, Item (1). Note that
NL ∈ Fr(L), since NL � ΓL. And by Lemma 6.1, Item (2), we get:

Lemma 7.1. Suppose that X ∈ Fr(L), where L is a consistent Kripke com-
plete Horn axiomatizable extension of D. Then any monotone function from
N ∗ to X is also a monotone function from NL to X .

The next lemma is the central lemma in the proof of Theorem 3.4. We
devote subsections 7.1 and 7.2 to proving this lemma. Then, in subsection
7.3, we pull it all together and complete the proof of Theorem 3.4, for any
consistent Kripke complete Horn axiomatizable extension of D.

Lemma 7.2. Suppose that

1. L is a consistent Kripke complete Horn axiomatizable extension of D;

2. X1 ∈ Fr(S4) is a countable rooted 1-frame;

3. X2 ∈ Fr(L) is a countable rooted 1-frame;

4. X ∈ EX ∩ 2SER ∩ SF(X1 × X2); and

5. 〈r1, r2〉 is a root of X , where r1 is a root of X1 and r2 is a root of X2.

Then there is a surjective p-morphism from Q×NL onto X .

Assume Items (1)-(5) in the statement of Lemma 7.2. Write X1 as
〈X1, R1〉; X2 as 〈X2, R2〉; X1 × X2 as 〈X1 ×X2, R1

′, R2
′〉; X as 〈X,S1, S2〉;

and Q×NL as 〈Q×N∗, τQ
′, RL

′〉. For x ∈ Xi we let Ri(x) = {y ∈ Xi : xRiy}.
And for 〈u, v〉 ∈ X, we let Si(〈u, v〉) = {〈u′, v′〉 ∈ X : 〈u, v〉Si〈u

′, v′〉}. A
couple of observations.

1. R1 is reflexive and transitive, since X1 ∈ Fr(S4). Thus, both R1
′ and S1

are reflexive and transitive as well.
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2. For 〈u, v〉 ∈ X, S1(〈u, v〉) = R1(u) × {v} and S2(〈u, v〉) ⊆ {u} ×R2(v).
For a proof of this observation, suppose that 〈u, v〉 ∈ X. For the

second conjunct, suppose that 〈x, y〉 ∈ S2(〈u, v〉). Note that S2 ⊆ R2
′,

since X ⊑ X1 × X2. So 〈x, y〉 ∈ R2
′(〈u, v〉). So x = u and vR2y. So

x ∈ {u} and y ∈ R2(v). So 〈x, y〉 ∈ {u} × R2(v), as desired. As for
the first conjunct, the fact that S1(〈u, v〉) ⊆ R1(u) × {v} is proved by
a similar argument. To see that R1(u) × {v} ⊆ S1(〈u, v〉), suppose that
〈x, y〉 ∈ R1(u) × {v}. Then uR1x and y = v. So 〈u, y〉 ∈ X and uR1x.
So, since X ∈ EX, we have 〈x, y〉 ∈ X. Thus, since X ⊑ X1 × X2 and
since 〈u, v〉R1

′〈x, y〉, we also have 〈u, v〉S1〈x, y〉. So 〈x, y〉 ∈ S1(〈u, v〉),
as desired.

Some more notation: for any ordered pair 〈u, v〉, we write lft(〈u, v〉) = u

for the left coordinate and rt(〈u, v〉) = v for the right coordinate. We now
set out to construct a surjective p-morphism from Q×NL onto X .

7.1. Constructing a surjective p-morphism from Q × NL to X :
informal outline

We can think of Q × NL as a kind of big tree whose nodes are copies of
Q, one copy for each a ∈ N∗. Our construction will, in effect, unravel
X into this big tree. In this subsection, we given an informal outline the
construction, introducing useful concepts along the way. In subsection 7.2
we give a formally precise construction and prove that the resulting function
is indeed a surjective p-morphism from Q×NL to X .

