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Probability Distributions

Discrete Continuous
↙ ↘

Binomial (n, p) X Uniform (a, b)
Poisson Triangle

Bernoulli (p) X Normal/Standard Normal
Student t

F distribution
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Probability Distributions

In a discrete probability distribution, the possible outcomes are
countable. We use a discrete random variable X and discrete
probability distribution p(x). Each of the possible outcomes has a
nonzero probability.

In a continuous probability distribution, the possible outcome are not
countable. We use a continuous random variable X and continuous
probability distribution f (x). Each possible outcome has zero
probability, while an interval of possible outcomes has a nonzero
probability.
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A Spinner
A spinner randomly selects a point on a circle. How many points are there
on this circle?
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A Spinner
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Probability Density Function

For continuous RV, area under the curve f(x) is the probability of a
range of values.

Height of the function f(x) is not probability! To find probability, need
to use calculus to find area under the curve (

∫
f (x)dx).

Probability density function (pdf) satisfies two conditions:

1 f (x) ≥ 0 for all possible values of X.

2 The total area under the curve is 1 (
∫

f (x)dx = 1)
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Uniform Distribution

All outcomes are equally likely.

All values have equal chance - 0. (Why?)

Often referred as Rectangular distribution because the graph of the
pdf has the form of a rectangle.

P(X < x) = P(X ≤ x). Why?
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Uniform Probability Distribution

Uniform PDF:

f (x) = 1
b−a

where a ≤ x ≤ b

are parameters and

[a, b] - bounded support

Intuition for

the formula of f(x)?
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Uniform Probabilities

P(X = 2)=

P(X ≤ 2)=

P(X < 2)=

P(X ≥ 5)=

P(X ≥ 4)=

P(3 ≤ X ≤ 4)=
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Uniform Probabilities

P(X = 2)=0

P(X ≤ 2)=1*0.25=0.25

P(X < 2)=1*0.25=0.25

P(X ≥ 5)=0

P(X ≥ 4)=1*0.25=0.25

P(3 ≤ X ≤ 4)=1*0.25=0.25

(Fall 2011) Probability Distributions Lecture 8 Part 1 11 / 19



Mean and Variance of Uniform RV

For Uniform RV X ∼ U[a,b]

(∼ in statistics means ”distributed”)

µ = a+b
2

σ2 = (b−a)2

12

Note: To derive µ and σ2,

we need to use integral calculus.
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Triangle Distribution

We can create triangle distribution by adding up two independent and
identically distributed uniform random variables.

Why do we need independence?
What does identically distributed mean?

X1∼U[a, b]
X2∼U[a, b]
X1 and X2 are independent
T=X1+X2
T∼T[2a, 2b]
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Triangle Distribution
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Triangle Distribution: Mean and SD

Mean and Variance for Uniform Distribution U[a, b]:

µ = a+b
2 σ2 = (b−a)2

12

Mean and Variance for Triangle Distribution T[2a, 2b]?

µ =? σ2 =?
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Let X1 and X2 be two identically and independently distributed random
variables such that X1 ∼ U[a, b].

µx1+x2 = E [X1 + X2] = E [X1] + E [X2] = a+b
2 + a+b

2 = a + b

σ2
x1+x2

= V [X1 + X2] = V [X1] + V [X2] = (b−a)2

12 + (b−a)2

12 = (b−a)2

6

What property of two uniformly distributed random variables have we used to

derive the mean and variance of triangle distribution? Have we used laws of

expectation and variance?
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Summary: Uniform and Triangle

1 Uniform
I Symmetric, rectangle-shaped, even density
I Parameters: a and b
I Bounded support [a, b]
I Find probabilities P(x1 <X< x2) with A=base*height

I µ = a+b
2 and σ2 = (b−a)2

12

2 Triangle
I Symmetric, triangle-shaped, more density around the mean
I Parameters: 2a and 2b
I Bounded support [2a, 2b]
I Find probabilities P(x1 <X< x2) with A=1/2*base*height
I µ = and σ2 =
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Consider two identically and independently distributed random variables X
and Y, such that X∼U[-2,4]. What is the mean and standard deviation of
X+Y?

(A) -4 and 5.65
(B) -4 and 8
(C) -2 and 4
(D) 2 and 2.45
(E) 2 and 6

X+Y∼ T[-4,8]
E[X+Y]=a+b=-2+4=2

V[X+Y]= (b−a)2

6 = (4+2)2

6 = 6

SD[X+Y]=
√

V [X + Y ] =
√

6 = 2.45
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