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Abstract—Non-cooperative game theory is a powerful modeling
tool for resource allocation problems in modern communication
networks. However, practical concerns of capacity constraints
and allocation efficiency have been a challenge for network
engineers. In this paper, we base our results in the context
of link-level power control of optical networks and propose a
special form of games with an additional player to overcome
these difficulties. We introduce a novel framework with a fictitious
player (GFP) to extend the current OSNR Nash game framework
with capacity constraints. We characterize a more analytically
tractable solution in comparison to other approaches and propose
a first-order iterative algorithm to find the equilibrium.

I. INTRODUCTION

Recent technological advances have enabled a new gen-
eration of Optical Wavelength-Division Multiplexed (WDM)
communication networks. Devices such as Optical Add/Drop
MUXes (OADM), optical cross connects (OXC) and dynamic
gain equalizer (DGE) have provided essential building blocks
for smart optical networks [1]. With advent of these new
technologies, current networks are evolving towards dynamic
networks, able to respond to changes in traffic and require-
ments. A static network management mechanism can no
longer service such networks. Therefore, intelligent network
management and control systems need to be part of future
network design. Complex in their own structure, networks
need control on different levels. The first level is an optical
device level control, where smart feedback algorithms are
used to reduce noise and stabilize the device. Examples have
been seen in [2] and [3] where control principles are applied
to study EDFA and SOA, respectively. The next level of
management is on the link level, where we need to optimize
the quality of transmission and reduce the interference and
noise in transmission. Optimization-based models have been
seen in the case of wireless networks in [4], [5]. However, the
unique physical structure of optical networks imposes different
challenges on modeling and solution concepts.

The third level is the network level, where problems of
interests are optimal routing and congestion control. These
problems are on a higher level and they have been well studied
in a general network setting such as in [6]. The last but
not least is the system level control. This level of research
encapsulates optical network as a dynamical system as seen

in [7]. Interesting problems are usually on the robustness and
stability of large scale networks.

Our focus here is on the link level. Channel optical signal-
to-noise ratio (OSNR) is an important performance factor at
this level as it directly relates to the bit error rate (BER) in
the transmission [8]. In recent years, research work on OSNR-
based optimization is making an effort to derive iterative de-
centralized OSNR optimization algorithms in optical networks.
Two dominant methods are commonly seen in literature.
One is the centralized optimization as in [9], [10] and the
other is non-cooperative game theory as in [11], [12]. The
centralized approach embeds OSNR targets in constraints and
indirectly minimizes the total power consumption in optical
networks. It is relatively easy to find a closed form solution
with this approach, however, its indirect minimization of total
power consumption doesn’t fully make use of the network
resource for communication purposes. On the other hand, the
non-cooperative game approach naturally deals with OSNR
optimization in a decentralized and direct manner. However,
it is a well-known fact that the resulting Nash equilibrium
may not be Pareto efficient [13], [14]. In addition, under
the OSNR game framework, it has been a challenge to find
an analytical solution for a game with capacity constraints.
Research efforts have been made to solve this problem by
integrating constraints into utility functions [15], [16]. And,
in particular, work has been done in [17], [18] to deal with
such constraints based on classical Lagrangian duality theory.
However, complexity of the solution grows in an undesirable
way and it is exceedingly difficult to give an analytical solution
for OSNR Nash game.

In this paper, we propose a different approach to deal with
constraints in OSNR Nash games. We formulate a Nash game
with a fictitious player to give a closed form solution to the
constrained OSNR Nash game. We may also use the role
of fictitious player to achieve an efficient Nash equilibrium
under certain conditions. The fictitious player, in reality, can be
implemented via a service channel or a transmission channel
which only needs a target OSNR.

This paper is organized as the following. In section 2, we
review a network OSNR model and give a brief introduction
to unconstrained non-cooperative game approach. In section 3,



Fig. 1. A Small-scale Optical Networks

we establish the framework of game with a fictitious player.
We will characterize the Nash equilibrium and discuss the
achievable target OSNR of the fictitious player. In section 4,
we point out the directions of future research and we will
conclude in section 5.

