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ABSTRACT
An efficient and intelligent resource allocation mechanism is
the heart of any communication networks. Based on pre-
vious work on non-cooperative game approach and direct
centralized optimization, this paper addresses the issue of
efficiency and fairness in optical network power control. We
use Nash bargaining solution (NBS) to achieve a fair and
efficient solution for optical network power control at the
end-to-end optical link level. We study different formula-
tions based on Nash bargaining model and characterize their
solutions.
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1. INTRODUCTION
Recent technological advances have enabled a new gener-

ation of Optical Wavelength-Division Multiplexed (WDM)
communication networks. Devices such as Optical Add/Drop
MUXes (OADM), optical cross connects (OXC) and dy-
namic gain equalizer (DGE) have provided essential building
blocks for smart optical networks [1]. With advent of these
new technologies, current networks are evolving towards dy-
namic networks, able to respond to changes in traffic and re-
quirements. A static network management mechanism can
no longer service such networks. Therefore, intelligent net-
work management and control systems need to be part of
future network design. Complex in their own structure, net-
works need control on different levels. The first level is an
optical device level control, where smart feedback algorithms
are used to reduce noise and stabilize the device. Examples
have been seen in [31] and [16] where control principles are
applied to study EDFA and SOA, respectively. The next
level of management is on the link level,where we need to
optimize the quality of transmission and reduce nonlinear
physical effects. We can formulate optimization-based mod-
els for optical networks, specifically related to channel opti-
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Figure 1: A Small-scale Optical Networks

cal signal-to-noise ratio (OSNR) optimization.Such models
have been seen in the case of wireless networks in [29, 28].
However, the unique physical structure of optical networks
imposes different challenges on modeling and solution con-
cepts in optical networks. Our study of link-level control
is an initial step towards the control of large-scale complex
networks.

The third level is the network level, where problems of
interests are optimal routing and congestion control. These
problems are on a higher level and they have been well stud-
ied in a general network setting such as in [33]. The last but
not least is the system level control. This level of research
encapsulates optical network as a dynamical system as seen
in [22]. Interesting problems are usually on the robustness
and stability of large scale networks.

Our focus here is on the control and management of op-
tical networks at the link level. Investigated in [23, 24], the
problem has been solved by two prevalently used optimization-
based approaches: the central cost and non-cooperative game
approach. The goals and models from the two approaches
are inherently different. Central cost approach gives a model
to satisfy the target OSNR performances with minimum to-
tal power consumption. The model is centralized in nature
but an algorithm can be built in a decentralized manner. It
is important to note that the central cost approach in [24]
yields a solution with no concept of fairness. It can happen



that the solution can favor one particular user for the social
minimum of power consumption. On the other hand, non-
cooperative game approach is a naturally distributed model
which sees channel users as competitors. Each user opti-
mizes her own utility to achieve the best possible OSNR.
The solution from this approach is Nash equilibrium. It is
well-known in literature [7, 25] that Nash equilibrium may
not be efficient. Therefore, fairness and efficiency of solu-
tions become our major interest. As an alternative, we use
Nash bargaining solutions to achieve these goals by opti-
mizing a product form of utilities. Such approach has been
taken in wireless networks as in [32], [10] and [8]. However,
it is the first time to be used to solve the power control
problem in optical networks.

This paper is organized as the following. In section 2, we
review a network OSNR model and give a brief introduc-
tion to central cost and non-cooperative game approaches.
In section 3 , we review the concept of fairness and Nash
Bargaining Solution (NBS). In section 4, we formulate two
optimization-based models for the power control problem in
optical networks and characterize their solutions. Section
5 will point out future direction of this research work and
section 6 will conclude the paper.

2. CENTRAL COST APPROACH AND NON-
COOPERATIVE GAME APPROACH

The network power management is regarded as the Achilles’
heel for optical networks, in which an intelligent network re-
source allocation mechanism is needed to achieve desired
network performance. This is commonly measured by bit
error rate (BER), which is closely related to OSNR. Central
cost and game approaches are two existing schemes used to
design power control algorithms in optical networks. Both
schemes are based on a static OSNR optimization and iter-
ative algorithms are derived from the optimal solution. In
this section, we first review OSNR optical network model
and then review the concepts of two optimization-based ap-
proaches.