By Lemma 4.4, there is already a p-morphism, say ϕ, from Q onto X1: we
will rely heavily on ϕ as we proceed. In particular, we will define functions
ϕa : Q → X, each of which will be continuous and open as functions from Q
to 〈X,S1〉. The left coordinate of ϕa(q) will always be ϕ(q): the trick will be
to find a good right coordinate. Ultimately, the ϕa’s will be constructed so
that the following function will be our surjective p-morphism from Q×NL

to X : ψ(q, a) = ϕa(q).
The definition of ϕΛ is simple: ϕΛ(q) = 〈ϕ(q), r2〉. Thus, the Λth copy of

Q is mapped to a copy of X1 in X, namely X1 × {r2}. Note that ϕΛ is a
continuous open function from Q to 〈X,S1〉.

The next step is to consider ϕa when a is an immediate successor of Λ,
i.e., when a = 〈n〉 for some n ∈ N. First we enumerate Q×X2:

〈q0, x0〉, 〈q1, x1〉, 〈q2, x2〉, . . . , 〈qn, xn〉, . . .

We will worry, for now, about defining ϕ〈n〉 when 〈ϕ(qn), xn〉 ∈ X. So we
want to define ϕ〈n〉(q), for every q ∈ Q. Since the left coordinate of ϕ〈n〉(q)
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xn

qn

r2r2 r2

? ?
)(

rt(ϕΛ(q))

rt(ϕ〈n〉(q))

Figure 3. How to define ϕ〈n〉? We mark individual points on Q with dots and regions
with grey lines. Above a point or a region, we indicate the right coordinate of ϕΛ(q) and
ϕ〈n〉(q) at that point or throughout that region. So far we have defined ϕΛ(q) = 〈ϕ(q), r2〉,
for every q ∈ Q and we have defined ϕ〈n〉(qn) = 〈ϕ(q), xn〉.

will simply be ϕ(q), the hard question is how to fill in the question mark in
ϕ〈n〉(q) = 〈ϕ(q), ?〉. We will ensure that ϕ〈n〉(qn) = 〈ϕ(qn), xn〉. But what
about ϕ〈n〉(q) when q 6= qn? For some q ∈ Q, it could be that 〈ϕ(q), xn〉 6∈ X.
So we will not want rt(ϕ〈n〉(q)) = xn for every q ∈ Q. What we will want
is rt(ϕ〈n〉(q)) = xn throughout some interval around qn. Figure 3 illustrates
our current predicament.

Digression on intervals. An open Q-interval is any set of the form
Q ∩ (a, b), where (a, b) is some open interval in the real line. We write
(a, b)Q for this open Q-interval. Note that a or b could be irrational: if both
a and b are irrational then we say that (a, b)Q is an irrational interval. Every
irrational interval is clopen, i.e., both an open and a closed subset of Q. If
x ∈ X1, we say that an open Q-interval I is an x-interval iff the image of I
under ϕ is R1(x) =df {x

′ ∈ X1 : xRx′}.

Lemma 7.3. For every q ∈ Q, there is an irrational ϕ(q)-interval I such
that q ∈ I.

Proof. Choose any q ∈ Q. Note that R1(ϕ(q)) is open in the Alexan-
drov space 〈X1, τ(R1)〉. So, since ϕ is a continuous function from Q to
〈X1, τ(R1)〉, there is a Q-interval J such that q ∈ J and ϕ(y) ∈ R1(ϕ(q)) for
every y ∈ J .

