ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12

Winter 2012

Lecture 13

(VAL)		2011)
	mer	2011

∃ ▶ ∢

Review of Main Concepts

- Sampling Distribution of Sample Mean (Chapter 10 [10.6] and Chapter 13 [13.1]) ✓
- Sampling Distribution of Sample Proportion (Chapter 10 [10.3]) ✓
- Central Limit Theorem (Chapter 13 [10.5])√
- Confidence Interval for Population Proportion (Chapter 11)
- Confidence Interval Estimator when σ is unknown (Chapter 13 [13.2-13.4])
- Student *t*-distribution, *t*-statistic ✓

Plan for the next four lectures:

- Hypothesis Tests for Population Proportion (Chapter 12)
- Hypothesis Tests for Population Mean (Chapter 13, sections 13.5-13.6)

Sampling distribution of Sample Proportion, \hat{p}

• \hat{p} is distributed with mean equal to the true population proportion, p, and standard deviation of $\sqrt{p(1-p)/n}$

$$\hat{p} \sim (p, \underbrace{p(1-p)/n}_{ ext{variance}})$$

• The shape of the distribution is normal if the rule of thumb holds: $0 < \hat{p} \pm 3\sqrt{\hat{p}(1-\hat{p})/n} < 1$, or $\hat{p}n > 10$ and $(1-\hat{p}) > 10$

 $\hat{p} \sim N(p, p(1-p)/n)$

• Why would we be interested in a sampling distribution of \hat{p} ?

(日) (周) (三) (三)

Sampling Distribution of Sample Mean, \bar{X}

• \bar{X} is distributed with mean equal to population mean, $\mu,$ and standard deviation of σ/\sqrt{n}

$$ar{X} \sim (\mu, \underbrace{rac{\sigma^2}{n}}_{ ext{variance}})$$

• Central Limit Theorem implies that for a sample with n > 30 the shape of the distribution of \bar{X} will be normal

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

• Chapter 14 is excluded from the material covered for the Final Exam

(\\\/		20	111
(• •	muer	20	JTT'

Sampling Distribution of Sample Mean, \bar{X}

- When population standard deviation, σ , is unknown, the standard deviation of sampling distribution of \overline{X} is s/\sqrt{n} where s is a sample standard deviation.
- The standardized sample mean, $t = \frac{\bar{X} \mu}{s/\sqrt{n}}$ follows a Student t distribution with $\nu = n 1$ degrees of freedom
- If you are interested in why $\nu = n 1$ and what are the degrees of freedom, read optional section 13.7 in Chapter 13

Confidence Interval Estimator

• Confidence interval estimator for *p* is:

$$\hat{p} \pm z_{\alpha/2} * \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

• Confidence interval estimator for μ is:

$$\bar{X} \pm z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$

or

$$\bar{X} \pm t_{\alpha/2,\nu} * \frac{s}{\sqrt{n}}$$

< ロ > < 同 > < 三 > < 三

Student t-distribution

- Student t distribution has one parameter ν = n 1, or degrees of freedom
- The shape of the distribution is approximately normal for large n
- Critical values for *t*-statistic can be found from table
- Implication: if σ is unknown, all computations about population mean involve *t*-distribution, not standard normal (Example: CI for μ becomes $\bar{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$)

Hypothesis Testing

- Murphy's law states, "If anything can go wrong, it will."
- For instance, if I'm putting jelly on a slice of bread and drop it, why does it usually land jelly side down?
- How to prove Murphy's law is right or wrong?
- Drop 1721 slices of bread and observe an outcome I did not make that up. See William R. Simpson, "A Probabilistic Formulation of Murphy Dynamics as Applied to the Analysis of Operational Research Problems", 1983
- Jelly-side-up: 206 or 12%; Jelly side-down: 1506, or 88%
- Triumph of Murphy's law or simply a chance?

I did not make that up. See William R. Simpson, "A Probabilistic Formulation of Murphy Dynamics as Applied to the Analysis of Operational Research Problems", 1983

- 4 同 6 4 日 6 4 日 6

Introduction to Hypothesis testing - General Idea

- Statistical inference is often used to confirm or reject theories
- We can never be certain that the theory is true, but we can make probability statements, such as, "Given the data, we are 90% confident that the theory is true".
- Hypothesis test is really an attempted proof by statistical contradiction.
- If the collected data are of the kind consistent with the theory (likely kind), then the theory is deemed to be true
- If the data are of unlikely kind, then the theory is rejected

Textbook Analogy: A Trial

- A person is accused of a crime
- Guilt of accused person is unknown
- •Collect relevant evidence
- Jury makes decision based on evidence
- Complete evidence?