II. BACKGROUND

A. Review of Optical Network Model

We first review the analytical OSNR model for a WDM
optical network and basic unconstrained Nash game as formu-
lated in [11]. Consider a network with a set of optical links
L = {1, 2, .., L} connecting the optical nodes, where channel
add/drop is realized. A set N = {1, 2, ..., N} of channels are
transmitted, corresponding to a set of multiplexed wavelengths.
An example of such network is depicted in Figure 1. Illustrated
in Figure 2, a link l has Kl cascaded optically amplified spans.
Let Nl be the set of channels transmitted over link l. For a
channel i ∈ N , we denote by Ri its optical path, or collection
of links, from source (Tx) to destination (Rx). Let ui be the
ith channel input optical power (at Tx), and u = [u1, ..., uN ]T

the vector of all channels’ input powers. Let si be the ith
channel output power (at Rx), and ni the optical noise power
in the ith channel bandwidth at Rx. The ith channel optical
OSNR is defined as OSNRi = si

ni
. In [9], some assumptions

are made to simplify the expression for OSNR, typically for
uniformly designed optical links. It is assumed that

1) (A1) ASE noise power does not participate in amplifier
gain saturation.

2) (A2) All the amplifiers in a link have the same spectral
shape with the same total power target and are operated
in automatic power control (APC) mode, with the total

Fig. 2. A Typical Optical Link in DWMW Optical Networks

power target P0. P0 is selected to be below the threshold
for nonlinear effects.

Under A1 and A2,the dispersion and nonlinearity effects are
considered to be limited, the ASE noise accumulation will be
the dominant impairment in the model. The OSNR for the ith
channel is given as

OSNRi =
ui

n0,i +
∑

j∈N Γi,juj
, (1)

where Γ is the full n × n system matrix which characterizes
the coupling between channels. n0,i denotes the ith channel
noise power at the transmitter. System matrix Γ encapsulates
the basic physics present in optical fiber transmission and
implements an abstraction from a network to an input-output
system. This approach has been used in [12] for the wireless
case to model CDMA uplink communication. Different from
the system matrix used in wireless case, the matrix Γ given
in (2) is commonly asymmetric and is more complicatedly
dependent on parameters such as spontaneous emission noise,
wavelength-dependent gain, and the path channels take.

Γi,j =
∑
i∈Ri

Kl∑
k=1

Gk
l,j

Gk
l,i

(
l−1∏
q=1

Tq,j

Tq,i

)
ASEl,k,i

P0,l
,∀j ∈ Nl. (2)

where Gl,k,i is the wavelength dependent gain at kth span
in lth link for channel i; Tl,i =

∏Kl

q=1 Gl,k,iLl,k with Ll,k

being the wavelength independent loss at kth span in lth link;
ASEl,k,i is the wavelength dependent spontaneous emission
noise accumulated across cascaded amplifiers; P0,l is the
output power at each span.

B. Non-cooperative Game Approach

Let’s review the basic game-theoretical model for power
control in optical networks without constraints. Consider a
game defined by a triplet 〈N , (Ai), (Ji)〉. N is the index set
of players or channels; Ai is the strategy set {ui | ui ∈
[ui,min, ui,max]}; and, Ji is the cost function, chosen such
that minimizing the cost is related to maximizing OSNR level.
In [11], Ji is defined as

Ji(ui, u−i) = αiui − βi ln
(

1 + ai
ui

X−i

)
, i ∈ N (3)

where αi, βi are channel specific parameters, that quantify the
willingness to pay the price and the desire to maximize its
OSNR, respectively, ai is a channel specific parameter, X−i

is defined as X−i =
∑

j 6=i Γi,juj + n0,i. This specific choice



of utility function is non-separable, nonlinear and coupled.
However, Ji is strictly convex in ui and takes a specially
designed form such that its first-order derivative takes a linear
form with respect to u, i.e. is in the class of linear games
defined in section 2.

The solution from the game approach is usually character-
ized by Nash equilibrium (NE). Provided that

∑
j 6=i Γi,j ≤ ai

,the resulting NE solution is given in a closed form by

Γ̃u∗ = b̃, (4)

where Γ̃i,j = ai, for j = i; Γ̃i,j = Γi,j , for j 6= i and
b̃i = aibi

αi
− n0,i.

