

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering Systems and Control Group

A Survey on Delayed Linear Agreement Protocol in Robot Rendezvous Problem

Quanyan Zhu, B.ENG (McGill), M.IEEE

Control and Systems Group The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

> University of Toronto Toronto, Canada

> > December 12, 2006

Presentation details on <u>http://www.control.utoronto.ca/~qzhu</u> Contacts: qzhu4@ieee.org or qzhu@control.utoronto.ca

Motivation: Multi-agent Systems

Flocking

Flight Formation

Chemical Reaction Network

Autonomous Underwater Vehicles

Systems of Coupled Dynamics

Robot Rendezvous problem with delays

M.C. Escher: Drawing Hands

Delays in Rendezvous Problems

- Communication delay
 - Uniform delay
 - Non-uniform delay
 - Time-invariant
 - Time-Varying delay
- Delays in computing or response

Without delay:

$$\dot{x}_1(t) = x_2(t) - x_1(t)$$

With delay:

$$\dot{x}_1(t) = x_2(t - \tau) - x_1(t - \tau)$$

References:

- Lee, D.J. and Spong, M.W., "Agreement with Non-Uniform Information Delays," *American Control Conference*, pp. 756-761, Minneapolis, MN, June 14-16, 2006
- Reza Olfati Saber and Richard M. Murray, Consensus Problems in Networks of Agents with Switching Topology and Time-Delays, *IEEE T. Automatic Control*, 49(9):1520-1533, 2004
- P.-A. Bliman, G. F.-Trecate, Average Consensus Problems in Networks of Agents with Delayed Communications, *Automatica*, under review.
- L.Pavel, "Dynamics and stability in optical communication networks: a system theory framework", *Automatica* 40, pp.1361-1370, 2004.
- K.Zhou, J.Doyle, Essentials of Robust Control, Prentice Hall, 1997.

First Order Linear Time-Delay System

 $\dot{x}(t) = -\lambda x(t - \tau)$ $\lambda > 0, \tau > 0$ (Hale and Lunel, Bliman & F.-Trecate) The system is exponentially stable if and only if $\tau < \pi/(2\lambda)$.

Characteristic equation: $s + \lambda e^{-\tau s} = 0$

$$au = rac{(2k\pi + \pi/2)}{\lambda}, ext{ where } k = 0, 1, 2, ...$$
 $au^* = rac{\pi}{2\lambda} ext{ for } au > 0$

- Due to continuous dependence of roots in τ , for $\tau \in (0, \tau^*)$, all the poles are in the OLHP.
- When $\tau = \tau^*$, the solution will be in the form of $x(t) = c\sin(\lambda t + \varphi)$

Example

$$\dot{x}(t)=-x(t- au)$$
 $au{>}0$ $au^*=\pi/2$

Some Existing Results on Delay Networks

(Olfati & Murray, 2004) Consider a network of integrator agents with uniform communication-delays $\tau > 0$ in all links. Assume:

(1) the information flow G of the network is **undirected**, and **connected**.

(2) under the protocol:
$$u_i(t) = \sum_{i \in N_i} a_{ij} [x_j(t - \tau_{ij}) - x_i(t - \tau_{ij})]$$
 with $\tau_{ij} = \tau$

It globally asymptotically solves average-consensus problem if and only if

$$au \in (0, au^*) ext{ with } au^* = \pi/(2\lambda_{ ext{n}}), ext{ where } \lambda_{ ext{n}} = \lambda_{ ext{max}}(ext{L}).$$

1 Under the assumptions, if the solutions globally asymptotically converge to a limit x^* , then

$$x^* = \frac{1}{N} \sum_{i=1}^{N} x_i(0)$$

$$X(s) = (sI_n + e^{-\tau s}L)^{-1}x(0)$$

$$Z_{\tau}(s) = (sI_n + e^{-\tau s}L)$$

Target: want a condition that zeros of $Z_{\tau}\left(s
ight)$ are on the OLHP

Difficulties: (1) nonlinearity (2) multi-input and multi-output (MIMO)

From MIMO to 'SISO'

 w_k be the *k*th normalized eigenvector of L, associated with λ_k , be the *k*th eigenvalue of L in an increasing order. For a connected graph G, $0=\lambda_1 < \lambda_1 \leq \lambda_2 \dots \leq \lambda_n = \lambda_{\max}(L)$

$$egin{aligned} &Z_{ au}(s)w_k = sw_k + e^{- au s}Lw_k = (s+e^{- au s}\lambda_k)w_k = 0 \ \end{aligned}$$