- ↔ •Value of population parameter is hypothesized
- ↔ Population parameter is unknown
- $\ \ \, \leftrightarrow \quad \ \ \, \bullet Collect \ a \ sample, \\ compute \ statistic$
- ↔ •Test hypothesis
 based on evidence from sample
- ← Entire population?

Two Hypotheses

- Null Hypothesis (H₀)
- •Hypothesis <u>not</u> based on evidence

Example:

- •Defendant is innocent
- p = 0.45
- $\mu {=} 60$

• Alternative Hypothesis (*H_A*) (or Research Hypothesis)

•Hypothesis that <u>can</u> be proved based on evidence

- Defendant is guilty
- *p* ≠ 0.45
- $\mu > 60$

• • = • • = •

Decision/Inference

Statisticians say:

\checkmark Fail to reject H_0

Fail to find evidence of guilt, insufficient evidence to infer guilt;

not enough evidence to infer $p \neq 0.45$

\checkmark Reject H_0

Enough evidence to infer guilt and reject presumption of innocence;

★ ∃ ▶ ★

sufficient evidence to infer $p \neq 0.45$

Wrong language:

X Accept H_0

X Prove *H*_A

How to Set Up Hypotheses

Consider two cases:

Legal Standard I:

Innocent until proven guilty beyond a reasonable doubt

- *H*₀ ?
- *H_A* ?

If no evidence what the jury verdict should be? Legal Standard II:

Guilty until proven innocent beyond a reasonable doubt

- *H*₀ ?
- *H_A* ?

If no evidence what the jury verdict should be?

Type I and Type II Errors

	<i>H</i> ₀ is the true	H _A is the true	
	state of the world	state of the world	
	(Innocent)	(Guilty)	
Fail to			
reject H ₀	No error	Type II Error	
(Acquit)			
Reject			
H_0	Type I Error	No error	
(Convict)			

What is probability jury makes no errors (reaches the right conclusion)?

→ ∃ >

Type I and Type II Errors

- Probability of committing Type I error is called α and it is also a significance level of the statistical test.
- P(Type I error) = P(Reject $H_0|H_0$ is true) = α
- Probability of committing Type II error is called β and $1-\beta$ is called "power of the test"
- P(Type II error) = P(Fail to reject $H_0|H_A$ is true) = β
- 1-P(Type II error) = 1- β = Power of the test

くほと くほと くほと

Significance Level α

- Significance level is chosen by researcher (conventional levels 1%, 5%, 10%).
- There is a trade-off between P(Type I error) and P(Type II error) increasing significance of the test (α ↓), power of the test decreases ((1 − β) ↓ or β ↑).
- Interpretation of α : if α =0.05, then researcher allows herself to reject the true H_0 5% of the time.

Null and Alternative Again

→ 3 → 4 3

Two Approaches to Hypothesis Testing

\rm Rejection Region 🗸

- Idea: Divide area under the density curve into rejection and "acceptance" regions.
- ▶ Rejection region: if test statistic falls into rejection region, reject H_0 , accept H_A .
- "Rejection" refers to H_0 .
- "Acceptance" region formally is incorrect. Why?
- P-value
 - Compute probability of observing the value of sample statistics, *P-value*
 - Compare P-value to significance level, α

(Winter 2011)

Rejection Region

- How to find rejection region?
- Specify the null and alternative hypotheses.
- Find sampling distribution of \hat{p} using population parameter specified under the null hypothesis, p_0 .
- Specify significance level α .
- Find critical values for the specified significance level.
- Idea: how likely is that the sample comes from the population hypothesized under the null?
- Critical values determine the cut-offs of that likelihood.
- Rejection rule: Reject H_0 if $|\hat{p}| >$ critical value.

Example (Murphy's Law) - One-tailed test

- Set up competing hypotheses: $H_0: p = 0.5$ vs $H_A: p > 0.5$
- Choose a significance level: $\alpha = 0.05$
- Find critical value, or value at the cut-off

$$P(\hat{p} > ?|H_0) = 0.05$$

$$P(\hat{p} > ?|p_0 = 0.5) = 0.05$$

$$P(\frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} > \frac{? - p_0}{\sqrt{p_0(1 - p_0)/n}}) = 0.05$$

$$P(Z > \frac{? - 0.5}{0.012}) = 0.05$$

$$\frac{? - 0.5}{0.012} = 1.645 \Rightarrow ? = 0.5197$$

• $\hat{p}_{critical} = 0.5197$

• Rejection rule: Reject H_0 if $\hat{p} > 0.5197$

(Winter 2011)

Determinants of the Critical Value

$$\hat{p}_{critical} = z_{\alpha} \sqrt{rac{p_0(1-p_0)}{n}} + p_0$$

- \bullet Significance level, α
- Sample size
- Null hypothesis
- How does each affect the critical value?