Similar to the wireless case [12], we are able to construct
iterative algorithms to achieve the Nash equilibrium. A simple
deterministic first order parallel update algorithm can be found
by ui(n + 1) = βi

αi
− X−i(n)

ai
, or equivalently in terms of

OSNRi,

ui(n + 1) =
βi

αi
− 1

ai

(
1

OSNRi(n)
− Γi,i

)
ui(n). (5)

As proved in [11], the algorithm (5) converges to Nash
equilibrium u∗ provided that 1

ai

∑
j 6=i Γi,j ≤ 1,∀i.

III. GAME WITH A FICTITIOUS PLAYER (GFP)

In optical networks, a saturation power level exists in each
link of channel paths [15]. A launched power has to be below
or equal to this threshold so that the nonlinear effects in the
span following each amplifier are kept minimum [19]. We
can easily interpret this effect as a capacity constraint on an
optical link in the network. In this section, we tackle the game
described in section 2 with such constraint by considering a
non-cooperative game with an additional fictitious player, la-
beled F . The fictitious player can be regarded as an additional
player implemented via a channel that doesn’t participate in
the game for its need for quality of transmission. An example
is the service channel in optical networks. It only requires
certain amount of power to transmit network information and
doesn’t aim for OSNR optimization. It rather behaves as a
player to regulate the performance of the network. We will use
this interpretation to solve an (N +1)-person non-cooperative
game with constraint of ∑

i∈N∪{F}

ui ≤ C. (6)

Let the payoff function of user i ∈ N given by Equation
(3) and we choose the payoff function of user F to be

JF (uF , u−F ) = αF uF − βF

C −
∑
j 6=F

uj

 ln aF uF . (7)

Function JF is convex when
∑

j 6=F uj ≤ C. Since the ficti-
tious player may not ask for an optimal quality of transmission,
we do not design function (7) directly related to OSNR, but in
terms of power and capacity constraint instead. It is composed
of two parts with the first term describing the cost on power
usage uF and the second term the capacity-dependent utility.

With the assumption of convexity, the best response function
for JF is given by an implicit expression in (8).

ωF uF +
∑
j 6=F

uj = C. (8)

where ωF = αF

βF
. We let ui ∈ [ui,min, ui,max],where ui,min ∈

R+ and ui,max ∈ R+ can be chosen to be sufficiently
small and large so that they will not be the solution to the
minimization of the cost function Ji, i ∈ N ∪ {F}.

Proposition 3.1: If ωF ≥ 1, then any solution u that satis-
fies (8) is within the feasible set described by the constraint
(6).

Proof: Observe from (8), we can conclude that for any
u ∈ {u |

∑
i∈N ui + ωF uF }, the following holds.

C =
∑
i∈N

ui + ωF uF ≥
∑
i∈N

ui + uF ,∀ωF ≥ 1. (9)

Therefore, u ∈ {u |
∑

i∈N∪{F} ui ≤ C.}
Following the proof, we also can observe that when ωF = 1,

the best response function of user F will impose an equality
capacity constraint of

∑
i∈N∪{F} ui = C and the solution

will be efficiently achieved on the boundary of the feasible
set. However, increasing ωF to be strictly greater than 1 will
result in less efficient solution.

The construction of the best response function (8) can be
seen as a slacked constraint from (10)

ω′F uF + uF +
∑
j 6=F

uj = C. (10)

where ω′F = ωF − 1, and ω′F uF > 0 as a slack variable.
Similar to the interpretation of Lagrangian multiplier in clas-
sical Lagrangian theory, ω′F uF can be seen as an analog of
Lagrange multiplier and tells how efficient the system is with
respect to the constraint.

A. Characterization of Nash Equilibrium
We use the same approach in [11] to characterize the

equilibrium of the game. By the definition of Nash equilibrium
in [20], a Nash equilibrium uF with a fictitious player is a
point which jointly satisfies the best response functions as
follows.

aiu
F
i + XF

−i =
aiβi

αi
, for i ∈ N . (11)

ωF uF
F +

∑
j 6=F

uF
j = C , for i = F. (12)

Expressed in matrix form, they become

ΓuF = b. (13)

where uF = [uF
1 , · · · , uF

N , uF
F ]T ,

Γ =


a1 Γ12 · · · Γ1N Γ1F

Γ21 a2 · · · Γ2N Γ2F

...
. . . . . .

...
...