2.1 Review of Optical Network Model
Consider a WDM network with a set of optical links L =

{1, 2, .., L} connecting the optical nodes (as in Figure 1),
where channel add/drop is realized. A set N = {1, 2, ..., N}
of channels are transmitted, corresponding to a set of mul-
tiplexed wavelengths. Illustrated in Figure 2, a link l has
Kl cascaded optically amplified spans. Let Nl be the set of
channels transmitted over link l. For a channel i ∈ N , we
denote by Ri its optical path, or collection of links, from
source (Tx) to destination (Rx). Let ui be the ith chan-
nel input optical power (at Tx), and p = [p1, ..., pN ]T the
vector of all channels’ input powers. Let si be the ith chan-
nel output power (at Rx), and ni the optical noise power in
the ith channel bandwidth at Rx. The ith channel optical
OSNR is defined as OSNRi = si

ni
. In [24], it is assumed

that the dispersion and nonlinearity effects are considered
to be limited, the ASE noise accumulation is the dominant
impairment in the model. This assumption simplifies the
OSNR expression, and thus the OSNR for the ith channel
is given as

OSNRi =
pi

n0,i +
∑

j∈N Γi,jpj
, i ∈ N (1)

where Γ is the full n × n system matrix which character-

Figure 2: A Typical Optical Link in WDM Optical
Networks

izes the coupling between channels. n0,i denotes the ith
channel noise power at the transmitter. System matrix Γ
encapsulates the basic physics present in optical fiber trans-
mission and implements an abstraction from a network to an
input-output system. This approach has been used in [30]
for the wireless case to model CDMA uplink communica-
tion. Different from the system matrix used in wireless case,
the matrix Γ given in (2) is commonly asymmetric and is
more complicatedly dependent on parameters such as spon-
taneous emission noise, wavelength-dependent gain, and the
path channels take.

Γi,j =
∑
i∈Ri

Kl∑
k=1

Gk
l,j

Gk
l,i

(
l−1∏
q=1

Tq,j

Tq,i

)
ASEl,k,i

P0,l
,∀j ∈ Nl. (2)

where Gl,k,i is the wavelength dependent gain at kth span

in lth link for channel i; Tl,i =
∏Kl

q=1 Gl,k,iLl,k with Ll,k be-
ing the wavelength independent loss at kth span in lth link;
ASEl,k,i is the wavelength dependent spontaneous emission
noise accumulated across cascaded amplifiers; P0,l is the out-
put power at each span.

It is also shown in [24] that the OSNR model can be
further extended to include crosstalk terms due to WDM
components at the optical nodes (OADM or OXC), such as
optical filters, demultiplexers, add/drop modules, routers or
switches [1].

2.2 Central Cost Approach
Similar to the SIR optimization problem in the wireless

communication networks [29, 28], OSNR optimization achieves
the target OSNR predefined by each channel user by allow-
ing the minimum transmission power. Let γi, i ∈ N be the
target OSNR for each channel. By setting the OSNR re-
quirement as a constraint, we can arrive at the following
central cost optimization problem (CCP ):

(CCP ) minp

∑
i∈N pi

subject to OSNRi ≥ γi ∀i ∈ N .
(3)

Under certain conditions, it has been shown in [24] that the
feasible set of CCP is nonempty and the optimal solution is
achievable at the boundary of the feasible set.

The formulated optimization problem can be extended to
incorporate more constraints such as

pi,min ≤ pi ≤ pi,max, (4)

where pi,min is minimum threshold power required for trans-
mission for channel i and pi,max is maximum power channel
i can attain. In the central cost approach, power pi are the
parameters to be minimized and the objective function is
linearly separable. In addition, the constraints are linearly



coupled. These nice characteristics in central cost approach
leads to a relatively simple optimization problem.