Example (Murphy's Law) - Two-tailed test

- Set up competing hypotheses: $H_0: p = 0.5$ vs $H_A: p \neq 0.5$
- Choose a significance level: $\alpha = 0.05$
- Find critical values, or values at the cut-off
- $P(\hat{p} > \hat{p}_{critical}|H_0) = 0.025$ and $P(\hat{p} < \hat{p}_{critical}|H_0) = 0.025$
- Standardize and un-standardize to find the value of $\hat{p}_{critical}$ using population parameters specified in H_0 :

$$\frac{\hat{p}_{critical} - p_0}{\sqrt{p_0(1 - p_0)/n}} = 1.96$$
$$\frac{\hat{p}_{critical} - 0.5}{0.012} = 1.96$$
$$\hat{p}_{critical} = 1.96 * 0.012 + 0.5 = 0.5235$$
$$\hat{p}_{critical} = -1.96 * 0.012 + 0.5 = 0.4765$$

• Rejection rule: Reject H_0 if $\hat{p} > 0.5235$ or $\hat{p} < 0.4765$

Standardized Critical Value

- Can use a standardized test-statistic and set up a standardized rejection region.
 - ► Test-statistic a random variable created using the sample statistic.
 - Does not change the conclusion of the test
- Standardized test-statistic for testing p

$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

Sampling Distribution of Z test statistic

- Sampling distribution of Z test statistic is standard normal for *every* problem
 - Think carefully of why that must be true
- Assumption 1: the null hypothesis is true
- Assumption 2: the sample size is large enough for the rule of thumb to hold
- If Z statistic = 0, then Z statistic is exactly what is specified under the null hypothesis
- If Z statistic= -1 (or 1) , then it is one standard deviation below (above) what is specified under the null hypothesis
- If Z statistic= -4 (or 4) , then it is four standard deviation below (above) what is specified under the null hypothesis

A B F A B F

Standardized Critical Value - Example

- What is ? such that P(Z > ?) = 0.05
- Can be found directly from the Standard normal table: ? = 1.645
- Standardized value of test statistic is

$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} = \frac{0.88 - 0.5}{0.012} = 31.53$$

- The null hypothesis is rejected if test-statistic>critical value
- $31.53 > 1.645 \Rightarrow \text{Reject } H_0, \text{ accept } H_A$

Less Extreme Example

• A poll of 100 randomly selected voters found 46 percent favoring candidate A and 54 percent favoring the opponent. Are these data sufficient to reject the null hypothesis at 5% significance level that the voters are evenly divided between the two candidates, or can it be reasonably attributed to sampling error?

•
$$H_0: p = 0.5$$
 vs $H_A: p \neq 0.5$

•
$$P(\hat{p}>?|H_0)=0.025$$
 and $P(\hat{p}|H_0)=0.025</math$

$$1.96 = \frac{\hat{\rho}_{critical} - 0.5}{\sqrt{0.5 * 0.5/100}} \Rightarrow \hat{\rho}_{critical} = 1.96 * 0.05 + 0.5 = 0.598$$

$$-1.96 = \frac{\hat{p}_{critical} - 0.5}{\sqrt{0.5 * 0.5/100}} \Rightarrow \hat{p}_{critical} = -1.96 * 0.05 + 0.5 = 0.402$$

- Can use 0.46 or 0.54 as \hat{p} or test-statistic
- Rejection region is $\hat{p} < 0.402$ and $\hat{p} > 0.598$
- Conclusion: Fail to reject H_0

Less Extreme Example - Standardized Approach

•
$$H_0: p = 0.5 \text{ vs } H_A: p \neq 0.5$$

• $P(Z > ?|H_0) = 0.025$ and $P(Z < ?|H_0) = 0.025$

$$Z_{critical} = 1.96, Z_{critical} = -1.96$$

- Rejection region is Z test statistic < -1.96 and Z test statistic > 1.96
- Z test statistic= $\frac{0.46-0.5}{0.05} = -0.8$
- Z test statistic= $\frac{0.54-0.5}{0.05} = 0.8$
- Conclusion: Fail to reject H₀

(Winter 2011)

Preview: A P-Value Approach

- A hypothesis test ask the question, "If the null hypothesis is true, what is the probability that a random sample will yield a statistic whose value is so far from it's expected value?"
- If this probability is very small, then we reject the null hypothesis by concluding that the discrepancy is too large to be explained by chance alone.
- If, on the other hand, the probability is not small, then we accept the null hypothesis by concluding that the observed discrepancy may well be due to chance, i.e. sampling error.