Let I be any irrational Q-interval such that q ∈ I ⊆ J . It will suffice
to show that I is a ϕ(q)-interval. Note that q ∈ I and ϕ(y) ∈ R1(ϕ(q)) for
every y ∈ I. Let O = ϕ[I] be the image of I under ϕ: then ϕ(q) ∈ O and
O ⊆ R1(ϕ(q)). Since ϕ is an open function, O is open in 〈X1, τ(R1)〉, so that
(∀u ∈ O)(∀v ∈ X1)(uR1v ⇒ v ∈ O). So, since ϕ(q) ∈ O, R1(ϕ(q)) ⊆ O.
Thus ϕ[I] = O = R1(ϕ(q)). So I a ϕ(q)-interval, as desired.
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xn

qn

r2r2 r2

? ?

a b

xn xn

rt(ϕΛ(q))

rt(ϕ〈n〉(q))

Figure 4. Continuing to define ϕ〈n〉. We mark a and b with open dots since they are
irrational and thus not on the rational line: they are holes on the rational line. We define
ϕ〈n〉(q) = 〈ϕ(q), xn〉, for every q ∈ (a, b)Q.

End of digression on intervals. Now let us return to the construction
of ϕ〈n〉. We have to fill in the question mark in ϕ〈n〉(q) = 〈ϕ(q), ?〉 when
q 6= qn. Choose an irrational ϕ(qn)-interval, (a, b)Q with qn ∈ (a, b)Q. For
every q ∈ (a, b)Q, we will let ϕ〈n〉(q) = 〈ϕ(q), xn〉 as in Figure 4.

Default successors. We still have to fill in the question mark in ϕ〈n〉(q) =
〈ϕ(q), ?〉 when q ∈ Q − (a, b)Q. Bearing in mind that ϕΛ(q) = 〈ϕ(q), r2〉,
it will be useful to find an x ∈ X2 such that r2R2x and 〈ϕ(q), x〉 ∈ X,
for every q ∈ Q − (a, b)Q. Then we can simply fill in the question mark
with x. For this, it will suffice to have a default 〈r1, x〉 ∈ X such that
〈r1, r2〉 S2 〈r1, x〉: since X ∈ EX, we will also have 〈ϕ(q), r2〉 S2 〈ϕ(q), x〉,
for every q ∈ Q− (a, b)Q. More generally, it will be useful as we proceed, to
choose, for each 〈u, v〉 ∈ X, a default successor (relative to the relation S2),
〈u, v′〉 = defsucc(〈u, v〉) ∈ X such that 〈u, v〉 S2 〈u, v′〉. This can be done,
since X ∈ 2SER. To fill in the question mark in ϕ〈n〉(q) = 〈ϕ(q), ?〉, we take
the right coordinate of defsucc(〈r1, r2〉) as follows: for each q 6∈ (a, b)Q, set
ϕ〈n〉(q) = 〈ϕ(q), rt(defsucc(〈r1, r2〉))〉. See Figure 5.

Anchors. An important point: To fill in the question mark in ϕ〈n〉(q) =
〈ϕ(q), ?〉 when q 6∈ (a, b)Q, we did not use the default successor of 〈ϕ(q), r2〉:
rather, we used the right coordinate of the default successor of 〈r1, r2〉.
The reason is this: for every q 6∈ (a, b)Q, we want the right coordinate
of ϕ〈n〉(q) to be the same. This ensures that ϕ〈n〉 is continuous and open
on Q − (a, b)Q. We will think of the point 〈r1, r2〉 as an anchor for all
the points in Q − (a, b)Q in the following sense: for every q ∈ Q − (a, b)Q,
we have 〈r1, r2〉 S1 ϕΛ(q). Since defsucc(〈r1, r2〉) ∈ X ∈ EX, we also have
〈ϕ(q), rt(defsucc(〈r1, r2〉))〉 ∈ X when q ∈ Q− (a, b)Q. Indeed, as we proceed



20 Philip Kremer

xn

qn

r2r2 r2

a b

xn xn

rt(ϕΛ(q))

rt(ϕ〈n〉(q))rt(defsucc(〈r1, r2〉)) rt(defsucc(〈r1, r2〉))

Figure 5. ϕ〈n〉 is defined.

in the construction of each ϕa, we will keep track of the anchors by defining
anchora(q) ∈ X for each a ∈ N∗ and each q ∈ Q. So far, anchorΛ(q) = 〈r1, r2〉,
for every q ∈ Q. And

anchor〈n〉(q) =

{

〈ϕ(qn), xn〉 if q ∈ (a, b)Q;

defsucc(anchorΛ(q)) otherwise.

