ECO220Y
 Continuous Probability Distributions:
 Normal
 Readings: Chapter 9, section 9.10

Fall 2011
Lecture 8 Part 2

Normal Density Function

$$
\begin{gathered}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \\
\text { where }-\infty<x<\infty
\end{gathered}
$$

μ and σ are parameters of this distribution

$$
\mathrm{X} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)
$$

Example: mean 0 and s.d. 1

$$
\begin{aligned}
& f(x)=\frac{1}{1 \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-0}{1}\right)^{2}} \\
& f(x)=\frac{1}{1 \sqrt{2 \pi}} e^{-0.5 x^{2}} \\
& f(x)=0.40 \frac{1}{e^{0.5 x^{2}}} \\
& f(x)=\frac{0.40}{1.65 x^{2}}
\end{aligned}
$$

Example: mean 0 and s.d. 1

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-3.5	0.001
-2	0.054
-1	0.242
-0.5	0.352
0	0.399
0.5	0.352
1	0.242
2	0.054
3.5	0.001

Area is Probability

Finding Normal Probabilities

- Probability is area under the bell curve
- Finding the area is tricky even with calculus
- Can use tables and software to find normal probabilities
- Algorithm for finding normal probabilities:
(1) Standardize
(2) Read the table

Standard Normal: $\mathrm{Z} \sim \mathrm{N}(0,1)$

If $\mathrm{X} \sim \mathbf{N}(\mu, \sigma)$, then to get standard normal random variable Z with mean 0 and s.d. 1 :

$$
z=\frac{X-\mu}{\sigma}
$$

Recall: standardization is a linear transformation:

$$
z=\frac{x-\mu}{\sigma} \longrightarrow z=\underbrace{\frac{-\mu}{\sigma}}_{a}+\underbrace{\frac{1}{\sigma}}_{b} x
$$

Standard Normal: $\mathrm{N}(0,1)$

Finding Probabilities with Standard Normal Table

Z	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$
$\mathbf{0 . 0}$	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199
$\mathbf{0 . 1}$	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596
$\mathbf{0 . 2}$	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987
$\mathbf{0 . 3}$	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368
$\mathbf{0 . 4}$	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736
$\mathbf{0 . 5}$	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088

Finding Probabilities

Need to find:

$$
\mathrm{P}\left(x_{1}<X<x_{2}\right)
$$

We can standardize X and find $\mathrm{P}\left(z_{1}<Z<z_{2}\right)$ from table:

$$
P(\frac{x_{1}-\mu}{\sigma}<\underbrace{\frac{X-\mu}{\sigma}}_{Z}<\frac{x_{2}-\mu}{\sigma})
$$

Answer is exactly the same. Why?

Finding Range Probabilities

Finding Probabilities

Here is the intuition:
X - the percentage return on investment - is distributed normally with a mean of 10 percent and a s.d. of 10 percent, or $X \sim N\left(10,10^{2}\right)$.

What is the probability that return will be greater than 20 percent, or $X>20$?

$$
X>20 \Longrightarrow X-\mu>20-\mu \Longrightarrow \frac{X-\mu}{\sigma}>\frac{20-\mu}{\sigma}
$$

Therefore,

$$
P(X>20)=P[\underbrace{\frac{X-\mu}{\sigma}}_{Z}>\frac{20-\mu}{\sigma}]
$$

Example

The amount of time devoted to studying statistics each week by students is normally distributed with a mean of 7.5 hours and a s.d. of 2.1 hours.

- What proportion of students study for more than 10 hours per week: $P(X>10)=$?

$$
P(X>10)=P\left(Z>\frac{10-7.5}{2.1}\right)=P(Z>1.19)=0.117
$$

- Probability that a randomly selected student spends between 7 and 9 hours studying: $P(7<X<9)=$?

$$
\begin{gathered}
P(7<X<9)=P\left(\frac{7-7.5}{2.1}<Z<\frac{9-7.5}{2.1}\right)=P(-0.24<Z<0.71) \\
=P(Z<0.71)-P(Z<-0.24)=0.3559
\end{gathered}
$$

Find z_{A} such that $P\left(Z>z_{A}\right)=A$

Standard Normal: mean $=0$, s.d. $=1$

$$
P(Z>z)=A
$$

Example Cont'd

- The amount of time spent studying $X \sim N\left(7.5,2.1^{2}\right)$
- If a student is in the top 5%, what amount of time does he/she spend studying? $P\left(X>x_{A}\right)=0.05$. Need to find $x_{A}=$?
- $P\left(X>x_{A}\right)=0.05 \longrightarrow P\left(Z>\frac{x_{A}-7.5}{2.1}\right)=0.05 \longrightarrow P\left(Z>z_{A}\right)=0.05$
- From table $z_{0.05}=1.645$
- Un-standardize z_{A} to get back x_{A}
$\bullet \frac{x_{A}-7.5}{2.1}=1.645 \longrightarrow x_{A}=1.645 * 2.1+7.5=10.95$ hours

Symmetry of Normal Distribution

$$
P\left(Z<-z_{A}\right)=P\left(Z>z_{A}\right)
$$

Summary: Normal Distribution

- Normal distribution is symmetric and bell-shaped
- Values are clustered around the mean. Recall Empirical Rule:
- about 68.3% within 1 s.d. of mean
- about 95.4% within 2 s.d. of mean
- about 99.7% within 3 s.d. of mean
- Parameters: μ and σ
- Unbounded support: $(-\infty, \infty)$

Normal Approximation to Binomial Distribution

$$
\begin{aligned}
& X \sim B(100,0.2) \\
& P(X=20)= \\
& C_{20}^{100}(0.2)^{20}(0.8)^{80}= \\
& \frac{100!}{20!80!}(0.2)^{20}(0.8)^{80}= \\
& =0.0993 \\
& X \sim N(20,16) \\
& P(X=20)= \\
& P(19.5<X<20.5)= \\
& P(-0.125<Z<0.125) \\
& =0.0995
\end{aligned}
$$

Rule of Thumb for Binomial Distribution

To determine if Normal distribution is a good approximation for the Binomial:

- Check if the entire interval lies between 0 and n, where interval is given by:

$$
n p \pm 3 \sqrt{n p(1-p)}
$$

What is the concept behind the rule of thumb for Binomial distribution?

Alternative Rule of Thumb

- At least two alternative rules of thumb for approximation
(1) $n p>5$ and $n(1-p)>5$
(2) $n p>10$ and $n(1-p)>10$
(3) Obviously, if 2 holds, then 1 holds
- Use the one you find more intuitive and convenient

Use Normal Approximation?

$10 \pm 3 * 3 \rightarrow(1,19)$
Within $(0,100)$

$5 \pm 3 * 2.2 \rightarrow(-1.6,11.6)$
Not within $(0,100)$

