ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5)

Winter 2012

Lecture 19

• = • •

Simple Regression Model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$\uparrow$$
Model

- OLS produces b₀ and b₁
- Estimated regression line: $\hat{y} = b_0 + b_1 x$
- Are b_0 and b_1 point or interval estimators of the population parameters?
- What do we need to obtain interval estimators?
- $\varepsilon_i \sim N(0, \sigma^2)$

Standard Error of the Slope Estimate

Standard error of the slope estimate also tells us how precisely we are able to estimate the slope. (Why?)

$$b_1 = \frac{s_{xy}}{s_x^2} \Rightarrow V(b_1) = V\left[\frac{s_{xy}}{s_x^2}\right]$$
$$\sigma_{b_1}^2 = \frac{\sigma^2}{(n-1)s_x^2} \qquad \sigma_{b_1} = \sqrt{\frac{\sigma^2}{(n-1)s_x^2}}$$
$$b_1 \sim N(\beta, \sigma_{b_1}^2)$$

But: We do not know $\sigma!$

(\\/:-+	2012
(vvinter	2012,

< ∃ > <

Variance of ε_i

- $\varepsilon_i \sim N(0, \sigma^2)$
- Do we observe ε_i ?
- ${\, \bullet \,}$ We cannot compute σ^2

What implicit assumption do we make when setting $\bar{\varepsilon} = 0$?

Estimate of ε_i

- Residual e_i is an estimate of the error term ε_i
- Residual *e_i* is the difference between the <u>estimated</u> model and *y_i*
- Error ε_i is the difference between the <u>true</u> model and y_i
- We will use variability of residuals to estimate the variance of the errors.

Variance of *e_i*

$$\sigma^2 = rac{\sum_{i=1}^{N} (\varepsilon_i - 0)^2}{N}$$
 $s_e^2 = rac{\sum_{i=1}^{n} (e_i - 0)^2}{n-2}$

- s_e^2 is an unbiased estimate of σ^2
- n − 2 in the denominator because we used up two degrees of freedom to compute estimates of β₀ and β₁ to find e_i: e_i = y_i − ŷ_i = y_i − b₀ − b₁x_i

Standard Error of Estimate: s_e

Standard error of estimate, s_e , is an estimate of σ , where σ comes from $\varepsilon_i \sim N(0, \sigma^2)$

$$s_e^2 = \frac{\sum_{i=1}^n (e_i - 0)^2}{n - 2} = \frac{\sum_{i=1}^n e_i^2}{n - 2} = \frac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{n - 2} = \frac{SSE}{n - 2}$$
$$s_e = \sqrt{\frac{SSE}{n - 2}}$$

(日) (周) (三) (三)

Variance of the Slope Estimate

$$b_1 = \frac{s_{xy}}{s_x^2} \Rightarrow V(b_1) = V\left[\frac{s_{xy}}{s_x^2}\right]$$
$$\sigma_{b_1}^2 = \frac{\sigma^2}{(n-1)s_x^2} \qquad \sigma_{b_1} = \sqrt{\frac{\sigma^2}{(n-1)s_x^2}}$$
$$b_1 \sim N(\beta, \sigma_{b_1}^2)$$

We do not know σ , but we can estimate $s_e!$

• = • •

Solution: Replace σ with s

Standard Error of the slope estimate (b_1) :

$$s_{b_1} = rac{s_e}{\sqrt{(n-1)s_x^2}}$$

Consequences of uncertainty: For hypothesis testing use Student t (not z) Example of standard notation:

$$\hat{y}= egin{array}{ccccc} 38.25 & - & 2.68 imes \ (5.8) & (0.05) \ \uparrow & \uparrow \ s_{b_0} & s_{b_1} \end{array}$$

- 4 @ > - 4 @ > - 4 @ >

What affects precision of the slope estimate?

$$s_{b_1} = \frac{s_e}{\sqrt{(n-1)s_x^2}}$$

- Sample size
- Variance of independent variable
- Standard Error of estimate, se

Difference Between Two Graphs?

