Hypothesis Testing for μ

Lecture 17

Reading: Sections 13.5-13.7

Sparton Resources of Toronto

- Mini-case, page 384
- Scarce uranium ore; required for nuclear power
- Alternate source: coal ash (waste from creating coal power)
- Concentration of uranium oxide varies widely depending on properties of the coal
- To profitably exploit this source requires an average concentration of uranium oxide of at least 0.32 pounds (lbs) per tonne of coal ash
- Sparton randomly selects 10 batches of ash from eight locations: 1-4 (China), 5-7 (Central Europe), 8 (Africa)

Sparton: Raw Data

China					Central Europe		
S. Africa							
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
0.32	0.22	0.71	0.33	0.22	0.57	0.41	0.35
0.38	0.28	0.22	0.51	0.21	0.34	0.56	0.31
0.58	0.31	0.78	0.61	0.04	0.59	0.23	0.34
0.61	0.37	0.15	0.11	0.09	0.54	0.09	0.32
0.12	0.39	0.19	0.12	0.25	0.22	0.52	0.33
0.13	0.45	0.88	0.01	0.43	0.89	0.31	0.37
0.48	0.44	0.53	0.07	0.48	0.34	0.18	0.32
0.03	0.13	0.21	0.87	0.39	0.61	0.49	0.36
0.43	0.32	0.33	0.43	0.31	0.53	0.29	0.29
0.17	0.41	0.37	0.29	0.41	0.21	0.75	0.38

Review

	\mathbf{n}	mean	s.d.
loc 1	10	0.325	0.204
loc 2	10	0.332	0.102
loc 3	10	0.437	0.270
loc 4	10	0.335	0.274
loc 5	10	0.283	0.147
loc 6	10	0.484	0.208
loc 7	10	0.383	0.200
loc 8	10	0.337	0.028

Hypothesis Testing μ, σ^{2} Unknown

- Two approaches to hypothesis testing about μ :
- Rejection (Critical) Region Approach
- P-value Approach
- Test statistic: $t=\frac{\bar{X}-\mu}{s / \sqrt{n}}$
- This test statistic is Student t distributed with degrees of freedom $v=n-1$ so long as underlying conditions are met

Rejection Region, Right Tailed

- $\mathrm{H}_{0}: \mu=\mu_{0}$
- $\mathrm{H}_{1}: \mu>\mu_{0}$
- Test statistic: $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
- Rejection region:
$\left(t_{\alpha}, \infty\right)$

- Left edge is called the critical value $\left(t_{\alpha}^{*}\right)$
- Depends on degrees of freedom

Rejection Region, Left Tailed

- $\mathrm{H}_{0}: \mu=\mu_{0}$
- $\mathrm{H}_{1}: \mu<\mu_{0}$
- Test statistic: $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
- Rejection region: $\left(-\infty,-t_{\alpha}\right)$

- Right edge is called the critical value $\left(-t_{\alpha}^{*}\right)$
- Depends on degrees of freedom

Rejection Region, Two Tailed

- $\mathrm{H}_{0}: \mu=\mu_{0}$
- $\mathrm{H}_{1}: \mu \neq \mu_{0}$
- Test statistic: $\mathrm{t}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
- Rejection region:
$\left(-\infty,-t_{\alpha / 2}\right) \&\left(t_{\alpha / 2}, \infty\right)$

- Edges are called the critical values $\left(t_{\alpha / 2}^{*}\right)$
- Depend on degrees of freedom

Sparton Ex: Set-up Hypotheses

	\mathbf{n}	mean	s.d.
loc 1	10	0.325	0.204
loc 2	10	0.332	0.102
loc 3	10	0.437	0.270
loc 4	10	0.335	0.274
loc 5	10	0.283	0.147
loc 6	10	0.484	0.208
loc 7	10	0.383	0.200
loc 8	10	0.337	0.028

- How to choose from:
- $\mathrm{H}_{0}: \mu_{i}=0.32$
$\mathrm{H}_{1}: \mu_{i}>0.32$
$-\mathrm{H}_{0}: \mu_{i}=0.32$
$\mathrm{H}_{1}: \mu_{i}<0.32$
$-\mathrm{H}_{0}: \mu_{i}=0.32$
$\mathrm{H}_{1}: \mu_{i} \neq 0.32$
- What does i mean?
- Where does 0.32 come from?

Sparton Example: Location 8

- Sampled 10 batches of coal ash at Loc. 8
- Mean conc. of uranium ore is $0.337 \mathrm{lbs} /$ ton
- S.d. conc. of uranium ore is $0.028 \mathrm{lbs} /$ ton
- $\mathrm{H}_{0}: \mu_{8}=0.32$

Conclusion?

- $\mathrm{H}_{1}: \mu_{8}>0.32$

$$
t=\frac{\bar{X}_{8}-\mu_{0}}{\frac{s_{8}}{\sqrt{n_{8}}}}=\frac{0.337-0.32}{\frac{0.028}{\sqrt{10}}}=1.92
$$

P-value Approach

- P-value: Probability of a test statistic at least as extreme (in the direction of H_{1}) as the one we got presuming that H_{0} is true
- Small P-value means sampling error is a poor explanation of how we got so far from H_{0} - Reject H_{0} in favor of H_{1} if P -value is small enough
- For one-tailed test: P -value is area in one tail
- For two-tailed test: P -value is the sum of areas in two tails

P-value: Location 8

- $\mathrm{H}_{0}: \mu_{8}=0.32$
- $\mathrm{H}_{1}: \mu_{8}>0.32$
- $t=1.92$
- P -value $=$
$P(t>1.92 \mid v=9)$
- With software find exact P -value $=0.044$
- With table find that the Student t table tells us: P -value is between 0.025 and 0.05

$P(t>2.262 \mid v=9)=0.025$ $P(t>1.833 \mid v=9)=0.050$

Location 5: Confident It's Bad?

- Location 5, n=10:
- Mean $=0.283$
- S.d. $=0.147$
- How to set-up?
$-\mathrm{H}_{0}: \mu_{5}=0.32$
$\mathrm{H}_{1}: \mu_{5}>0.32$
$-\mathrm{H}_{0}: \mu_{5}=0.32$
$\mathrm{H}_{1}: \mu_{5}<0.32$
$-\mathrm{H}_{0}: \mu_{5}=0.32$
$\mathrm{H}_{1}: \mu_{5} \neq 0.32$

$$
\begin{gathered}
t=\frac{\bar{X}_{5}-\mu_{0}}{\frac{s_{5}}{\sqrt{n_{5}}}}=\frac{0.283-0.32}{\frac{0.147}{\sqrt{10}}} \\
=-0.796
\end{gathered}
$$