Solution for s, is dependent on λ_k

From Nonlinear to 'Linear'

 $s + e^{-\tau s} \lambda_k = 0$

Use the result from the first-order linear time-delay system,

$$\tau = \pi / 2\lambda_k$$

Note that when $\lambda=0$, s=0, no matter what τ is, there is a zero on imaginary axis

Due to the continuous dependence of roots on τ ,

The solution is asymptotically stable if and only if $\tau \in (0, \tau^*)$ with $\tau^* = \pi/(2\lambda_n)$, where $\lambda_n = \lambda_{max}(L)$.

Example: Two-robot Rendezvous

Can't apply to three-robot cyclic pursuit: violates the assumptions!

Some Existing Results on Delay Networks

(Bliman & F.-Trecate) Consider a communication network modeled through an undirected and connected graph with constant delays. Let Δ be the Laplacian operator, the solution to

$$\dot{v}(x,t) = \Delta v(x,t-\tau)$$

is globally exponentially stable for all possible $\tau \leq \tau^*$, if and only if

	Uniform delays	Non-uniform delays
Time-invariant	$\tau^* < \frac{\pi}{2\ \Delta\ }$	$\tau^* < \frac{\pi}{2\ \Delta\ }$
Time-varying	$\tau^*(t) < \frac{3\pi}{2\ \Delta\ }$	$\tau^{*}(t) < \frac{1}{\sum_{i,i' \in I} \ \Delta_{i}\Delta_{i'}\ \ \Delta^{-1}\ }$

Robotic Network Approach

Linear Agreement Protocol:

$$\dot{x}_i(t) = \sum_{j \in N_i} x_j(t) - x_i(t)$$

 $\dot{\boldsymbol{x}}(t) = -L \boldsymbol{x}(t)$

$$H_i(s) = \frac{G_i(s)K_i(s)}{1 + G_i(s)K_i(s)T_i(s)}$$

Example: 3-Robot Cyclic Pursuit

Cyclic Pursuit Model

$$\begin{split} \dot{x}_1(t) &= [x_2(t-\tau_{21}) - x_1(t-\tau_{21})] \\ \dot{x}_2(t) &= [x_3(t-\tau_{32}) - x_2(t-\tau_{32})] \\ \dot{x}_3(t) &= [x_1(t-\tau_{13}) - x_3(t-\tau_{13})] \end{split}$$

Position Vector

$$X(s) = [X_1(s), X_2(s), X_3(s)]$$

Frequency Domain Transform

$$\begin{aligned} X_1(s) &= (s+T_{21})^{-1}(T_{21}X_2(s)+x_1(0)) \\ X_2(s) &= (s+T_{32})^{-1}(T_{32}X_3(s)+x_2(0)) \\ X_3(s) &= (s+T_{13})^{-1}(T_{13}X_1(s)+x_3(0)) \end{aligned}$$

Example: 3-Robot Cyclic Pursuit

Frequency Domain Transform

$$X_{1}(s) = (s + T_{21})^{-1} (T_{21}X_{2}(s) + x_{1}(0))$$
$$X_{2}(s) = (s + T_{32})^{-1} (T_{32}X_{3}(s) + x_{2}(0))$$
$$X_{3}(s) = (s + T_{13})^{-1} (T_{13}X_{1}(s) + x_{3}(0))$$

Delay Matrix T

$$\mathbf{T}(s) = \begin{bmatrix} T_{11}(s) & 0 & 0 \\ T_{12}(s) & 0 & 0 \\ T_{13}(s) & 0 & 0 \\ 0 & T_{21}(s) & 0 \\ 0 & T_{22}(s) & 0 \\ 0 & T_{23}(s) & 0 \\ 0 & 0 & T_{31}(s) \\ 0 & 0 & T_{32}(s) \\ 0 & 0 & T_{33}(s) \end{bmatrix}$$

System Matrix H

$$H(s) = \begin{bmatrix} (s+T_{21})^{-1} & 0 & 0\\ 0 & (s+T_{32})^{-1} & 0\\ 0 & 0 & (s+T_{13})^{-1} \end{bmatrix};$$

Selection Matrix S

$$S = \begin{bmatrix} 0 & 0 & 0 & | & 1 & 0 & 0 & | & 0 & 0 & 0 \\ 0 & 0 & 0 & | & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example: 3-Robot Cyclic Pursuit

