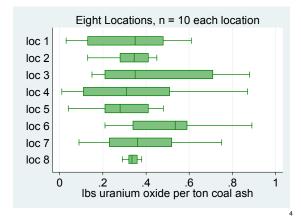
Lecture 17

Reading: Sections 13.5 - 13.7

Sparton Resources of Toronto


- Mini-case, page 384
 Scarce uranium ore; required for nuclear power
 - Alternate source: coal ash (waste from creating coal power)
 - Concentration of uranium oxide varies widely depending on properties of the coal
- <u>To profitably exploit this</u> <u>source requires an</u> <u>average concentration of</u> <u>uranium oxide of at least</u> <u>0.32 pounds (lbs) per</u> <u>tonne of coal ash</u>
- Sparton randomly selects 10 batches of ash from eight locations: 1 – 4 (China), 5 – 7 (Central Europe), 8 (Africa)

2

1

Sparton: Raw Data

	Ch	ina		Central Europe			S. Africa
1	2	3	4	5	6	7	8
0.32	0.22	0.71	0.33	0.22	0.57	0.41	0.35
0.38	0.28	0.22	0.51	0.21	0.34	0.56	0.31
0.58	0.31	0.78	0.61	0.04	0.59	0.23	0.34
0.61	0.37	0.15	0.11	0.09	0.54	0.09	0.32
0.12	0.39	0.19	0.12	0.25	0.22	0.52	0.33
0.13	0.45	0.88	0.01	0.43	0.89	0.31	0.37
0.48	0.44	0.53	0.07	0.48	0.34	0.18	0.32
0.03	0.13	0.21	0.87	0.39	0.61	0.49	0.36
0.43	0.32	0.33	0.43	0.31	0.53	0.29	0.29
0.17	0.41	0.37	0.29	0.41	0.21	0.75	0.38
							2

Review

	n	mean	s.d.
loc 1	10	0.325	0.204
loc 2	10	0.332	0.102
loc 3	10	0.437	0.270
loc 4	10	0.335	0.274
loc 5	10	0.283	0.147
loc 6	10	0.484	0.208
loc 7	10	0.383	0.200
loc 8	10	0.337	0.028

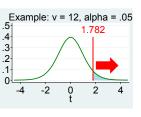
5

6

7

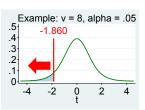
8

Hypothesis Testing μ , σ^2 Unknown

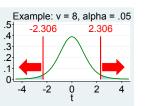

- Two approaches to hypothesis testing about μ:
 - Rejection (Critical) Region Approach
 - P-value Approach

• <u>Test statistic</u>: $t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$

– This test statistic is Student *t* distributed with degrees of freedom $\nu = n - 1$ so long as underlying conditions are met


Rejection Region, Right Tailed

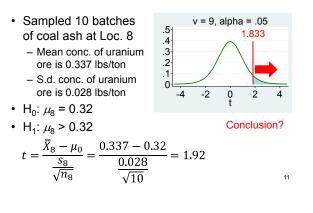
- $H_0: \mu = \mu_0$
- H₁: μ > μ₀
- <u>Test statistic</u>: $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$
- Rejection region:
 (t_α, ∞)
 - Left edge is called the critical value (t^{*}_α)
 Depends on degrees of
 - Depends on degrees of freedom


Rejection Region, Left Tailed

- H₀: μ = μ₀
- H₁: μ < μ₀
- <u>Test statistic</u>: $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$
- Rejection region:
 (-∞, -t_α)
 - Right edge is called the critical value (-t^{*}_α)
 Depends on degrees of freedom

Rejection Region, Two Tailed

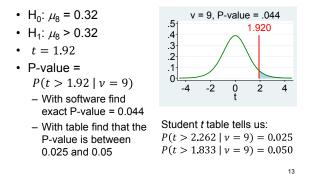
- $H_0: \mu = \mu_0$
- $H_1: \mu \neq \mu_0$
- <u>Test statistic</u>: $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$
- · Rejection region: $(-\infty, -t_{\alpha/2})$ & $(t_{\alpha/2}, \infty)$
 - Edges are called the critical values $(t^*_{\alpha/2})$
 - Depend on degrees of freedom

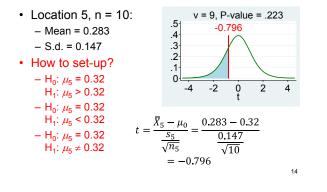

Sparton Ex: Set-up Hypotheses

	n	mean	s.d.	 How to choose from:
loc 1	10	0.325	0.204	$-H_0: \mu_i = 0.32$
loc 2	10	0.332	0.102	$H_1: \mu_i > 0.32$
loc 3	10	0.437	0.270	$-H_0: \mu_i = 0.32$ $H_1: \mu_i < 0.32$ $-H_0: \mu_i = 0.32$
loc 4	10	0.335	0.274	
loc 5	10	0.283	0.147	H ₁ : μ _i ≠ 0.32
loc 6	10	0.484	0.208	- What does <i>i</i> mean?
loc 7	10	0.383	0.200	 Where does 0.32 come from?
loc 8	10	0.337	0.028	

10

9


Sparton Example: Location 8


P-value Approach

- P-value: Probability of a test statistic at least as extreme (in the direction of H_1) as the one we got presuming that H₀ is true
 - Small P-value means sampling error is a poor explanation of how we got so far from H₀ • Reject H₀ in favor of H₁ if P-value is small enough
 - For one-tailed test: P-value is area in one tail
 - For two-tailed test: P-value is the sum of areas in two tails

P-value: Location 8

Location 5: Confident It's Bad?