Special clopen sets. Note that, in moving from ϕΛ to ϕ〈n〉, we cut an
irrational interval (a, b)Q out of Q for special attention. We will think of
this as dividing Q into two clopen sets, (a, b)Q and Q − (a, b)Q. As the
inductive construction of each ϕa proceeds, we will further subdivide Q into
clopen sets. It will be useful to keep track, for each q ∈ Q, which clopen set
of which q is a member at the ath stage of the construction. Thus, we will
define the clopen set Oa(q) for each q ∈ Q. So far we have,

OΛ(q) = Q, for every q ∈ Q.

O〈n〉(q) =

{

(a, b)Q, for every q ∈ (a, b)Q;

Q− (a, b)Q, for every q ∈ Q− (a, b)Q.

7.2. Constructing a surjective p-morphism from Q × NL to X :
formal definitions

For each a ∈ N∗, we will simultaneously define three functions by induction
on the construction of a:

Oa assigning a clopen subset of Q to each q ∈ Q;
anchora assigning a member of X to each q ∈ Q; and

ϕa assigning a member of X to each q ∈ Q.

Before we give the definitions, recall the enumeration of Q×X2 on page 17:

〈q0, x0〉, 〈q1, x1〉, 〈q2, x2〉, . . . , 〈qn, xn〉, . . .
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Also recall that on page 21 we chose, for each 〈u, v〉 ∈ X, a default suc-
cessor (relative to the relation S2), 〈u, v

′〉 = defsucc(〈u, v〉) ∈ X such that
〈u, v〉 S2 〈u, v′〉. For each n ∈ N, choose an irrational ϕ(qn)-interval In such
that qn ∈ In: such intervals can be chosen by Lemma 7.3.

Now for the definitions. The base case, OΛ, anchorΛ, and ϕΛ:

OΛ(q) = Q, for every q ∈ Q

anchorΛ(q) = 〈r1, r2〉, for every q ∈ Q

ϕΛ(q) = 〈ϕ(q), r2〉, for every q ∈ Q

Assuming that Oa, anchora, and ϕa have been defined, we must define Oan,
anchoran, and ϕan. We consider two cases:

1. ϕa(qn) S2 〈ϕ(qn), xn〉 ∈ X; and

2. either 〈ϕ(qn), xn〉 6∈ X or ϕa(qn) 6S2 〈ϕ(qn), xn〉.

Our definition of Oan, anchoran, and ϕan is as follows:

Oan(q) =























Oa(qn) ∩ In, if q ∈ Oa(qn) ∩ In, in Case (1)

Oa(qn) − In, if q ∈ Oa(qn) − In, in Case (1)

Oa(q), if q 6∈ Oa(qn), in Case (1)

Oa(q), in Case (2)

anchoran(q) =











〈ϕ(qn), xn〉, if q ∈ Oan(qn) in Case (1)

defsucc(anchora(q)), if q 6∈ Oan(qn) in Case (1)

defsucc(anchora(q)), in Case (2)

ϕan(q) =











〈ϕ(q), xn〉, if q ∈ Oan(qn) in Case (1)

〈ϕ(q), rt(defsucc(anchora(q)))〉, if q 6∈ Oan(qn) in Case (1)

〈ϕ(q), rt(defsucc(anchora(q)))〉, in Case (2)

Lemma 7.4. For every a ∈ N∗, n ∈ N, and q, q′ ∈ Q,

1. Oan(q) ⊆ Oa(q);

2. q ∈ Oa(q);

3. Oa(q) is clopen;

4. Oa(q) = Oa(q′) if q′ ∈ Oa(q);

5. Oa(q) ∩Oa(q′) = ∅ if q′ 6∈ Oa(q);

6. Q =
⋃

p∈QOa(p);
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7. there are finitely many p1, . . . , pk ∈ Q such that that Q =
⋃

i=1,...,kOa(pi)
and the Oa(pi)’s are nonempty and pairwise disjoint; incidentally, k ≤
ln(a) + 1, where ln(a) is the length of a;

