Readings: Sections 20.1-20.4

Exercises: 13 (skip part d), 14 (skip part b), 15

Problems:

(1) In doing a test of statistical significance, economists often use a simple "rule of thumb": Is slope coefficient divided by its standard error either > 2 or < -2. What is the sense of this rule of thumb?

(2) A researcher wishes to estimate the parameters of the following model.

 $\ln(q_{1i}) = \alpha_1 + \beta_1 \ln(p_{1i}) + \gamma_1 \ln(p_{2i}) + \varepsilon_{1i}$ $\ln(q_{2i}) = \alpha_2 + \beta_2 \ln(p_{2i}) + \gamma_2 \ln(p_{1i}) + \varepsilon_{2i}$

Practice using the rule of thumb for the following estimation results:

	Parameter Estimate	Standard Error (s.e.)
$\hat{lpha}_{_1}$	10.0	6.3
\hat{lpha}_2	11.0	4.8
$\hat{oldsymbol{eta}}_1$	-2.5	0.8
$\hat{oldsymbol{eta}}_2$	-2.0	0.6
$\hat{\gamma}_1$	1.0	0.4
$\hat{\gamma}_2$	1.5	0.5

(3) There is some limited (and not very convincing) evidence that sitting close to the front of the classroom improves a student's performance. Consider the research question: What is the effect of seat location on a student's performance in a course? The researcher obtains approval to conduct an experiment where students in ECO220Y are randomly assigned a seat in a classroom where they must sit for the entire course. Attendance is taken to ensure compliance in every lecture. The following variables are available in the data:

MARK_220	Student's percentage mark in ECO220Y
ROW	Row number of student (row 1 is first row at the front of the lecture hall)
MARK_100	Student's percentage mark in ECO100Y

. su MARK_220 MARK_100 ROW;

Variable Obs	Mean	Std. Dev.	Min	Max
MARK_220 250 MARK 100 250	66.42 81.84	12.35016 5.484407	36.63087 67	97.20178 98
ROW 250	13	7.225568	1	25

. regress MARK_220 ROW Source SS	MARK_100; df	MS		Number of obs = 250 F(2, 247) = 166.23 Prob > F = 0.0000 R-squared = 0.5737 Adj R-squared = 0.5703	
Model 21790.3847 Residual 16188.7148	2 247	10895.1924 65.541355			
Total 37979.0996	249	152.526504		Root MSE = 8.0958	
MARK_220 Coef.		. t			
1	.0710174 .0935637 7.747089	-6.82	0.000 0.000 0.000	62440853446546 1.385345 1.753914 -70.99835 -40.48079	

(a) Interpret the coefficient estimates (slopes and intercepts). Are they of the expected sign?
(b) Do we have sufficient evidence to infer that our research hypothesis is true? (Show your work and explain.)
(c) Considering the following simple regression with these same data, are you surprised by these results? If so, explain. If not, explain how these results are what you would expect.

. regress MARK_220 ROW;

Source SS	df	MS		Number of obs = 250 F(1, 248) = 23.95
Model 3344.68018 Residual 34634.4194	1 248	3344.68018 139.654917		Prob > F = 0.0000 R-squared = 0.0881 Adj R-squared = 0.0844
Total 37979.0996	249	152.526504		Root MSE = 11.818
MARK_220 Coef.	Std. Err.	. t	P> t	[95% Conf. Interval]
ROW 5072308 _cons 73.014	.1036469 1.540822		0.000	71137133030903 69.97923 76.04877

(e) The reason that existing evidence is not very convincing is because it often relies on observational data. Describe the nature of observational data that would be available to answer the research question. Describe what would happen if a regression analysis were conducted using such data. Indicate the direction of bias on the coefficient of interest.