ECO220Y
 Introduction to Probability Readings: Chapter 6

Fall 2011

Lecture 6
Part 1 of 1

Historical Roots of Probability

- Probability was used to study the games of chance
- The story of the Chevalier de Mere
- Tried luck with two games
- Roll a single die 4 times and bet on getting a six
- Roll two dice 24 times and bet on getting a double six
- The Chevalier ended up loosing badly on the second gamble
- Blaise Pascal (1623-1662) discovered a fundamental principle for assessing the probability of a certain event

Definitions

- A random experiment is the process of observing an outcome of a chance event
- An outcome is a realization of a random experiment
- Mutually Exclusive
- Exhaustive
- Sample space, S, is a collection of all possible outcomes
- An event is a collection of particular outcomes

Examples

- Roll a Die
- A random experiment \longrightarrow Roll a Die!
- All elementary outcomes $\longrightarrow 1,2,3,4,5,6$
- Sample space, $S \longrightarrow\{1,2,3,4,5,6\}$
- Event A = "More than 4" $=\{5,6\}$
- Toss a Coin (Fair Coin!)
- A random experiment \longrightarrow Toss a Coin!
- All possible outcomes \longrightarrow Head and Tail
- Sample space, $S \longrightarrow\{\mathrm{H}, \mathrm{T}\}$
- Event "Win if Head" $=\{H\}$

Different Types of Probability - Part I

- Subjective probability - an individual's assessment of the likelihood of a certain event
- Based on one's own experience
- The less accurate of all types
- Theoretical probability
- Based on mathematical model, $P($ Event A$)=\frac{\# \text { of outcomes in } \mathrm{A}}{\text { Total } \# \text { of outcomes }}$
- Fair coin - equal chances of head and tail
- Deck of card - can compute probability of randomly selecting each card
- Empirical probability - relative frequency of event's occurrence in the long-run
- Based on repeatedly observing the event's outcome
- We observe that from year to year the fraction of second-year students who take ECO220 is 70%.
- Can write it as a fraction $\frac{70}{100}$ or a decimal, 0.7

Probability Rules

(1) For any event $\mathrm{A}, 0 \leq P(A) \leq 1$

- Probabilities are never negative.
- A probability of zero means an event cannot happen. Less than zero would be meaningless.
- If event is certain to happen, we assign it probability 1.
(2) $P(S)=1$
- The total probability of the sample space must be 1 .
- If we conduct an experiment, something is bound to happen.
- $P(A)=1-P\left(A^{C}\right)$
- Complement rule
- A^{C} is a complement of A, or A is not occurring, or "not" A

Event

- Recall: An event is a set of elementary outcomes.
- The probability of event is the sum of the probabilities of the elementary outcomes in the set.
- We can combine events to make other events!
- For instance, given events A and B, we can make new events:
(1) $\mathrm{A} O R \mathrm{~B} \longrightarrow A \cup B$ - "union" of A and B
* Addition Rule: $P(A \cup B)=P(A)+P(B)$, if events are disjoint
\star General Addition Rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
(2) A AND B $\longrightarrow A \cap B$ - "intersection" of A and B
\star Multiplication Rule: $P(A \cap B)=P(A) \times P(B)$ if A and B are independent

Different Types of Probabilities - Part II

(1) Joint Probability

- Given two events, A and B, we would like to know what is the probability that both A and B occur
- Notation - $P(A \cap B)$
(2) Marginal Probability
- Probability of a single event
- Notation - $P(A)$
(3) Conditional Probability
- Probability of event A given that event B has already occurred
- Notation - $P(A \mid B)$

Probability - Joint

	Cash	Credit Card Event A	Debit Card
Under $\$ 20$.09	.03	.04
$\$ 20-\$ 100$.05	.21	.18
Over $\$ 100$ Event B	.03	.23	.14

We call it joint probability

Probability - Marginal

	Cash	Credit Card Event A	Debit Card	Marginal Pr
Under $\$ 20$.09	.03	.04	.16
$\$ 20-\$ 100$.05	.21	.18	.44
Over $\$ 100$ Event B	.03	.23	.14	.40
Marginal Pr	.17	.47	.36	1

\Uparrow
We call it marginal probability of event A

Probability - Conditional

	Cash	Credit Card Event A	Debit Card	Marginal Pr
Under $\$ 20$.09	.03	.04	.16
$\$ 20-\$ 100$.05	.21	.18	.44
Over $\$ 100$ Event B	.03	.23	.14	.40
Marginal Pr	.17	.47	.36	1

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- $P(A \mid B)$: For a customer who spent over $\$ 100$ what is the probability that he/she paid with a credit card?
- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.23}{0.40}=0.575$
- $P(B \mid A)$: For a customer who paid with a credit card what is the probability that he/she spent over $\$ 100$?
- $P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.23}{0.47}=0.489$

Union of Events

	Cash	Credit Card	Debit Card	Marginal
Under $\$ 20$.09	.03	.04	.16
$\$ 20-\$ 100$.05	.21	.18	.44
Over $\$ 100$.03	.23	.14	.40
Marginal	.17	.47	.36	1

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \cup B)=0.47+0.40-0.23=0.64
\end{aligned}
$$

Independent Events

- Events are independent when occurrence of one is independent of another
- Example: toss two coins - are the outcomes related?
- Probability definition: events A and B are independent if:
- $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$
- What does that imply for the joint probability of A and B ?

Gender and Promotion Related?

	Promoted	Not Promoted	Marginal
Female	.03	.12	.15
Male	.17	.68	.85
Marginal	.20	.80	1

- Based on this joint probability table, can we conclude that promotion is independent of gender?
- $P($ Male and Promoted $)=.17$ (from Table)
- $\mathrm{P}($ Male $) * \mathrm{P}($ Promoted $)=.85^{*} .20=.17=.17$

Extending Independence to More than 2 Events

- Often, we are interested in a joint probability of more than two events
- We still can apply the multiplication rule for independent events
- $P\left(A_{1} \cap A_{2} \cap A_{3} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) \times P\left(A_{2}\right) \times P\left(A_{3}\right) \times \ldots \times P\left(A_{n}\right)$
- What is the chance to get ten straight heads tossing a fair coin?
- $P($ ten heads in a row $)=P\left(H_{1}\right) \times P\left(H_{2}\right) \times \ldots \times P\left(H_{10}\right)=0.5^{10}=$ 0.00098