2.3 Non-cooperative Game Approach
Non-cooperative game theory is a branch of microeco-

nomic theory dealing with multi-agent interactions in a non-
cooperative manner [20],[21]. It can naturally model the
coupling between channels in terms of OSNR, provided that
cooperation between channels is impractical. In a large-scale
and dynamic network, this assumption can be easily justified
as the centralized information is difficult to obtain.

Consider a game defined by a triplet 〈N , (Ai), (Ji)〉. N is
the index set of players or channels; Ai is the strategy set
{pi | pi ∈ [pi,min, pi,max]}; and, Ji is the payoff function. In
[23], Ji is defined as

Ji(pi, p−i) = αipi − βi ln

(
1 + ai

pi

X−i

)
, (5)

where αi, βi are channel specific parameters, that quantify
the willingness to pay the price and the desire to maximize
its OSNR, respectively, ai is a channel specific parameter,
X−i is defined as X−i =

∑
j 6=i Γi,jpj + n0,i. This specific

choice of utility function is non-separable, nonlinear and cou-
pled. However, Ji is strictly convex in pi and takes a spe-
cially designed form such that its first-order derivative takes
a linear form with respect to p.

The solution from the game approach is usually charac-
terized by Nash equilibrium (NE), which is defined in the
context of optical networks as p∗ such that

Ji(p
∗) ≤ inf

pi∈[pi,max,pi,max]
Ji(pi, p

∗
−i),∀i (6)

Provided that
∑

j 6=i Γi,j ≤ ai ,the resulting NE solution is
given in a closed form by

Γp∗ = b, (7)

where Γi,j = ai, for j = i; Γi,j = Γi,j , for j 6= i and bi =
aibi
αi

− n0,i.

3. NASH BARGAINING MODEL
Non-cooperative game theory in section 2.3 leads to a dis-

tributed algorithm that converges to the analytical Nash
equilibrium. However, the choice of utility function and
derivation of the solution doesn’t take the issues of efficiency
and fairness into account. In fact, Nash equilibrium may be
undesirably inefficient due to the fact that each agent is be-
having selfishly to optimize their own utility. The social
optimum isn’t achieved in this game setting. On the other
hand, central cost approach in section 3.1 doesn’t have the
concept of fairness in its solution. It is well-known in the lit-
erature of bandwidth allocation that this criterion can lead
to situations in which the allocation is null for one or more
users [6]. One way to improve is to adopt a new solution con-
cept, i.e., Nash Bargaining solution. Its inherent property
of being proportionally fair and Pareto optimal is much de-
sirable for an efficient distributed algorithm. As a summary,
Table 1 compares the properties of solutions from different
approaches.

3.1 Concept of Fairness
Recently a growing literature [6, 25, 26, 12, 32, 2] is con-

cerning the efficiency and fairness of the solutions. The solu-
tions we obtained in section 2 do not embody those concepts

from their models. This has brought us to investigate such
problems in the power control problem in optical networks.

To study the concept of fairness, we need to first define
fairness criteria. There are multiple proposals in the fair-
ness criteria in current literature, namely, max-min fairness,
proportional fairness, and generalized (w,α) fairness, etc.
Max-min fairness has been pervasively used in the context
of rate control and it can be equivalently interpreted as the
following statement: An allocation is max-min fair if and
only if each source has a bottleneck. Proportional fairness
is a relatively new concept, first defined in [15]. It is math-
ematically defined as follows.

Definition 3.1. (Proportional fairness) An allocation p∗ ∈
X, a convex compact subset of RN , is proportionally fair if
it maximizes

max
p∈X

∑
i∈{1,..,N}

ln(pi).

The definition can be interpreted as follows. If a point p is
proportionally fair, any deviation from this point will result
in a non-positive sum of percentage change of each user’s
utility. The definition of the proportional fairness results in
the following property [17].

Proposition 3.1. If p∗ ∈ X ⊆ RN is proportionally
fair, then ∑

i∈{1,..,N}

p′i − p∗i
p∗i

≤ 0,∀p′ 6= p∗.