8. if q′ ∈ Oa(q) then anchora(q′) = anchora(q);

9. anchora(q) ∈ X;

10. lft(ϕa(q)) = ϕ(q);

11. rt(ϕa(q)) = rt(anchora(q));

12. if q′ ∈ Oa(q) then rt(ϕa(q′)) = rt(ϕa(q));

13. lft(anchora(q)) R1 lft(ϕa(q));

14. ϕa(q) ∈ X.

Proof. Item (1) follows directly from the definition of Oan. Items (2) to
(12) can be checked by a routine induction on the construction of a.

Item (13). We prove this by induction on the construction of a. The
Base Case is the claim that

lft(anchorΛ(q)) R1 lft(ϕΛ(q)), for every q ∈ Q.

This follows from the definitions of anchorΛ and ϕΛ and the facts that r1
is a root of X1 and ϕ(q) ∈ X1. For the inductive step, assume that
lft(anchora(q)) R1 lft(ϕa(q)), for every q ∈ Q. We want to show that
lft(anchoran(q)) R1 lft(ϕan(q)), for every q ∈ Q. Choose q ∈ Q. We con-
sider two cases:

(1) ϕa(qn) S2 〈ϕ(qn), xn〉 ∈ X and q ∈ Oan(qn); and
(2) either 〈ϕ(qn), xn〉 6∈ X or ϕa(qn) 6S2 〈ϕ(qn), xn〉 or q 6∈ Oan(qn).

Case (1). In this case, anchoran(q) = 〈ϕ(qn), xn〉. Note that qn ∈ Oa(qn),
by Item (2). So Oan(qn) = Oa(qn) ∩ In, by the definition of Oan(qn). So
q ∈ In, which is a ϕ(qn)-interval. So ϕ(qn) R1 ϕ(q). So

lft(anchoran(q)) R1 lft(ϕan(q)),

as desired.

Case (2). In this case, anchoran(q) = defsucc(anchora(q)). So,

lft(anchoran(q)) = lft(anchora(q)).
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By the inductive hypothesis, lft(anchora(q)) R1 lft(ϕa(q)). So

lft(anchoran(q)) = lft(anchora(q)) R1 lft(ϕa(q)) = ϕ(q) = lft(ϕan(q)),

as desired.

Item (14) follows from Items (11) and (13), and the fact that X ∈ EX.

Our next step is to prove that each ϕa is a continuous and open function
from Q to the reflexive, transitive frame 〈X,S1〉. But first a useful general
lemma.

Lemma 7.5. Suppose that

1. Z = 〈Z, τ〉 and Z ′ = 〈Z ′, τ ′〉 are topological spaces;

2. Z =
⋃

i∈I Oi, for some index set I and nonempty, pairwise disjoint, open
sets Oi; let Oi be the subspace of Z whose underlying set is Oi;

3. σi : Oi → Z ′ is a continuous [open] function from Oi to Z ′, for each
i ∈ I;

4. σ : Z → Z ′; and

5. for every z ∈ Z and i ∈ I, if z ∈ Oi then σ(z) = σi(z).

Then σ is a continuous [open] function from Z to Z ′.

Lemma 7.6. For each a ∈ N∗, ϕa is a continuous and open function from
Q to the reflexive, transitive frame 〈X,S1〉 – alternatively, to the Alexandrov
space 〈X, τ(S1)〉.

Proof. Fix a ∈ N∗. By Lemma 7.4, Item (7), there are finitely many
p1, . . . , pk ∈ Q such that that Q =

⋃

i=1,...,k Oa(pi) and the Oa(pi)’s are
nonempty and pairwise disjoint. The Oa(pi) are open, by Lemma 7.4, Item
(3). Let Oi = Oa(pi) and let Oi be the subspace of Q whose underlying set
is Oi. Let ρi be ϕ restricted to Oi. Note that ρi is a continuous and open
function from Oi to the reflexive-transitive frame X1 = 〈X,R1〉, since ϕ is a
continuous and open function from Q to X1.