For which b_1 will be a more precise estimate of β_1 ?

Testing the Slope

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$\uparrow$$
Model

Set of Statistical Hypotheses:

Two-tailed	One-tailed	One-tailed
$H_0: \beta_1 = \beta_1^0$	$H_0: eta_1=eta_1^0$	$H_0:\beta_1=\beta_1^0$
$H_1: \beta_1 \neq \beta_1^0$	$H_1:\beta_1>\beta_1^0$	$H_1: \beta_1 < \beta_1^0$

where β_1^0 is any number, does not have to be 0.

test-statistics:
$$t=rac{b_1-eta_1^0}{s_{b_1}}$$

 $t \sim$ Student *t*, with n - 2 degrees of freedom

(人) 日本 (人) 日本

Statistical Significance

Test of statistical significance for the slope coefficient:

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

t-statistic: $t_{(\nu=n-2)} = \frac{b_1}{s_{b_1}}$

Can use rejection region approach or p-value approach

Rejection Region Approach

(Winter 2012)

Simple Regression

Lecture 19 14 / 32

Example: Movie Budget

Lecture 19 15 / 32

P-value

P-value is probability of obtaining a slope estimate as extreme as the one estimated in the direction of H_1 if H_0 is true.

In general,

• for two tailed test, *p*-value is equal to

$$P[t < -rac{b_1 - eta_1^0}{s_{b_1}}, t > rac{b_1 - eta_1^0}{s_{b_1}}|H_0 ext{ is true}]$$

• For one-tailed left-sided test *p*-value is equal to

$$P[t < rac{b_1 - eta_1^0}{s_{b_1}}|H_0 ext{ is true}]$$

• For one-tailed right-sided test *p*-value is equal to

$$P[t > \frac{b_1 - \beta_1^0}{s_{b_1}} | H_0 \text{ is true}]$$

P-Value Approach

(Winter 2012)

Simple Regression

Lecture 19 17 / 32

Movie Example

- Set up hypotheses:
- Compute test-statistic:
- Find the value of t-stats in t-table
- Do not forget about the degrees of freedom!
- Conclusion?

Statistical vs Economic Significance

- Statistically Significant: The degree of correlation between explanatory and dependent variables that is not likely observed due to mere chance. The statistical significance of a variable is entirely determined by the size of t_{b1}. Statistical significance improves as sample size increases. Why?
- **Statistical significance** does not automatically imply that you have found something **important**.
- Economically Significant: An effect large enough in magnitude that decision makers would consider it important. The economical importance is related to the magnitude and sign of b_1 and indicates whether the explanatory variable has a meaningful and plausible influence on dependent variable.

- 4 目 ト - 4 日 ト - 4 日 ト

Statistical vs Economic Significance – Example

Consider hypothetical regression of test scores on class size and assume we have found:

$$\mathsf{Testscore_hat} = 675 - 5 * \mathsf{ClassSize}$$

(15.45) (1.12)

Is b_1 statistically significant? Can you give an answer just by eyeballing?

Interpretation: Consider average test score of 650. Reduction in class size by 1 student is associated with improvement in average test score by 5 points, or only 0.8%! Is this result economically significant?

 β_1^0 does not have to be 0!

- Can test for other values of β_1 , not only 0!
- For instance, $H_0: \beta_1 = 3$ vs. $H_A: \beta_1 > 3$
- The same procedure as for the standard t-test for statistical significance
 - Set the hypotheses
 - 2 Compute t-statistic: $t_{n-2} = \frac{b_1 \beta_1^0}{se_{b_1}}$
 - Use p-value or rejection region approach
- Example: Cost of living index

Example: Cost of Living Index

Sample size: 15 Standard error of the slope estimate: 0.115 Do we have enough evidence to infer that $\beta_1 \neq 1$?

