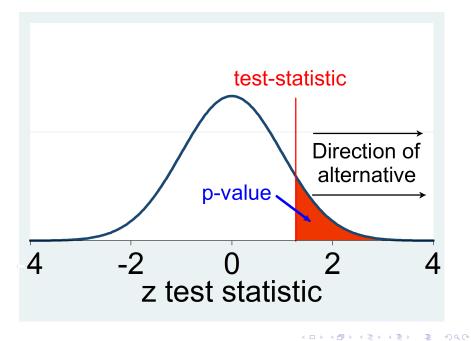
ECO220Y Hypothesis Tests: *P*-Value Approach Readings: Chapter 12


Winter 2012

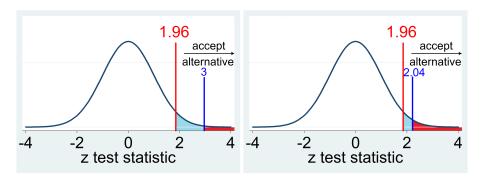
Lecture 14

→ 3 → 4 3

Rejection Region Approach - Shortcomings

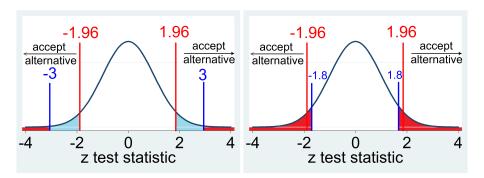
- Rejection region approach has only two outcomes yes or no.
- However, results from some tests are stronger than from the others.
- Think of the test statistic being very close to or very far from the critical value.
- To take advantage of information available from test statistic, we need a better measure of the statistical evidence supporting alternative hypothesis.
- Solution: P-value approach

(Winter 2011)


Lecture 14 3 / 12

P-Value

- Definition: The probability of observing a sample statistic at least as extreme as the one actually observed (in the direction of H_A) given H_0 is true
- Example: *p*-value= $P(\hat{p} > 0.6|H_0 \text{ is true})$
- Small *p*-value:
 - Such an event is highly unlikely if H_0 is true
 - Cast doubt upon the validity of H_0
 - Small enough *p*-value gives us reason to reject H_0 and supports H_A
- *P*-value tells us exactly how likely we are to make a Type I error if we reject H_0
- For *P*-value, smaller is better (in support of alternative hypothesis)


- 4 同 6 4 日 6 4 日 6

One-Sided Test

(日) (同) (三) (三)

Two-Sided Test

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How small does the P-Value have to be?

- How small the *p*-value have to be to infer that *H_A* is true?
- P-value between 0 and 0.01 implies overwhelming evidence
- P-value between 0.01 and 0.05 implies strong evidence
- P-value between 0.05 and 0.10 implies weak evidence
- *P*-value greater than 0.10 means no evidence in favour of H_A

Statistical significance

- Pick significance level before calculating *p*-value!
- If *p*-value falls below significance level, we say that the results from the test are statistically significant
 - Significant: has meaning, is important
 - Economically significant: the effect is large enough for decision makers to consider it to be important
 - Statistically significant: an effect that is not likely equal to zero given the data; an effect that is not likely observed due to chance (sampling error)
- Do not confuse statistical significance and economic, or practical significance
- Always report *p*-value together with your conclusion about the results of the test

Conventional Significance Levels

Significance Level, α	One-Sided Test	Two-Sided Test
1%	2.33	2.58
2%	2.06	2.33
5%	1.645	1.96
10%	1.28	1.645

・ロト ・ 日 ・ ・ ヨ ・ ・

Type I error and *p*-value

- Type I error: accept false H_A , or P(reject $H_0|H_0$ is true)
- Type II error: fail to reject false H_0 , or P(fail to reject $H_0|H_A$ is true)
- With rejection region approach, we set the probability of Type I error by choosing appropriate significance level, α
- With *p*-value approach, we can calculate the exact probability of Type I error
- *P*-value = probability of Type I error!
- *P*-value is the chance to reject H_0 when it is true

Testing Hypothesis

- Formulate null and alternative hypotheses
- Pick significance level, α
 - Rejection Region
 - ★ Calculate test statistic
 - ★ Find rejection region using statistical tables
 - Compare test statistic to rejection region
 - P-value
 - ★ Calculate test statistic
 - ★ Compute *p*-value using statistical table
 - ★ Compare *p*-value to significance level, α
- Interpret results, and draw conclusion
- A picture speaks a thousand words, especially in hypothesis testing

M&M's In-Class Experiment

- Count M&M's of each color in a randomly selected bag.
- Compare with the "official" frequencies.
- Test the discrepancies (if any).
- All steps are described in your M&M's handout.