ΓN1 ΓN2 · · · aN ΓNF

1 1 · · · 1 αF aF

βF

 ,b =



a1β1
α1

− n0,1

...

...
aN βN

αN
− n0,N

C

 .



A necessary and sufficient condition for Nash equilibrium
to exist is to require

b ∈ R(Γ). (14)

where R(·) denotes the range space. However, to ensure the
existence and uniqueness of Nash equilibrium, we may need to
assume some special features of the game, for example, diago-
nal dominance of the matrix Γ and the convexity of the utility
functions Ji. Theorem 3.2 summarizes these conditions and
gives a sufficient condition on the uniqueness and existence
of the Nash equilibrium to GFP.

Theorem 3.2: Let ρ(·) denote the spectral radius of a ma-
trix. If maxi bi

√
N+1√

ρ(Γ
T
Γ)

≤ C and ai >
∑

j 6=i Γij , ωF > N , then

the game with a fictitious player (GFP) will have a unique
Nash equilibrium.

Proof: First of all, we need to show that the utility
functions are convex and there exists a minimizing uF . It has
been proved in [11] that functions (3) is convex in ui. We
just need to show the convexity of JF in uF . Knowing that
JF is formed by an addition of two functions and that sum of
convex functions results in a convex function, we only need
to guarantee the pricing and utility functions are convex. The
linear pricing function is already convex. With the condition
that

∑
j 6=F uj ≤ C, the convexity of JF in uF will follow.

Due to the fact that ui ∈ [0, umax] gives a closed compact set,
there exists a minimizing uF , for any given u−i, such that

J(uF
i ,u−i) < J(ui,u−i),∀ui 6= uF

i , i ∈ N ∪ {F}.

Secondly, we derive a sufficient condition for convexity
of JF in uF . Starting with the condition

∑
j 6=F uj ≤ C,

we use matrix norm inequality ‖Γm×n‖2 ≤
√

m‖Γm×n‖∞
[21] to obtain an upper bound on ‖1T Γ

−1
b‖∞, where 1T =

[1, ..., 1, 0].

‖1T Γ
−1

b‖∞ ≤ ‖1T Γ
−1‖∞‖b‖∞ ≤ 1

‖Γ‖∞
‖b‖∞ ≤

maxi bi

‖Γ‖∞
≤ maxi bi

√
N + 1

‖Γ‖2

=
maxi bi

√
N + 1√

ρ(Γ
T
Γ)

.

Therefore, if inequality maxi bi

√
N+1√

ρ(Γ
T
Γ)

≤ C holds, then the

condition of convexity of the fictitious player will hold.
Lastly, we prove that there exists a unique solution under

the assumption of diagonal dominance of matrix Γ. With
ai >

∑
j 6=i Γij , ωF > N , matrix Γ becomes diagonal

dominant. From Gershgorins Theorem [22], it follows that Γ is
nonsingular and there exists a unique solution to linear system
(13).

Remark 3.1: If we further assume that C ≥ aibi

αi
−n0,i,∀i,

then it will reduce the condition to ρ(Γ
T
Γ) ≥ N + 1. This

result alludes to the maximum number of channels to be
admitted in the network for a fixed capacity.

Though we notice that some portion of the power is allo-
cated to the service channel or the fictitious player, we need to
accept that this amount of power is a necessary allocation for

the network to operate. Furthermore, this power consumption
can be adjusted through parameter ωF . On the other hand,
we should also note that the strong assumption of diagonal
dominance, in particular, ωF > N > 1 may not lead to
an efficient solution as has been indicated by Inequality (9).
However, letting ωF = 1 may still give rise to a unique
and efficient solution, since Theorem 3.2 only describes a
sufficient condition.

B. Iterative Algorithm

Following (5), the algorithm for the game with a fictitious
player is given by a synchronous algorithm given in (15). A
step of update includes two sub-steps: an initial update on
ui(n + 1), i ∈ N and a update sub-step on uF . ui(n + 1) = βi

αi
− 1

ai

(
1

OSNRi(n) − Γi,i

)
ui(n), ∀i ∈ N ;

uF (n + 1) = 1
ωF

(
C −

∑
j 6=F uj(n)

)
, for F.

