ECO220Y
 Simple Regression:
 Testing the Slope

Readings: Chapter 18 (Sections 18.3-18.5)

Winter 2012
Lecture 19

Simple Regression Model

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \\
\Uparrow \\
\text { Model }
\end{gathered}
$$

- OLS produces b_{0} and b_{1}
- Estimated regression line: $\hat{y}=b_{0}+b_{1} x$
- Are b_{0} and b_{1} point or interval estimators of the population parameters?
- What do we need to obtain interval estimators?
- $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$

Standard Error of the Slope Estimate

Standard error of the slope estimate also tells us how precisely we are able to estimate the slope. (Why?)

$$
\begin{gathered}
b_{1}=\frac{s_{x y}}{s_{x}^{2}} \Rightarrow V\left(b_{1}\right)=V\left[\frac{s_{x y}}{s_{x}^{2}}\right] \\
\sigma_{b_{1}}^{2}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}} \quad \sigma_{b_{1}}=\sqrt{\frac{\sigma^{2}}{(n-1) s_{x}^{2}}} \\
b_{1} \sim N\left(\beta, \sigma_{b_{1}}^{2}\right)
\end{gathered}
$$

But: We do not know σ !

Variance of ε_{i}

- $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$
- Do we observe ε_{i} ?
- We cannot compute σ^{2}

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2}}{N}=\frac{\sum_{i=1}^{N}\left(\varepsilon_{i}-0\right)^{2}}{N}
$$

What implicit assumption do we make when setting $\bar{\varepsilon}=0$?

Estimate of ε_{i}

- Residual e_{i} is an estimate of the error term ε_{i}
- Residual e_{i} is the difference between the estimated model and y_{i}
- Error ε_{i} is the difference between the true model and y_{i}
- We will use variability of residuals to estimate the variance of the errors.

Variance of e_{i}

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(\varepsilon_{i}-0\right)^{2}}{N}
$$

$$
s_{e}^{2}=\frac{\sum_{i=1}^{n}\left(e_{i}-0\right)^{2}}{n-2}
$$

- s_{e}^{2} is an unbiased estimate of σ^{2}
- $n-2$ in the denominator because we used up two degrees of freedom to compute estimates of β_{0} and β_{1} to find $e_{i}: e_{i}=y_{i}-\hat{y}_{i}=y_{i}-b_{0}-b_{1} x_{i}$

Standard Error of Estimate: s_{e}

Standard error of estimate, s_{e}, is an estimate of σ, where σ comes from $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$

$$
\begin{gathered}
s_{e}^{2}=\frac{\sum_{i=1}^{n}\left(e_{i}-0\right)^{2}}{n-2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}}{n-2}=\frac{S S E}{n-2} \\
s_{e}=\sqrt{\frac{S S E}{n-2}}
\end{gathered}
$$

Variance of the Slope Estimate

$$
\begin{gathered}
b_{1}=\frac{s_{x y}}{s_{x}^{2}} \Rightarrow V\left(b_{1}\right)=V\left[\frac{s_{x y}}{s_{x}^{2}}\right] \\
\sigma_{b_{1}}^{2}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}} \quad \sigma_{b_{1}}=\sqrt{\frac{\sigma^{2}}{(n-1) s_{x}^{2}}} \\
b_{1} \sim N\left(\beta, \sigma_{b_{1}}^{2}\right)
\end{gathered}
$$

We do not know σ, but we can estimate s_{e} !

Solution: Replace σ with s

Standard Error of the slope estimate $\left(b_{1}\right)$:

$$
s_{b_{1}}=\frac{s_{e}}{\sqrt{(n-1) s_{x}^{2}}}
$$

Consequences of uncertainty: For hypothesis testing use Student t (not z) Example of standard notation:

$$
\begin{aligned}
& \hat{y}=38.25-2.68 x \\
& \text { (5.8) (0.05) } \\
& s_{b_{0}} \quad s_{b_{1}}
\end{aligned}
$$

What affects precision of the slope estimate?

$$
s_{b_{1}}=\frac{s_{e}}{\sqrt{(n-1) s_{x}^{2}}}
$$

- Sample size
- Variance of independent variable
- Standard Error of estimate, s_{e}

Difference Between Two Graphs?

For which b_{1} will be a more precise estimate of β_{1} ?