For each i = 1, . . . , k, let vi = rt(anchora(pi)) and let σi be ϕa restricted
to Oi. Then, by Lemma 7.4, Items (8), (10), and (11),

σi(q) = 〈ϕ(q), vi〉 = 〈ρi(q), vi〉, for every q ∈ Oi.



24 Philip Kremer

Since

- ρi is a continuous and open function from Oi to X1,
- lft(σi(q)) = ρi(q) for every q ∈ Oi, and
- rt(σi(q)) = rt(σi(q

′)) for every q, q′ ∈ Oi,

σi is a continuous and open function from Oi to the reflexive-transitive frame
〈X,S1〉 and thus to the Alexandrov space 〈X, τ(S1)〉.

Note that ϕa : Q → X and that, for every q ∈ Q and i = 1, . . . , k, if
q ∈ Oi then ϕa(q) = σi(q). Thus, by Lemma 7.5, ϕa is a continuous and
open function from Q to 〈X, τ(S1)〉 and thus to the reflexive-transitive frame
〈X,S1〉.

We now define our surjective p-morphism from Q×NL to X :

ψ(q, a) = ϕa(q).

By Lemma 7.4, Item (14), ϕa(q) ∈ X for every q ∈ Q and a ∈ N∗. Thus
ψ(q, a) ∈ X for every q ∈ Q and a ∈ N∗. It remains to show that ψ is a sur-
jective p-morphism from Q×NL to X, i.e., that ψ is 1-continuous, 1-open,
2-monotone, and 2-lifting, and surjective. The 1-continuity and 1-openness
of ψ follow from the continuity and openness of each ϕa. It remains to show
that ψ is 2-monotone, and 2-lifting, and surjective.

ψ is 2-monotone. We want to show that

(∀q, q′ ∈ Q)(∀a, a′ ∈ N∗)(if 〈q, a〉RL
′〈q′, a′〉 then ψ(q, a) S2 ψ(q′, a′)). (1)

(1) is equivalent to

(∀q ∈ Q)(∀a, a′ ∈ N∗)(if aRLa
′ then ϕa(q) S2 ϕa′(q)). (2)

For each q ∈ Q, define the function χq : N∗ → X2 as follows:

χq(a) = rt(ϕa(q)) (3)

For (2), it suffices to show

(∀q ∈ Q)(∀a, a′ ∈ N∗)(if aRLa
′ then χq(a) R2 χq(a

′)). (4)

Note that (4) is equivalent to the claim that each χq is a monotone function
from NL to X2. By Lemma 7.1, it suffices to show that each χq is a monotone
function from N ∗ to X2. Thus, it suffices to show that

(∀q ∈ Q)(∀a ∈ N∗)(∀n ∈ N)(χq(a) R2 χq(an)), (5)
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Equivalently,

(∀q ∈ Q)(∀a ∈ N∗)(∀n ∈ N)(rt(ϕa(q)) R2 rt(ϕan(q))). (6)

To show (6), choose q ∈ Q, a ∈ N∗, and ∀n ∈ N. We want to show that

rt(ϕa(q)) R2 rt(ϕan(q)). (7)

It will help to recall the enumeration of Q ×X2 on page 17 and the defini-
tions of Oan, anchoran, and ϕan on page 21. We consider two cases:

(1) ϕa(qn) S2 〈ϕ(qn), xn〉 ∈ X and q ∈ Oan(qn); and
(2) either 〈ϕ(qn), xn〉 6∈ X or ϕa(qn) 6S2 〈ϕ(qn), xn〉 or q 6∈ Oan(qn).

