ECO220Y
 Sampling Distributions of Sample Statistics:
 Sample Proportion
 Readings: Chapter 10, section 10.1-10.3

Fall 2011
Lecture 9

Sampling Distributions

Recall:

- A sample is a [small] part of a population.
- A parameter is a numerical fact about the population of interest. Usually, a parameter cannot be determined exactly, but can only be estimated.
- A statistic can be computed from a sample, and used to estimate a parameter.
Today:
- Sample statistics are random variables.
- Sampling distribution is a probability distribution of a sample statistic.
- Sampling error, or noise, is the variation of estimates from sample to sample.

How to Find Sampling Distribution

(1) Analytically (\checkmark)

- Use probability rules
- Use Laws of Expectation and Variance
- Use Central Limit Theorem
(2) Empirically
- Toss 2 coins many times
- Record the value of sample statistics
- Record frequencies of each value and probabilities - probability distribution
(3) Simulations
- Monte-Carlo simulation
- Boot-strapping

Sample Proportion

- Mr Noxin is running for a dogcatcher and 45% of all voters favour him.
- We polled 100 people on a street and found that 30% of them favour Mr Noxin
- We polled another 100 people on a street and found that 60% of them favour Mr Noxin
- Why the difference between two samples?
- How we can reconcile 30 and 60 percent with 45 percent who favour Mr Noxin?

Population and Sample Proportions

- Mr Noxin is running for a dogcatcher and 45% of all voters favour him
- 45% is what? Answer: Proportion, or fraction of voters who favour Noxin in a population
- 45%, or 0.45 is p, population proportion, parameter, constant
- What about the proportion of voters who favour Noxin in a sample of 3 voters? 100 voters? 1000 voters?
- Fraction of voters in a sample who favour Noxin is a sample proportion, \hat{p}
- Sample proportion, \hat{p} varies from sample to sample
- \hat{p} is statistic, random variable
- Let's "imagine" what sample proportion will be in a sample of 3 voters.

Sampling Distribution of \hat{p} when $n=3$

Sample	X	\hat{p}	Probability
FFF	3	$\frac{3}{3}=1$	$0.45^{3}=0.091$
FFN, FNF, NFF	2	$\frac{2}{3}$	$0.45^{2} * 0.55 * 3=0.334$
FNN, NFN, NNF	1	$\frac{1}{3}$	$0.55^{2} * 0.45 * 3=0.408$
NNN	0	$\frac{0}{3}=0$	$0.55^{3}=0.166$

What if sample size is $100 ? 1000$?

Sampling Distribution of \hat{p}

- $\hat{p}=\frac{X}{n}$
- X counts the number of successes $\rightarrow X \sim$ Binomial
- \hat{p} is a linear transformation of X
- \hat{p} is also a Binomial random variable!
- Recall that we can use Normal approximation to Binomial to compute probabilities!
- Let's find parameters of the distribution of \hat{p} when n is large

Distribution of \hat{p}

- Parameters of $X \sim B$ are n and p, and $E[X]=n p$ and $V[X]=n p(1-p)$
- Since $\hat{p}=\frac{X}{n}$, then $E[\hat{p}]=E\left[\frac{X}{n}\right]$ and $V[\hat{p}]=V\left[\frac{X}{n}\right]$
- $E[\hat{p}]=E\left[\frac{X}{n}\right]=\frac{1}{n} E[X]=\frac{1}{n} * n p=\frac{n p}{n}=p$
- $V[\hat{p}]=V\left[\frac{X}{n}\right]=\frac{1}{n^{2}} V[X]=\frac{1}{n^{2}} * n p(1-p)=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}$

For large enough n

$$
\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)
$$

Rule of Thumb

- Check if the entire interval $p \pm 3 \sqrt{p(1-p) / n}$ lies within 0 and 1
- Intuition: Check whether Empirical Rule holds for that distribution
- Hint: Since \hat{p} is a linear transformation of X, can use alternative rules of thumb for Binomial distribution.

Back to Mr Noxin

- In a sample with 100 voters, $\hat{p} \sim N\left(0.45, \frac{45 * 0.55}{100}\right)$
- Rule of thumb: interval $(0.30,0.60)$ lies within 0 and $1 \checkmark$
- Empirical rule: 99% of all the values should lie within 3 st. deviations from the mean
- Within 3 st.deviation in this case is between 0.30 and 0.60
- Because of the sampling error, the sample proportion varies in a sample and we may observe 30% and 60% of voters who favour Mr Noxin while the population proportion is 45%
- What about 25% or 70% of voters?

Sampling distribution of proportion of

 Noxin's supporters when $n=100$ and $p=0.45$

Potential sampling distributions

Summary: Sample Proportion

- Sample proportion, \hat{p}, measures the proportion of "successes" in a sample
- Sample proportion is a random variable
- In samples with large enough n sample proportion is distributed normally with mean p and standard deviation $\sqrt{p(1-p) / n}$
- To check whether normal approximation works, use rule of thumb: interval $p \pm 3 \sqrt{p(1-p) / n}$ lies between 0 and 1
- Note: Standard deviation of sample statistic is a measure of sampling error

Example

Assume that last year L'Oreal estimated the market share of its sunscreen product to be 30%. What is the chance that in a survey of 1000 consumers less than 280 said they prefer Ombrelle?

$$
\begin{aligned}
& \text { Since we know that } \hat{p} \sim N\left(.3, \frac{0.3(1-0.3)}{1000}\right) \text {, we can find } P(\hat{p}<0.28) \\
& \qquad \begin{array}{r}
P\left(\hat{p}<0.28 \| p=.3, \sigma_{\hat{p}}=0.015, n=1000\right)=P\left(Z<\frac{0.28-0.3}{0.015}\right) \\
\\
=P(Z<-1.33) \approx 0.091
\end{array}
\end{aligned}
$$

Another way to think of it is that 99% of all values for sample proportion should lie within 3 s.d. from p.

$$
p \pm 3 \sqrt{\frac{p(1-p)}{n}} \Longrightarrow 0.255 \leq \hat{p} \leq 0.345
$$

Back to Example

Alternatively, we can find $P(X<280)$:

- $X \sim B(0.3,1000)$
\checkmark Check rule of thumb:
$0<(300-3 \sqrt{300 * 0.7}, 300+3 \sqrt{300 * 0.7})<1000$
- $X \sim N(300,210)$
- $P(X<280)=P\left(Z<\frac{280-300}{\sqrt{210}}\right)=P(X<-1.38) \approx 0.084$