Features of the Established Framework

- A general framework for robotic networks
- S: Selection matrix is related to the topology
 - balanced or unbalanced
 - directed or undirected
 - time-varying or time-variant
- **T**(*s*): Delay matrix
 - uniform delay or non-uniform delay
 - time-varying or time-invariant
- **H**(*s*): System matrix:
 - parametric uncertainties
- Robust Stability Criteria
- Robust Controller design

Results on Delay Networks

- (Modified from Lee & Spong, 2006) Suppose that we have $||(\Delta H)_i(j\omega)|| < 1, \forall \omega \in (0, +\infty]$ and $\lim_{\omega \to 0} ||(\Delta H)_i(j\omega)|| = 1$, and the information graph G is strongly connected, then $x_i(t) \to c, \forall i \in \{1, 2, 3, ..., n\}$, regardless of the non-uniform constant delays.
- Used for estimation for the bounds of delay
 - Conservative as a sufficient condition.

1

Since $\Delta H(jw)$ is diagonal,

the eigenvalues of $\Delta H(jw)$ are located in the union of the following discs in complex plane C:

 $D_{\boldsymbol{i}}(\omega)\coloneqq\left\{\boldsymbol{z}\in \boldsymbol{C}:\mid\boldsymbol{z}\mid\leq\left|(\Delta\boldsymbol{H})_{\boldsymbol{i}}(\boldsymbol{j}\boldsymbol{w})\right|\right\}$

with $|(\Delta H)_i(jw)| \leq 1$ $|z| \leq 1$

Equality only holds for w=0.

 $\rho(\Delta H(jw)) < 1 \text{ for } w > 0$ $\rho(\Delta H(jw)) = 1 \text{ for } w = 0$

Sketch of the Proof (Cont'd)

2 Non-zero frequency signal will die out and only the zero-frequency signal remains

This implies that the feedback-loop is marginally stable with marginal behavior possible only when w=0.

The DC component of X(s):

3

 $\overline{x} = A(G)\overline{x}$

1 is always an eigenvalue of A(G) and if G is strongly connected, 1 is a simple eigenvalue and its eigenvector is uniquely given by $\mathbf{1}^{T}$. Therefore

$$\overline{x} = c\mathbf{1}^T$$

Example: Three Robot Cyclic Pursuit

$$\begin{split} \dot{x}_1(t) &= [x_2(t - \tau_{21}) - x_1(t - \tau_{21})] \\ \dot{x}_2(t) &= [x_3(t - \tau_{32}) - x_2(t - \tau_{32})] \\ \dot{x}_3(t) &= [x_1(t - \tau_{13}) - x_3(t - \tau_{13})] \end{split}$$

$$\begin{split} \left\| \Delta H(jw) \right\|_{\infty} < 1 \text{ for } w \in (0, +\infty] \\ \text{and} \lim_{w \to 0} \left\| \Delta H(jw) \right\|_{\infty} = 1 \text{ for } \tau < 0.5268 \end{split}$$

All $\tau_{ij} < 0.5258$ will satisfy the condition; Thus, rendezvous occurs for any τ_{12} , τ_{23} , $\tau_{13} < 0.5268$.

Example: Three Robot Cyclic Pursuit

The estimation is conservative.

Example: Multiple Robot Cyclic Pursuit (n=10)

 $\tau_{\rm co} \cong 0.51$

Example: Multiple Robot Cyclic Pursuit (n=32)

 $\tau_{\rm co} \cong 0.5$

Random Updates

• Probabilistic model of failure or delay in communications, computations and updates

Discrete Model Random Updates

$$\begin{cases} x_i(n+1) = x_i(n) + \varepsilon \left(\sum_{j \in N_i} x_j(n) - x_i(n) \right) & \text{with probability } \pi_i \\ x_i(n+1) = x_i(n) & \text{with probability } 1-\pi_i \end{cases}$$

 π_i describes how robust the mechanism is.

Two Robot Rendezvous

Summary

Future Research

- More general and stronger results on delayed communication networks: e.g. directed graphs and time-varying topology
 - Much more involved mathematics : Functional differential equations (Hale & Lunel), Differential-difference equations (Bellman)
- Better heuristic algorithms to compute the bounds for delays
- Controller design with the presence of parametric uncertainties
- Introducing probabilistic approach
- Explain convergences present in
 - the delay in the multi-robot cyclic pursuit
 - Probabilistic algorithm

Questions

