ECO220Y Linear Relationship:
 Association, Correlation and Linear Regression Readings: Chapters 7-8 and Handout

Fall 2011
Lecture 4
Part 2 of 2

Scatter plot

X	Y
2	3
3	2
5	3
6	5
6	5
7	6
9	7
9	5
11	6
11	7

Variable X has mean of 6.9 and standard deviation 3.1

x	$z_{x}=\frac{x-\bar{x}}{s_{x}}$
2	-1.58
3	-1.26
5	-0.61
6	-0.29
6	-0.29
7	0.03
9	0.68
9	0.68
11	1.32
11	1.32

Variable Y has mean of 4.9 and standard deviation 1.7

y	$z_{y}=\frac{y-\bar{y}}{s_{y}}$
3	-1.12
2	-1.71
3	-1.12
5	0.06
5	0.06
6	0.65
7	1.24
5	0.06
6	0.65
7	1.24

Correlation

z_{x}	z_{y}	$z_{x} z_{y}$
-1.58	-1.12	1.77
-1.26	-1.71	2.15
-0.61	-1.12	0.69
-0.29	0.06	-0.02
-0.29	0.06	-0.02
0.03	0.65	0.2
0.68	1.24	0.84
0.68	0.06	0.04
1.32	0.65	0.86
1.32	1.24	1.63
$\sum_{i=1}^{N} z_{x} z_{y}$		7.95

$$
=\frac{\sum_{i=1}^{N} z_{x} z_{y}}{n-1}=\frac{7.95}{9}=0.88(\text { Math Box on page 171) }
$$

Slopes: 0.2, 0.6, 1.0, 1.4

The Linear Model

- Can we predict a student's weight from his or her height?
- Can we predict a student's test score on the final from his or her performance on other assessments?
- Can we predict the crop yield from the amounts of rainfall or fertilizer used?

Linear relationship can be described by equation:

$$
y=b_{0}+b_{1} * x
$$

where b_{0} is called y-intercept and b_{1} is the slope of the line (rise over run)

$$
\hat{y}=b_{0}+b_{1} x
$$

How to find the line of best fit (a.k.a OLS line)?

Minimize sum of squares by solving:

$$
\min \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

or
$\min \sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} * x\right)^{2}$
Solution is given by:

$$
b_{1}=r \frac{s_{y}}{s_{x}}
$$

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Note: OLS=Ordinary Least Squares

Math Box

Minimization problem: $\min \sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} * x\right)^{2}$
Take two derivatives: with respect to b_{0} and with respect to b_{1}.
Solve two equations with two unknowns (b_{0} and b_{1}).
Result:

Familiar formula?

$$
b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) /(n-1)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} /(n-1)}=\frac{s_{x y}}{s_{x}^{2}}
$$

\uparrow
Familiar formula?

$$
b_{1}=\frac{s_{x y}}{s_{x}^{2}}+s_{x y}=r_{x y} s_{x} s_{y}=b_{1}=r \frac{s_{y}}{s_{x}}
$$

Note: The regression line always passes through point (\bar{y}, \bar{x}). Why?

Math Box Cont'd

$$
\begin{aligned}
& S S T=S S E+S S R \\
& S S T=\sum\left(y_{i}-\bar{y}\right)^{2} \\
& S S E=\sum\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& S S R=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& \frac{S S T}{S S T}=\frac{S S E}{S S T}+\frac{S S R}{S S T} \\
& 1=\frac{S S E}{S S T}+R^{2} \\
& R^{2}=1-\frac{S S E}{S S T}
\end{aligned}
$$

R^{2} measures how well the line fits the data

Standardized Regression=Regression to the Mean

What is b_{1} for the "standardized" regression?

$$
b_{1}=r \frac{s_{y}}{s_{x}}, \text { but } s_{z y}=1 \text { and } s_{z x}=1 \Rightarrow b_{1}=r!
$$

"Standardized" Regression Line:

$$
\begin{gathered}
\hat{z_{y}}=r z_{x} \\
R^{2}=r^{2} \Rightarrow 0 \% \leq R^{2} \leq 100 \% \\
\text { since } R^{2} \text { is measured in percentage }
\end{gathered}
$$

What does R^{2} of 100% indicate?
What does R^{2} of 0 indicate?

Regression to the Mean

Sir Francis Galton (1822-1911)

Interpretation of the OLS line

- Intercept has no particular meaning. It is tempting to say that when the independent variable x is 0 , dependent variable y is equal to the number represented by the intercept. This is wrong. Often, we do not observe $x=0$ at all, and the interpretation does not make sense.
- Slope $\left(b_{1}\right)$ measures marginal change in the dependent variable y associated with a change in the independent variable x. Mathematically, $b_{1}=\frac{\Delta y}{\Delta x}$.
- Does the existence of correlation (slope) imply the causal effect or direct effect of x on y ?

Summary of Data Analysis

One variable		Two variables
Want to learn about		
Distribution		Relationship
Graphical Description		
\swarrow		
Histogram		Scatter Plot
Bar Chart, Pie Chart		Bar Chart
Line Graph		
Descriptive Statistics		
\swarrow		
mean, median, mode		covariance
IQR, range, percentile		correlation
standard deviation		OLS line