Testing the Slope

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \\
\text { Model }
\end{gathered}
$$

Set of Statistical Hypotheses:

Two-tailed	One-tailed	One-tailed
$H_{0}: \beta_{1}=\beta_{1}^{0}$	$H_{0}: \beta_{1}=\beta_{1}^{0}$	$H_{0}: \beta_{1}=\beta_{1}^{0}$
$H_{1}: \beta_{1} \neq \beta_{1}^{0}$	$H_{1}: \beta_{1}>\beta_{1}^{0}$	$H_{1}: \beta_{1}<\beta_{1}^{0}$

where β_{1}^{0} is any number, does not have to be 0 .

$$
\text { test-statistics: } t=\frac{b_{1}-\beta_{1}^{0}}{s_{b_{1}}}
$$

$t \sim$ Student t, with $n-2$ degrees of freedom

Statistical Significance

Test of statistical significance for the slope coefficient:

$$
\begin{gathered}
H_{0}: \beta_{1}=0 \\
H_{1}: \beta_{1} \neq 0 \\
\text { t-statistic: } t_{(\nu=n-2)}=\frac{b_{1}}{s_{b_{1}}}
\end{gathered}
$$

Can use rejection region approach or p -value approach

Rejection Region Approach

Example: Movie Budget

Standard error of the slope estimate is 0.154
Sample size, $\mathrm{n}=120$
Can we infer that the movie budget and the running time are linearly related?

P-value

P-value is probability of obtaining a slope estimate as extreme as the one estimated in the direction of H_{1} if H_{0} is true.

In general,

- for two tailed test, p-value is equal to

$$
P\left[t<-\frac{b_{1}-\beta_{1}^{0}}{s_{b_{1}}}, \left.t>\frac{b_{1}-\beta_{1}^{0}}{s_{b_{1}}} \right\rvert\, H_{0} \text { is true }\right]
$$

- For one-tailed left-sided test p-value is equal to

$$
P\left[\left.t<\frac{b_{1}-\beta_{1}^{0}}{s_{b_{1}}} \right\rvert\, H_{0} \text { is true }\right]
$$

- For one-tailed right-sided test p-value is equal to

$$
P\left[\left.t>\frac{b_{1}-\beta_{1}^{0}}{s_{b_{1}}} \right\rvert\, H_{0} \text { is true }\right]
$$

P-Value Approach

t-statistic $=-1.16 / 0.67=-1.72$

Two-Tailed Test p-value $=0.096$

Movie Example

- Set up hypotheses:
- Compute test-statistic:
- Find the value of t-stats in t-table
- Do not forget about the degrees of freedom!
- Conclusion?

Statistical vs Economic Significance

- Statistically Significant: The degree of correlation between explanatory and dependent variables that is not likely observed due to mere chance. The statistical significance of a variable is entirely determined by the size of $t_{b_{1}}$. Statistical significance improves as sample size increases. Why?
- Statistical significance does not automatically imply that you have found something important.
- Economically Significant: An effect large enough in magnitude that decision makers would consider it important. The economical importance is related to the magnitude and sign of b_{1} and indicates whether the explanatory variable has a meaningful and plausible influence on dependent variable.

Statistical vs Economic Significance - Example

Consider hypothetical regression of test scores on class size and assume we have found:

$$
\begin{equation*}
\text { Testscore_hat }=675-5 * \text { ClassSize } \tag{15.45}
\end{equation*}
$$

Is b_{1} statistically significant? Can you give an answer just by eyeballing?
Interpretation: Consider average test score of 650. Reduction in class size by 1 student is associated with improvement in average test score by 5 points, or only 0.8% ! Is this result economically significant?

β_{1}^{0} does not have to be 0 !

- Can test for other values of β_{1}, not only 0 !
- For instance, $H_{0}: \beta_{1}=3$ vs. $H_{A}: \beta_{1}>3$
- The same procedure as for the standard t -test for statistical significance
(1) Set the hypotheses
(2) Compute t-statistic: $t_{n-2}=\frac{b_{1}-\beta_{1}^{0}}{s e_{b_{1}}}$
(3) Use p-value or rejection region approach
- Example: Cost of living index

Example: Cost of Living Index

Sample size: 15
Standard error of the slope estimate: 0.115
Do we have enough evidence to infer that $\beta_{1} \neq 1$?

Confidence Interval Estimator of β_{1}

Confidence interval (CI) estimator for β_{1} :

$$
b_{1} \pm t_{(\alpha / 2, n-2)} \operatorname{se}_{b_{1}}
$$

Confidence level: $1-\alpha$
Degrees of freedom: $\nu=n-2$

Stata Output - Read It!

Red box- coefficients' estimates	Purple box - Red box $/$ Blue box $=\mathrm{t}$-statistic
Blue box- standard errors of coefficients	Green box -p -value