(11/:-+	2012)
(vvinter	2012)

Confidence Interval Estimator of β_1

Confidence interval (CI) estimator for β_1 :

$$b_1 \pm t_{(\alpha/2,n-2)}se_{b_1}$$

Confidence level: $1 - \alpha$

Degrees of freedom: $\nu = n - 2$

Stata Output - Read It!

regress income education

regress income education

Root MSE = Square root of MSE =s.e. of estimate

Stata output provides estimates of the coefficients, results of the tests for significance, confidence intervals, and reports the measure of fit - R-squared.

(Winter 2012)

Lecture 19 25 / 32

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Interpretation of the Results

Slope coefficient

- significance t-stat or p-value
 - ★ is slope different from zero?
 - * is slope different form hypothesized value?
- interpretation observational or experimental data
 - * observational data slope has descriptive interpretation
 - * experimental data slope has casual interpretation [not always]
- R-squared
 - How much variation in dependent variable is explained by independent variable?
 - How large is the standard error of estimate?

Drawing Valid Conclusion

Let's take a look at income-education regression again:

regress income education

Source		SS	df	MS	Numbe	r of obs =	150
Model Residual Total	-+- -+- 	28364.7755 36881.8178 65246.5933	1 148 149	28364.7755 249.201472 437.8	F(1 Prob R-squ Adj F Root	, 148) = > F = ared = -squared = MSE =	= 113.82 = 0.0000 = 0.4347 = 0.4309 = 15.786
income		Coef.	Std. E	rr. t	P> t	[95% Conf	. interval]
education _cons		4.136793 23.63131	.38774 5.2680	79 10.67 46 4.49	0.000 0.000	3.370556 13.22101	4.90303 34.04162

Is slope statistically significant? How much variation in income is due to education? Can we conclude that we are 95\% confident that one more year of education produces increase in income from 3.4 thousands to 5 thousands?

イロト 不得下 イヨト イヨト 二日

Biased Estimate

- Definition: Bias $\Rightarrow E[b_1] \neq \beta_1$.
- In a simple linear regression model, when we have only one explanatory/independent variable x, we can sign the direction of the bias ("+" or "-").
- Sign of the bias depends on the covariance between independent variable (x) and omitted variable (error term ε).
- As a result, if $COV(x_i, \varepsilon_i) > 0$, then $E[b_1] > \beta_1$.
- If $COV(x_i, \varepsilon_i) < 0$, then $E[b_1] < \beta_1$.
- But: we also need to think about the relationship between dependent variable and omitted variable.[not in this course]

Which arrow will be missing with experimental data?

(\ A /	2012)
IVVINTER	20121
	,

A (10) A (10) A (10)

Example

Consider again a simple linear regression model of income and education: $Income_i = \beta_0 + \beta_1 * Education_i + \varepsilon_i$ Is b₁ biased? What is the direction of bias in this case? Assume that we have only one omitted variable - Ability. COV(Education, Ability) > 0 $\Rightarrow E[b_1] > \beta_1$

Intuition behind this result?

Try to determine the direction/sign of bias in the following cases:

- Training \Rightarrow employment?
- Lecture attendance \Rightarrow test scores?
- Number of children ⇒ hours of work?

Direction of Bias - Big Picture [Aside]

	$Cov(x_i, \varepsilon_i) > 0$	$Cov(x_i, \varepsilon_i) < 0$
$Cov(y_i, \varepsilon_i) > 0$	"+" bias, or OLS esti-	"-" bias, or OLS esti-
	mate b_1 of eta_1 will be on	mate of eta_1 will be on
	average larger than the	average smaller than the
	true value of population	true value of population
	parameter	parameter
$Cov(y_i, \varepsilon_i) < 0$	"–" bias	"+" bias

Here, you have to think of $Cov(y_i, \varepsilon_i)$ as direction of the relationship between dependent variable y and omitted variable which is a part of the error term ε . The correct mathematical expression for the sign of the bias is:

$$Sign[Bias(b_1)] = Sign[\beta_z * \rho(x_1, z)]$$

where z is an omitted variable and β_z is the OLS coefficient from regression of y on z: $y_i = \alpha + \beta_z * z_i + v_i$