(15)
Proposition 3.3: The algorithm described by (15) converges

to uF provided that ai >
∑

j∈N Γij and ωF > N .
Proof: Define ei(n) = ui(n) − u∗i and ei(n +

1) = − 1
ai

∑
j 6=i Γi,jej(n) will follow. Letting e(n) =

[e1(n), · · · , eN (n), eF (n)]T and taking the infinity norm on
e(n + 1), we can arrive at

‖e(n + 1)‖∞ = max
i∈N

|ei(n + 1)|

≤ max
i∈N

 1
ai

∑
j 6=i

Γi,j |ej(n)|


≤ max

i∈N

 1
ai

∑
j 6=i

Γi,j

 ‖e(n)‖∞. (16)

Under the assumption of strictly diagonal dominance, i.e.,
1
ai

∑
j 6=i Γi,j < 1,∀i, the contraption mapping theorem will

show e(n) → 0 and hence, ui(n) → uF
i .

For user F ’s algorithm, in a similar way, we define eF (n) =
uF (n)− uF

F and eF (n + 1) = − 1
ωF

∑
i 6=F (ui − uF

i ).

|eF (n + 1)| =
1

ωF

∣∣∣∣∣∣
∑
i 6=F

(
ui(n)− uF

i (n)
)∣∣∣∣∣∣

≤ N

ωF
max
i 6=F

|ui(n)− uF
i (n)|

=
N

ωF
‖e(n)‖∞. (17)

Using inequality (16),

|eF (n + 1)| ≤ N

ωF
max
i∈N

 1
ai

∑
j 6=i

Γi,j

 ‖e(n− 1)‖∞. (18)

Since ‖e(n)‖∞ → 0, then |eF (n+1)| → 0; and thus, uF (n)
will converge to uF

F .
Parameters ai, i ∈ N , and ωF , as shown in the proof,

determines the rate of convergence. On average, increasing



ai, i ∈ N results in a faster convergence for ui, i ∈ N ∪{F}.
And increasing ωF will lead to a boost in convergence speed
of user F ’s algorithm.

We also can observe a similarity with the algorithm derived
based on duality theory in [17], where uF is more closely
related to the dual variable µ. The difference between the two
is that we used a fictitious player in the game in the position of
the dual variable and the player has it own rule of interactions
with other players.

We need to point out that this similarity is not surprising to
us because we can see the way a constraint is associated with
an additional player in a constrained Nash game in analogy to
the way constraints are associated with lagrangian multipliers
in classical optimization theory. The user F ’s algorithm turns
can be seen analogously as the algorithm for the Lagrangian
multiplier.

C. GFP with OSNR constraint

In the above game with fictitious player, we have considered
a utility function for user F without OSNR requirement.
However, being an internode communications channel for
management and user data, the optical service channel may
require a certain OSNR level to support intelligent optical
network communication [1], [23]. In this regard, we may
impose a target OSNR as a constraint for the user F to
guarantee its minimum requirement of quality of transmission.
Let γF be the target OSNR for F and require OSNRF ≥ γF ,
that is, by (1),

OSNRF ≥ γF . (19)

that is,
uF∑

j∈N ΓFjuj + n0,F
≥ γF . (20)

uF − γF

∑
j∈N

ΓFjuj ≥ γF n0,F . (21)

qF uF ≥ γF n0,F . (22)

where qF = [−γF ΓF1,−γF ΓF2, · · · , 1]T , and uF =
[u1, u2, · · · , uN , uF ].

We can show the OSNR constraint of user F , together with
the capacity constraint, will give a nonempty convex feasible
set when C ≥ γF n0,F or γF ≤ C/n0,F . It is illustrated in
Figure 19 and stated in Proposition 3.4.

Proposition 3.4: The feasible set XF = F1 ∩ F2 is
nonempty if and only if C ≥ γF n0,F , i.e., γF ≤ C/n0,F ,
where F1 = {u |

∑
i∈N∪{F} ui ≤ C} and F2 = {uF |

qF uF ≥ γF n0,F }.
Proof: Let’s prove the necessity first, i.e., if the feasible

set XF is nonempty, then C ≥ γF n0,F . The proof starts with
qF uF ≥ γF n0,F and substitute the inequality uF ≤ C−u1−
u2 − · · · − uN into uF . We obtain the following inequality if
both constraints are satisfied.

