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Normal Density Function

f (x) = 1
σ
√

2π
e−
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σ )2

where −∞ < x <∞

µ and σ are parameters of this distribution

X ∼ N(µ, σ2)
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Example: mean 0 and s.d. 1
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f (x) = 0.40 1
e0.5x2

f (x) = 0.40
1.65x2

x f(x)

-3.5 0.001

-2 0.054

-1 0.242

-0.5 0.352

0 0.399

0.5 0.352

1 0.242

2 0.054

3.5 0.001
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Finding Normal Probabilities

Probability is area under the bell curve

Finding the area is tricky even with calculus

Can use tables and software to find normal probabilities

Algorithm for finding normal probabilities:

1 Standardize
2 Read the table
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Standard Normal: Z ∼ N(0,1)

If X ∼ N(µ, σ), then to get standard normal random variable Z with mean
0 and s.d. 1:

z = X−µ
σ

Recall: standardization is a linear transformation:

z = X−µ
σ −→ z =

−µ
σ︸︷︷︸
a

+
1

σ︸︷︷︸
b

x
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Finding Probabilities with Standard Normal Table

Z 0.00 0.01 0.02 0.03 0.04 0.05
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088
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Finding Probabilities

Need to find:

P(x1 < X < x2)

We can standardize X and find P(z1 < Z < z2) from table:

P(x1−µ
σ <

X − µ
σ︸ ︷︷ ︸
Z

< x2−µ
σ )

Answer is exactly the same. Why?
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Finding Range Probabilities
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Finding Probabilities

Here is the intuition:

X - the percentage return on investment - is distributed normally with a
mean of 10 percent and a s.d. of 10 percent, or X ∼ N(10, 102).

What is the probability that return will be greater than 20 percent, or
X > 20?

X > 20 =⇒ X − µ > 20− µ =⇒ X−µ
σ > 20−µ

σ

Therefore,

P(X > 20) = P

X − µ
σ︸ ︷︷ ︸
Z

> 20−µ
σ
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Example

The amount of time devoted to studying statistics each week by students
is normally distributed with a mean of 7.5 hours and a s.d. of 2.1 hours.

• What proportion of students study for more than 10 hours per week:
P(X > 10) =?

P(X > 10) = P(Z > 10−7.5
2.1 ) = P(Z > 1.19) = 0.117

• Probability that a randomly selected student spends between 7 and 9
hours studying: P(7 < X < 9) =?

P(7 < X < 9) = P(7−7.5
2.1 < Z < 9−7.5

2.1 ) = P(−0.24 < Z < 0.71)

= P(Z < 0.71)− P(Z < −0.24) = 0.3559
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Find zA such that P (Z> zA) = A
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Example Cont’d

• The amount of time spent studying X∼ N(7.5, 2.12)

• If a student is in the top 5%, what amount of time does he/she spend
studying? P(X > xA) = 0.05. Need to find xA = ?

•P(X > xA) = 0.05 −→ P(Z > xA−7.5
2.1 ) = 0.05 −→ P(Z > zA) = 0.05

• From table z0.05 = 1.645

• Un-standardize zA to get back xA

• xA−7.5
2.1 = 1.645 −→ xA = 1.645 ∗ 2.1 + 7.5 = 10.95 hours
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ZA = XA−µ
σ −→ XA = ZA ∗ σ + µ
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Symmetry of Normal Distribution

P(Z < −zA) = P(Z > zA)
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Summary: Normal Distribution

Normal distribution is symmetric and bell-shaped

Values are clustered around the mean. Recall Empirical Rule:
I about 68.3% within 1 s.d. of mean
I about 95.4% within 2 s.d. of mean
I about 99.7% within 3 s.d. of mean

Parameters: µ and σ

Unbounded support: (−∞,∞)
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Normal Approximation to Binomial Distribution

X ∼ B(100, 0.2)

P(X = 20) =

C 100
20 (0.2)20(0.8)80 =

100!
20!80!(0.2)20(0.8)80 =

= 0.0993

X ∼ N(20, 16)

P(X = 20) =

P(19.5 < X < 20.5) =

P(−0.125 < Z < 0.125)

= 0.0995
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Rule of Thumb for Binomial Distribution

To determine if Normal distribution is a good approximation for the
Binomial:

Check if the entire interval lies between 0 and n, where interval is
given by:

np ± 3
√

np(1− p)

What is the concept behind the rule of thumb for Binomial distribution?
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Alternative Rule of Thumb

At least two alternative rules of thumb for approximation
1 np > 5 and n(1− p) > 5
2 np > 10 and n(1− p) > 10
3 Obviously, if 2 holds, then 1 holds

Use the one you find more intuitive and convenient
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Use Normal Approximation?

10± 3 ∗ 3→ (1, 19)

Within (0,100)

5± 3 ∗ 2.2→ (−1.6, 11.6)

Not within (0,100)
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