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Economic Questions

How much does beauty pay? (see D.Hamermesh ”Beauty Pays”)

What is the perfect salary for happiness? (see A.Deaton and
D.Kahneman 2010)

Are there peer effects in binge drinking?

Who benefits from Universal Child Care in Canada?
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Regression Analysis: Preview

Regression analysis is used:

1 To quantify the linear relationship among variables

2 To build a model of economic behavior so that we can conduct
what-if analysis

3 For forecasting

Least Squared method is used:

1 To describe data: summarize the linear relationship among variables
(Lecture 4)

I OLS can always be used as a descriptive statistic
I But cannot infer causality based on observational data

2 To estimate parameters of a model used for what-if analysis and
predictions
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Review of Least Squares Method (OLS)

OLS fits the line through the scatter plot minimizing sum of squared
errors, εi

ŷ = b0 + b1x

b1 =?

b0 =?

The slope of the line tells us about the direction of the linear
association between two variables

In standardized OLS line, the slope also tells us about the strength of
the linear association

ẑy = rzx
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Analysis of Variance, or ANOVA

SST = SSE + SSR

SST =
∑

(yi − ȳ)2

SSE =
∑

(yi − ŷi )
2

SSR =
∑

(ŷi − ȳ)2

SST
SST = SSE

SST + SSR
SST

1 = SSE
SST + R2

R2 = 1− SSE
SST
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R2 measures how well the line fits the data
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Residual, or error term, ε

Residual, or error term: remainder, what is left over

εi picks up all unobserved factors

Error term (ε) includes all other factors that affect y aside from xi

I for practical reasons, it is impossible to collect data on everything
I reflects reality: model cannot control for everything
I εi = yi − β0 − β1xi , or εi = yi − ŷi
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Error Term is Important

Probabilistic model: Contains an unobservable term ε, which makes
only probabilistic statements possible:

I yi = β0 + β1xi + εi
I Our goal is to estimate parameters and determine the precision of

estimate

Deterministic model: All terms are observed, which means no
uncertainty
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Ordinary Least Squares

OLS is a method for estimating β0 and β1

OLS returns estimates: b0 and b1

Can be shown that E [b0] = β0 and E [b1] = β1

OLS produces unbiased, consistent and relatively efficient estimates

Compare relationship between β1 and b1 and µ and X̄ . What is the
counterpart of ε in OLS?

yi = β0 + β1xi + εi

yi = b0 + b1xi + ei

ei =?
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Assumptions

Six assumptions underlie the linear regression model:
I We cannot interpret results of regression analysis without knowing

underlying assumptions

Econometrics addresses violations of the underlying assumptions:
I ECO374H Applied Econometrics (for Commerce)
I ECO375H Applied Econometrics I and
I ECO375H Applied Econometrics II

ECO220 reviews the assumptions informally, mostly relying on
graphical techniques to detect the violations of the assumptions
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Assumptions

Model is linear in parameters and errors

E [ε] = 0

V [εi ] = σ2, or homoscedasticity

Cov [εi , εj ] = 0, or no autocorrelation

Cov [xi , εi ] = 0, or exogeneity

ε ∼ N(0, σ2)
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Assumption # 1

Functional form of regression equation is linear in the error and parameters:

= β0 + β1 + εi

Note: what is in red boxes does not have to be linear, i.e. can be any
function of y and/or x . For instance, ln(y) or x2.

yi = β0 + β1x
2 + εi

ln(yi ) = β0 + β1x + εi

ln(yi ) = β0 + β1x
2 + εi
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Assumption # 2

Error has mean zero: E [εi ] = 0 for i = 1, 2, ..., n

Constant term, β0 picks up any systematic, constant effects

Recall that εi captures all other factors that we do not observe. We
call them random or white noise

I Some errors are positive, some are negative, but on average these are
zero

I If we include a constant term, it should soak up all the systematic
differences between observations and leave the random one

I Zero mean of a random component also means that ŷ = b0 + b1x
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Assumption # 3

Homoscedasticity: V [εi ] = σ2 for all i = 1, 2, ..., n

We expect that the noise is just as “noisy” for all our data

When heteroscedasticity exists, it affects the standard errors of
parameters estimates and, hence, the inference
Can test for the presence of heteroscedasticity:

I Formally, using Breusch-Pagan test
I Informally, check the pattern of the scatter plot of residuals against

predicted values or against x
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Assumption # 4

No autocorrelation/no serial correlation

COV [εi , εj ] = 0 if i 6= j

Also can be stated as E [εiεj ] = 0

Problem for time-series data

Plot residuals against time variable to see whether there is a pattern,
or trend in the residuals
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Assumption # 5

COV [X , ε] = 0 or E [X , ε] = 0

This assumption is also referred to as exogeneity assumption

As a rule, assumption # 5 is violated with observational data

Violation of Assumption #5 ⇒ E [b1] 6= β1

When assumption #5 is violated, endogeneity exists

Advantage of experimental data - exogeneity assumption holds
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Assumption # 6

Assumption # 6 is often referred to as Normality assumption

εi is normally distributed

Together, Assumptions #2, #3 and #6 imply that εi ∼ N(0, σ2)

Note that Assumptions #2-#6 are all about the unobserved error
term
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