ECO220Y Introduction to Probability Readings: Chapter 6

Fall 2011

Lecture 6 Part 1 of 1

(Fall 2011)

∃ → Lecture 6 Part 1 of 1 1 / 16

Historical Roots of Probability

- Probability was used to study the games of chance
- The story of the Chevalier de Mere
 - Tried luck with two games
 - Roll a single die 4 times and bet on getting a six
 - Roll two dice 24 times and bet on getting a double six
 - The Chevalier ended up loosing badly on the second gamble
- Blaise Pascal (1623-1662) discovered a fundamental principle for assessing the probability of a certain event

Definitions

- A random experiment is the process of observing an outcome of a chance event
- An outcome is a realization of a random experiment
 - Mutually Exclusive
 - Exhaustive
- Sample space, S, is a collection of all possible outcomes
- An event is a collection of particular outcomes

Examples

- Roll a Die
 - ► A random experiment → Roll a Die!
 - ► All elementary outcomes—1, 2, 3, 4, 5, 6
 - Sample space, $S \longrightarrow \{1, 2, 3, 4, 5, 6\}$
 - Event A = "More than 4" = {5,6}
- Toss a Coin (Fair Coin!)
 - ► A random experiment → Toss a Coin!
 - \blacktriangleright All possible outcomes \longrightarrow Head and Tail
 - Sample space, $S \longrightarrow \{H,T\}$
 - Event "Win if Head" = {H}

프 에 에 프 어

Different Types of Probability - Part I

- Subjective probability an individual's assessment of the likelihood of a certain event
 - Based on one's own experience
 - The less accurate of all types
- Theoretical probability
 - Based on mathematical model, P(Event A) = # of outcomes in A Total # of outcomes
 - Fair coin equal chances of head and tail
 - Deck of card can compute probability of randomly selecting each card
- Empirical probability relative frequency of event's occurrence in the long-run
 - Based on repeatedly observing the event's outcome
 - ► We observe that from year to year the fraction of second-year students who take ECO220 is 70%.
 - Can write it as a fraction $\frac{70}{100}$ or a decimal, 0.7

Probability Rules

1 For any event A, $0 \le P(A) \le 1$

- Probabilities are never negative.
- A probability of zero means an event cannot happen. Less than zero would be meaningless.
- If event is certain to happen, we assign it probability 1.
- **2** P(S) = 1
 - The total probability of the sample space must be 1.
 - If we conduct an experiment, something is bound to happen.

3
$$P(A) = 1 - P(A^{C})$$

- Complement rule
- A^C is a complement of A, or A is not occurring, or "not" A

Event

- Recall: An event is a set of elementary outcomes.
- The probability of event is the sum of the probabilities of the elementary outcomes in the set.
- We can combine events to make other events!
- For instance, given events A and B, we can make new events:
 - - * Addition Rule: $P(A \cup B) = P(A) + P(B)$, if events are disjoint
 - ★ General Addition Rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - **2** A AND B \longrightarrow $A \cap B$ "intersection" of A and B
 - ★ Multiplication Rule: $P(A \cap B) = P(A) \times P(B)$ if A and B are independent

Different Types of Probabilities - Part II

Joint Probability

- ► Given two events, *A* and *B*, we would like to know what is the probability that both *A* and *B* occur
- Notation $P(A \cap B)$
- 2 Marginal Probability
 - Probability of a single event
 - ► Notation P(A)
- Onditional Probability
 - Probability of event A given that event B has already occurred
 - ► Notation P(A|B)

Probability - Joint

	Cash	Credit Card	Debit Card
		Event A	
Under \$20	.09	.03	.04
\$20 - \$100	.05	.21	.18
Over \$100			
Event B	.03	.23	.14

↑ We call it joint probability

イロト イヨト イヨト イヨト

Probability - Marginal

	Cash	Credit Card	Debit Card	Marginal Pr
		Event A		
Under \$20	.09	.03	.04	.16
\$20 - \$100	.05	.21	.18	.44
Over \$100				
Event B	.03	.23	.14	.40
Marginal Pr	.17	.47	.36	1

↑ We call it marginal probability of event A

Probability - Conditional

	Cash	Credit Card	Debit Card	Marginal Pr
		Event A		
Under \$20	.09	.03	.04	.16
\$20 - \$100	.05	.21	.18	.44
Over \$100				
Event B	.03	.23	.14	.40
Marginal Pr	.17	.47	.36	1

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

• P(A|B): For a customer who spent over \$100 what is the probability that he/she paid with a credit card?

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.23}{0.40} = 0.575$$

• P(B|A): For a customer who paid with a credit card what is the probability that he/she spent over \$100?

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.23}{0.47} = 0.489$$

(日) (同) (三) (三)

Union of Events

	Cash	Credit Card	Debit Card	Marginal
Under \$20	.09	.03	.04	.16
\$20 - \$100	.05	.21	.18	.44
Over \$100	.03	.23	.14	.40
Marginal	.17	.47	.36	1

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = 0.47 + 0.40 - 0.23 = 0.64$$

Lecture 6 Part 1 of 1

3

12 / 16

<ロ> (日) (日) (日) (日) (日)

Independent Events

- Events are independent when occurrence of one is independent of another
- Example: toss two coins are the outcomes related?
- Probability definition: events A and B are independent if:
- P(A|B) = P(A) and P(B|A) = P(B)
- What does that imply for the joint probability of A and B?

Gender and Promotion Related?

	Promoted	Not Promoted	Marginal
Female	.03	.12	.15
Male	.17	.68	.85
Marginal	.20	.80	1

- Based on this joint probability table, can we conclude that promotion is independent of gender?
- P(Male and Promoted) = .17 (from Table)
- P(Male)*P(Promoted) = .85*.20 = .17 = .17

Extending Independence to More than 2 Events

- Often, we are interested in a joint probability of more than two events
- We still can apply the multiplication rule for independent events
- $P(A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n) = P(A_1) \times P(A_2) \times P(A_3) \times \ldots \times P(A_n)$
- What is the chance to get ten straight heads tossing a fair coin?
- $P(\text{ten heads in a row}) = P(H_1) \times P(H_2) \times ... \times P(H_{10}) = 0.5^{10} = 0.00098$

3

∃ → < ∃</p>

- 一司