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Regression Analysis:

Introduction and Assumptions
Readings: Chapters 7-8 (Review) and Chapter 18,18.1-18.2
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Economic Questions

@ How much does beauty pay? (see D.Hamermesh "Beauty Pays")

e What is the perfect salary for happiness? (see A.Deaton and
D.Kahneman 2010)

@ Are there peer effects in binge drinking?
@ Who benefits from Universal Child Care in Canada?
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Regression Analysis: Preview

Regression analysis is used:
© To quantify the linear relationship among variables

@ To build a model of economic behavior so that we can conduct
what-if analysis

© For forecasting

Least Squared method is used:
@ To describe data: summarize the linear relationship among variables
(Lecture 4)

» OLS can always be used as a descriptive statistic
» But cannot infer causality based on observational data

@ To estimate parameters of a model used for what-if analysis and
predictions
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Review of Least Squares Method (OLS)

@ OLS fits the line through the scatter plot minimizing sum of squared

errors, €;
v = by + bi1x

by =7

by =7

@ The slope of the line tells us about the direction of the linear
association between two variables
@ In standardized OLS line, the slope also tells us about the strength of

the linear association
2, = rzy
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Analysis of Variance, or ANOVA

Y x i
SST = SSE + SSR '

SST =3 (vi —7)?
SSE =3 (yi — i)
SSR =>2(yi — ¥)?

SST _ SSE + SSR
SST = SST SST

_ SSE |, p2
1=%5+R
> _ 1 SSE
R°=1-%7F

R? measures how well the line fits the data
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y-hat = 3 + 0.6*x
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Population Regression Function

Observation Index
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Residual, or error term, ¢

@ Residual, or error term: remainder, what is left over
@ ¢; picks up all unobserved factors

@ Error term (¢) includes all other factors that affect y aside from x;

» for practical reasons, it is impossible to collect data on everything
> reflects reality: model cannot control for everything
> ei=yi— fo—Pixi, orei =y — ¥
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Error Term is Important

@ Probabilistic model: Contains an unobservable term &, which makes
only probabilistic statements possible:

> yi = Po+ Pixi + €
» Our goal is to estimate parameters and determine the precision of
estimate

@ Deterministic model: All terms are observed, which means no
uncertainty

y-hat = 1.5 + 0.6x y = 1.5+ 0.6x
[ ]
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Ordinary Least Squares

OLS is a method for estimating 3y and (31
OLS returns estimates: by and by
Can be shown that E[by] = o and E[b1] = /1

Compare relationship between 3; and by and p and X. What is the
counterpart of ¢ in OLS?

yi = Bo + B1xi + €;

yi = bo + bixj + &

e; =7
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Assumptions

@ Six assumptions underlie the linear regression model:
» We cannot interpret results of regression analysis without knowing
underlying assumptions
@ Econometrics addresses violations of the underlying assumptions:

» ECO374H Applied Econometrics (for Commerce)
» ECO375H Applied Econometrics | and
» ECO375H Applied Econometrics Il

o ECO220 reviews the assumptions informally, mostly relying on
graphical techniques to detect the violations of the assumptions
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Assumptions

Model is linear in parameters and errors
Ele] =0

V[ej] = o2, or homoscedasticity
Cov[ej, gj] = 0, or no autocorrelation
Cov[xj,ei] = 0, or exogeneity

e ~ N(0,02)
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Assumption # 1

Functional form of regression equation is linear in the error and parameters:

=00+ biqtei

Note: what is in red boxes does not have to be linear, i.e. can be any

function of y and/or x. For instance, In(y) or x°.

Vi = Bo+ Bix® + ¢

In(y;) = Bo + Bix +€;
In(y;) = Bo + Bix* +&;
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Assumption # 2

@ Error has mean zero: E[gj]=0fori=1,2,....,n

o Constant term, [y picks up any systematic, constant effects

@ Recall that ¢; captures all other factors that we do not observe. We
call them random or white noise
» Some errors are positive, some are negative, but on average these are
zero
» If we include a constant term, it should soak up all the systematic
differences between observations and leave the random one
» Zero mean of a random component also means that y = by + by x

(Winter 2012) Inference Lecture 18 14 /18



Assumption # 3

o Homoscedasticity: V[e;] = o2 foralli=1,2,...,n
@ We expect that the noise is just as “noisy” for all our data
@ When heteroscedasticity exists, it affects the standard errors of
parameters estimates and, hence, the inference
@ Can test for the presence of heteroscedasticity:
» Formally, using Breusch-Pagan test

> Informally, check the pattern of the scatter plot of residuals against
predicted values or against x
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Assumption # 4

No autocorrelation/no serial correlation
COViej,ej]l =0if i #j

Also can be stated as E[ejej] =0
Problem for time-series data

Plot residuals against time variable to see whether there is a pattern,
or trend in the residuals
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Assumption # 5

COV[X,e] =00r E[X,e] =0

This assumption is also referred to as exogeneity assumption
As a rule, assumption # 5 is violated with observational data
Violation of Assumption #5 = E[b1] # (1

When assumption #5 is violated, endogeneity exists

Advantage of experimental data - exogeneity assumption holds
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Assumption # 6

@ Assumption # 6 is often referred to as Normality assumption

@ ¢g; is normally distributed
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o Together, Assumptions #2, #3 and #6 imply that ¢; ~ N(0, 02)
@ Note that Assumptions #2-#6 are all about the unobserved error

term

(Winter 2012) Inference Lecture 18

18 / 18