−(γF ΓF1 + 1)u1 − · · · − (γF ΓFN + 1)uN + C ≥ γF n0,F .

Since γF ,ΓFi, ui are nonnegative,

C ≥ −(γF ΓF1 +1)u1−· · ·−(γF ΓFN +1)uN +C ≥ γF n0,F

Fig. 3. The feasible set of two player game is nonempty if C ≥ γF n0,F .

Therefore, we have C ≥ γF n0,F .
In the following, we show the sufficiency, i.e., if C ≥

γF n0,F , then there always exist a point in XF that satisfies
both constraints. Suppose there exists a point u′ = [0, · · · , u′F ]
that satisfies the constraint qF uF ≥ γF n0,F . This yields
u′F ≥ γF n0,F . With the condition C ≥ γF n0,F , we can find
at least one u′F such that C ≥ u′F ≥ γF n0,F , for example,
u′F = γF n0,F . This shows that we can find points u′ that
satisfy the inequality

∑
i ui ≤ C. Therefore, there always

exists feasible points in the feasible set and the feasible set
is not empty.

Proposition 3.5: Suppose the non-cooperative game with a
fictitious player has a unique solution uF , then if target OSNR
γF is met, then γF should satisfy the inequality:

ln γF ≤ min{ln(C/n0,F ), ln(1/γ)− γ̂T (Γ
−1

b)}.

Proof: From Proposition 3.4, we require γF < C/n0,F .
Use the OSNR expression in (1) and we obtain

OSNRF (uF ) =
uF∑

j∈N ΓFjuj + n0,F

=
uF

γ(Γ′F1u1 · · ·+ Γ′FNuN ) + n0,F

≤ uF

γ(uΓ′
F1

1 · · ·uΓ′
F N

N )
(23)

where γ =
∑

i∈N ΓFi. Inequality (23) comes from the
arithmetic-geometric mean inequality [24]. With

∑
i Γ′Fi =

1, ui,Γ′Fi > 0, we have

u
Γ′F1
1 u

Γ′F2
2 · · ·uΓ′F N

N ≤ Γ′F1u1 +Γ′F2u2 + · · ·+Γ′FNuN . (24)

Equality holds only when u1 = u2 = · · · = uN . Requiring
γF ≤ OSNRF (uF ), we can further determine an upper



bound on the target γF .

ln γF ≤ ln(1/γ) + ln(u−Γ′F1
1 ) + · · ·+ ln(u−Γ′F N

N ) + lnuF

= ln(1/γ)−Γ′F1 ln(u1) + · · · −Γ′FN ln(uN ) + lnuF

= ln(1/γ)− γ̂T ln(u) (25)

= ln(1/γ)− γ̂T ln(Γ
−1

b) (26)

where γ̂T = [Γ′F1, · · · ,Γ′FN ,−1] and Γ′Fi = ΓF i

γ .
From the above result, by assuming the power allocated to

user F is negligible, we can further simplify the inequality
into an estimate of γF by

γF ≤ min{C0/n0,F , 1/γ},

because γ̂T ln(u) > 0 if uF is sufficiently small. Therefore,
we have a rough estimate on the upper bound on γF , i.e.,γF <
1
γ . It also means that we can’t not make the transmission for
user uF better than 1/γ or C0/n0,F in terms of OSNR.

IV. DIRECTION OF FUTURE WORK

This paper outlines a way to deal with coupled constraints
by including a fictitious player. In the context of optical
networks, we have only considered the coupled capacity con-
straints. It can be further extended to include multiple linearly
coupled constraints by including more fictitious players. As a
result, analogous to classical Lagrangian method in which each
constraint is associated with a Lagrangian multiplier, in non-
cooperative game, we deal with each constraint by associating
it with a fictitious player. It will be possible to crystalize this
analogy into a theory for dealing with a general class of Nash
games with coupled constraints.

V. CONCLUSION

In this paper, we study the constrained OSNR game in
the context of optical networks. We addressed the issue of
constrained optimization and its efficiency in non-cooperative
games. We characterize the Nash equilibrium with a closed
form solution by including a fictitious player with her target
OSNR due to the linearity of the coupled constraint and the
best response function. This unique approach allows us to
derive an iterative algorithm similar to the duality approach
in a much simpler way.
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