Orange box - 95\% confidence interval of the slope estimate

```
regress income education
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Source} & SS & \multirow[t]{2}{*}{df} & \multirow[t]{2}{*}{MS} & Number of obs & 150 \\
\hline & & & & F( 1, 148) & 113.82 \\
\hline Model & 28364.7755 & 1 & 28364.7755 & Prob > F & 0.0000 \\
\hline Residual & 36881.8178 & 148 & 249.201472 & R -squared & 0.4347 \\
\hline & & & & Adj R-squared & 0.4309 \\
\hline Total & 65246.5933 & 149 & 437.8 & Root MSE & 15.786 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline income & Coef. & Std. Err. & t & \(P>|t|\) & \multicolumn{2}{|l|}{[95\% Conf. nterval]} \\
\hline education & 4.136793 & . 3877479 & 10.67 & 0.000 & 3.370556 & 4.90303 \\
\hline _cons & 23.63131 & 5.268046 & 4.49 & 0.000 & 13.22101 & 34.04162 \\
\hline
\end{tabular}
SST \(=\) SSR + SSE
\(\mathrm{MSE}=\mathrm{SSE} / \mathrm{df}, \mathrm{df}=\mathrm{n}-2 \quad\) Root MSE \(=\) Square root of MSE =s.e. of estimate
```

Stata output provides estimates of the coefficients, results of the tests for significance, confidence intervals, and reports the measure of fit - R-squared.

Interpretation of the Results

- Slope coefficient
- significance - t-stat or p-value
\star is slope different from zero?
\star is slope different form hypothesized value?
- interpretation - observational or experimental data
\star observational data - slope has descriptive interpretation
\star experimental data - slope has casual interpretation [not always]
- R-squared
- How much variation in dependent variable is explained by independent variable?
- How large is the standard error of estimate?

Drawing Valid Conclusion

Let's take a look at income-education regression again:

Source	SS	df	MS	Number of obs $=$	150	
				$\mathrm{F}(1,148)=$	113.82	
Model	28364.7755	128	28364.7755	Prob > F	0.0000	
Residual	36881.8178	14824	249.201472	R -squared	0.4347	
Total	65246.5933	149	437.8	Adj R-squared = Root MSE =	0.4309 15.786	
income	Coef.	Std. Err.	. $\quad t$	P>\|t	[95\% Conf.	interval]
education	4.136793	. 3877479	10.67	0.0003 .370556	4.90303	
_cons	23.63131	5.268046	4.49	$0.000 \quad 13.22101$	34.04162	

Is slope statistically significant? How much variation in income is due to education?
Can we conclude that we are $95 \backslash \%$ confident that one more year of education produces increase in income from 3.4 thousands to 5 thousands?

Biased Estimate

- Definition: Bias $\Rightarrow E\left[b_{1}\right] \neq \beta_{1}$.
- In a simple linear regression model, when we have only one explanatory/independent variable x, we can sign the direction of the bias ("+" or "-").
- Sign of the bias depends on the covariance between independent variable (x) and omitted variable (error term ε).
- As a result, if $\operatorname{COV}\left(x_{i}, \varepsilon_{i}\right)>0$, then $E\left[b_{1}\right]>\beta_{1}$.
- If $\operatorname{COV}\left(x_{i}, \varepsilon_{i}\right)<0$, then $E\left[b_{1}\right]<\beta_{1}$.
- But: we also need to think about the relationship between dependent variable and omitted variable.[not in this course]

OK

Assumption \# (?) is violated

Which arrow will be missing with experimental data?

Example

Consider again a simple linear regression model of income and education:

$$
\text { Income }_{i}=\beta_{0}+\beta_{1} * \text { Education }_{i}+\varepsilon_{i}
$$

Is b_{1} biased? What is the direction of bias in this case?
Assume that we have only one omitted variable - Ability.
COV (Education, Ability) >0

$$
\Rightarrow \mathrm{E}\left[b_{1}\right]>\beta_{1}
$$

Intuition behind this result?

More Examples

Try to determine the direction/sign of bias in the following cases:

- Training \Rightarrow employment?
- Lecture attendance \Rightarrow test scores?
- Number of children \Rightarrow hours of work?

Direction of Bias - Big Picture [Aside]

	$\operatorname{Cov}\left(x_{i}, \varepsilon_{i}\right)>0$	$\operatorname{Cov}\left(x_{i}, \varepsilon_{i}\right)<0$
$\operatorname{Cov}\left(y_{i}, \varepsilon_{i}\right)>0$	"+" bias, or OLS esti-	
mate b_{1} of β_{1} will be on		
average larger than the	mate of β_{1} will be on on true value of population average smaller than the	
$\operatorname{lorameter}$	true value of population parameter	
$\operatorname{Cov}\left(y_{i}, \varepsilon_{i}\right)<0$	"-" bias	"+" bias

Here, you have to think of $\operatorname{Cov}\left(y_{i}, \varepsilon_{i}\right)$ as direction of the relationship between dependent variable y and omitted variable which is a part of the error term ε. The correct mathematical expression for the sign of the bias is:

$$
\operatorname{Sign}\left[\operatorname{Bias}\left(b_{1}\right)\right]=\operatorname{Sign}\left[\beta_{z} * \rho\left(x_{1}, z\right)\right]
$$

where z is an omitted variable and β_{z} is the OLS coefficient from regression of y on $z: y_{i}=\alpha+\beta_{z} * z_{i}+v_{i}$