Case (1). In this case, ϕan(qn) = 〈ϕ(qn), xn〉, by Lemma 7.4, Item 2,
and the definition of ϕan. So ϕa(qn) S2 ϕan(qn). So

rt(ϕa(qn)) R2 rt(ϕan(qn)) (8)

Not only do we have q ∈ Oan(qn); we also have q ∈ Oa(qn), by Lemma 7.4,
Item (1). So by Lemma 7.4, Item (12), we have both rt(ϕan(q)) = rt(ϕan(qn))
and rt(ϕa(q)) = rt(ϕa(qn)). So our desired (7) follows from (8).

Case (2). In this case, by the definition of ϕan(q),

rt(ϕan(q)) = rt(defsucc(anchora(q))). (9)

And by Lemma 7.4, Item (11),

rt(ϕa(q)) = rt(anchora(q)). (10)

Given the way each defsucc(〈u, v〉) was chosen on page 21,

anchora(q) S2 defsucc(anchora(q)). (11)

So
rt(anchora(q)) R2 rt(defsucc(anchora(q))). (12)

So, by (9), (10) and (12)

rt(ϕa(q)) R2 rt(ϕan(q)) (13)

as desired.

ψ is 2-lifting. It suffices to show that
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(∀q ∈ Q)(∀a ∈ N∗)(∀〈u, v〉 ∈ X)
(if ψ(q, a) S2 〈u, v〉 then (∃n ∈ N)(ψ(q, an) = 〈u, v〉).

The reason this suffices is that 〈q, a〉RL
′〈q, an〉, for every n ∈ N. So suppose

that ψ(q, a) S2 〈u, v〉. Then ϕa(q) S2 〈u, v〉. So lft(ϕa(q)) = u. Also, by
Lemma 7.4, Item (10), lft(ϕa(q)) = ϕ(q). So u = ϕ(q). Now choose n ∈ N

such that 〈qn, xn〉 = 〈q, v〉.
ϕan(q) = 〈ϕ(q), v〉 by the definition of ϕan. So ψ(q, an) = 〈u, v〉, as de-

sired.

ψ is surjective. First, we claim that

the root 〈r1, r2〉 is in the image of Q×NL under ψ. (14)

Note that there is some q ∈ Q with ϕ(q) = r1, since ϕ is a surjective p-
morphism from Q to X1. So ψ(〈q,Λ〉) = ϕΛ(q) = 〈r1, r2〉, which suffices for
(14). Note that ψ, Q×NL and X = 〈X,S1, S2〉 satisfy the conditions for an
application of Lemma 4.3: Q×NL is a topologized frame and X = 〈X,S1, S2〉
is a rooted 2-frame where S1 is reflexive and transitive, by observation 1 on
page 16; 〈r1, r2〉 is a root of X ; and ψ is a p-morphism from Q × NL to
X = 〈X,S1, S2〉 with 〈r1, r2〉 ∈ ψ[Q × NL]. So ψ is surjective, by Lemma
4.3. And thus ends the proof of Lemma 7.2.

7.3. Pulling it all together

Now that we have proved Lemma 7.2, we prove Theorem 3.4, when L is a
consistent Kripke complete and Horn axiomatizable 1-modal logic. As noted
in Remark 3.5, it is easy to check that [S4,L]EX ⊆ S4 ×tf L. To see that
S4 ×tf L ⊆ [S4,L]EX, suppose that A 6∈ [S4,L]EX. By Lemma 5.4, there is
a countable rooted [S4,L]EX-frame X such that A 6∈ Log(X ). By Corollary
5.3, X is a p-morphic image of some

X ′ ∈ EX ∩ CT ∩ SR ∩ SF(Fr(L1) × Fr(L2)).

So A 6∈ Log(X ′), by Lemma 4.2. Also, X ′ is a p-morphic image of Q ×NL,
by Lemma 7.2. So A 6∈ Log(Q×NL), by Lemma 4.2. So A 6∈ S4×tf L, since
Q ∈ Top(S4) and NL ∈ Fr(L). QED
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