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Motivation: Multi-agent Systems

Flocking Chemical Reaction

Network

Autonomous Underwater VehiclesFlight Formation



Systems of Coupled Dynamics

M.C. Escher: Drawing Hands

Robot Rendezvous problem with delays



Delays in Rendezvous Problems

• Communication delay

– Uniform delay

– Non-uniform delay

– Time-invariant

– Time-Varying delay

• Delays in computing or response
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First Order Linear Time-Delay System 
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Characteristic equation:   0ss e τλ −+ =
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(Hale and Lunel, Bliman & F.-Trecate) 
The system is exponentially stable if and only if τ < π/(2λ).
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• Due to continuous dependence of roots in τ, for τ ∈ (0, τ*),    
all the poles are in the OLHP. 

• When τ=τ*, the solution will be in the form of 

( ) sin( )x t c tλ ϕ= +



Example 
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Some Existing Results on Delay Networks

(Olfati & Murray, 2004) Consider a network of 
integrator agents with uniform communication-delays 
τ >0 in all links. Assume:

(1) the information flow G of the network is undirected, and 
connected. 

(2) under the protocol:

It globally asymptotically solves average-consensus problem 

if and only if 

τ ∈ (0,τ*) with τ*=π/(2λn), where λn=λmax(L).

( )  [ ( - ) - ( - )] with 
i

i ij j ij i ij ij

i N

u t a x t x tτ τ τ τ
∈

= =∑



Sketch of the Proof
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1 Under the assumptions, if the solutions globally asymptotically converge
to a limit x*, then

2 (Stability of the solutions)
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Target: want a condition that zeros of Z
ττττ

(s) are on the OLHP

Difficulties: (1) nonlinearity (2) multi-input and multi-output (MIMO)



Sketch of the Proof
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From MIMO to ‘SISO’

Solution for s, is dependent on λk

wk be the kth normalized eigenvector of L, associated with

λk, be the kth eigenvalue of L in an increasing order.

For a connected graph G, 0=λ1 < λ1 ≤ λ2… ≤ λn =λmax(L)

0s

ks e τ λ−+ =



Sketch of the Proof

0s
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From Nonlinear to ‘Linear’

Use the result from the first-order linear time-delay system,
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Note that when λ=0, s=0, no matter what τ is, there is a zero on imaginary axis

Due to the continuous dependence of roots on τ,

The solution is asymptotically stable if and only if
τ ∈ (0,τ*) with τ*=π/(2λn), where λn=λmax(L).
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Example: Two-robot Rendezvous

1 1

1 1
L

 −
 =  −  

1 2 undirected, connected

Can’t apply to three-robot cyclic pursuit: violates the assumptions!
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Some Existing Results on Delay Networks

(Bliman & F.-Trecate) Consider a communication network modeled 

through an undirected and connected graph with constant delays. Let 
∆ be the Laplacian operator, the solution to

is globally exponentially stable for all possible τ ≤ τ∗, if and only if 

( , ) ( , )v x t v x t τ= ∆ −ɺ

Time-varying

Time-invariant

Non-uniform delaysUniform delays
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Robotic Network Approach
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Example: 3-Robot Cyclic Pursuit
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Example: 3-Robot Cyclic Pursuit
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Example: 3-Robot Cyclic Pursuit
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Features of the Established Framework

• A general framework for robotic networks

• S: Selection matrix is related to the topology
– balanced or unbalanced
– directed or undirected
– time-varying or time-variant

• T(s): Delay matrix
– uniform delay or non-uniform delay
– time-varying or time-invariant

• H(s): System matrix:
– parametric uncertainties

• Robust Stability Criteria

• Robust Controller design



Results on Delay Networks

• (Modified from Lee & Spong, 2006)

Suppose that we have ||(∆H)i(jω)||<1, ∀ ω ∈ (0,+∞] and 
lim

ω→0 ||(∆H)i (jω)||= 1, and the information graph G is 
strongly connected, then xi(t) → c, ∀ i ∈{1,2,3,…,n}, regardless 
of the non-uniform constant delays.

• Used for estimation for the bounds of delay

– Conservative as a sufficient condition.



Sketch of the Proof

the eigenvalues of ∆H(jw) are located in the union of the following 

discs in complex plane C:

{ }( ) : :| | ( ) ( )i iD z C z H jwω = ∈ ≤ ∆

1z ≤
with | ( ) ( ) | 1iH jw∆ ≤

Equality only holds for w=0.

( ( )) 1  for 0H jw wρ ∆ < >

( ( )) 1  for 0H jw wρ ∆ = =

Since ∆H(jw) is diagonal,1



Sketch of the Proof (Cont’d)

( )x AG x=

This implies that the feedback-loop is marginally stable with marginal 
behavior possible only when w=0.

Non-zero frequency signal will die out and only the zero-frequency signal remains
.

The DC component of X(s):

1 is always an eigenvalue of A(G) and if G is strongly connected, 1 is a 
simple eigenvalue and its eigenvector is uniquely given by 1T . Therefore

Tx c= 1

2

3



Example: Three Robot Cyclic Pursuit
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Example: Three Robot Cyclic Pursuit
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The estimation is conservative.



Example: Multiple Robot Cyclic Pursuit (n=10)

τco ≅ 0.51
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Example: Multiple Robot Cyclic Pursuit (n=32)

τco≅0.5
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Random Updates

• Probabilistic model of failure or delay in communications, 
computations and updates

  with probability  ( 1) ( ) ( ) ( )

   with probability 1-
( 1) ( )
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Discrete Model Random Updates

πi describes how robust the mechanism is.



Two Robot Rendezvous
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•Uniform random variable for 
each robot; 

•End up in different rendezvous 
points
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Illustration: 5-Robot Cyclic Pursuit

•How to increase the robustness of 
the distributed algorithm?

•How to make sure the robot 
rendezvous with presence of 
possible failure in updates?
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Summary 

1st order DODE
Uniform Time-
Invariant Delay

Recent Advanced 
Extension

Linear Network Model

Probabilistic Viewpoint

Delay

(Olfati & Murray) (Bliman & F.-Trecate)

(Lee & Spong)

(Hale and Lunel)



Future Research 

• More general and stronger results on delayed communication 
networks: e.g. directed graphs and time-varying topology

– Much more involved mathematics : Functional differential 
equations (Hale & Lunel), Differential-difference equations 
(Bellman)

• Better heuristic algorithms to compute the bounds for delays

• Controller design with the presence of parametric uncertainties

• Introducing probabilistic approach

• Explain convergences present in

– the delay in the multi-robot cyclic pursuit

– Probabilistic algorithm



Questions