In [18], another solution concept is defined in the context of
bandwidth allocation by minimizing the transfer time, the
inverse of the bandwidth, i.e., minp∈X

∑
i∈1,..,N

1
pi

. With

the presence of these fairness criteria, Mo and Walrand re-
cently showed in [19] that these criteria can be generalized
into a parametric (w,α) fairness criteria. In the case when
α = 0, the solution is a global optimization over the sum
of the utility functions. As α → 1, the problem becomes a
Nash bargaining solution and yields proportional fairness in
the solution. As α → ∞, the solution corresponds to the
Max-Min fairness solution.

Definition 3.2. [(w,α) Fairness][Mo and Walrand, [19]]
A solution p is called (w, α)−fair if it solves

max
p∈X

1

1− α

∑
i∈{1,..,N}

wip
1−α
i ,∀α ≥ 0, α 6= 1

and solves

max
p∈X

∏
i∈{1,..,N}

pi, when α = 1.

Similarly,the definition of (w,α) fairness criteria gives the
property in Proposition 3.2.

Proposition 3.2. Let w = (w1, ..wN ) and α be positive
numbers. A vector of rates p∗ is (α, w)-proportionally fair,if
and only if it is feasible and for any other feasible vector p′

such that
∑

i∈{1,...,N} wi
p′i−p∗i

p∗α
i

≤ 0

The above criteria are prevalently used in rate allocation;
consequently, the utility is simply the allocation, a separa-
ble linear function of the allocated resource. To apply the
fairness criteria into our power control problem, we need to
generalize them in terms of a function of p. The following
are the extended definitions.



Table 1: Efficiency and Fairness Comparisons
Methods Efficiency Fairness

Central Cost Approach Efficient No concept of fairness
Non-cooperative Game Approach Inefficient Fair competition

Nash Bargaining Solution Efficient Proportional Fairness

Definition 3.3. An allocation p∗ is utility-based propor-
tional fair if it solves the problem

max
p∈X

∑
i∈{1,..,N}

ln(fi(pi)).

Proposition 3.3. (Utility-based proportional fairness) Sup-
pose each user has a utility function fi(·) : X →R, showing
its preference over her own allocation. Assume that fi is
continuously differentiable. The allocation p∗ is utility-based
proportionally fair if it satisfies the following property:∑

i∈{1,...,N}

wi(p
∗
i )

p′i − p∗i
p∗i

≤ 0 ∀p′i 6= p∗i , (8)

where wi(p
∗
i ) = vi(p

∗
i )p

∗
i can be regarded as the weights, and

vi(p
∗
i ) =

f ′i(p
∗
i )

fi(p
∗
i )

. wi(p
∗
i ).

Proof. Every p∗ that satisfies Definition 3.3 should sat-
isfy the optimality condition in variational form, i.e.,:∑

i∈{1,...,N}

f ′i(p
∗
i )

fi(p∗i )
(p′i − p∗i ) ≤ 0

for all p′ ∈ X. The result will follow by defining appropri-
ately wi(p

∗
i ).

Lemma 3.4. Suppose vi(p
∗) defined in Proposition (3.3)

is affine, separable, and of the form vi(p
∗
i ) = vap∗i +vb; va, vb ∈

R+. If an allocation p∗ satisfies Proposition 3.3 , then one
of the following statements holds.

1.
∑

i vi(p
∗)p∗i ≥ 4

3

∑
i vi(pi)pi ,∀pi

2.
∑

i vi(p
∗
i )p∗i

maxp
∑

i vi(pi)pi
≥ 4

3

Proof. It is easy to observe that proportional fairness is
defined in a variational form and we can apply the results of
price of anarchy from [25, 5]. Starting with inequality (8),
we have ∑

i

vi(p
∗
i )p

∗
i ≥

∑
i

vi(p
∗
i )p

′
i

=
∑

i

vi(p
′
i)p

′
i +
∑

i

(vi(p
∗
i )− vi(p

′
i))p

′
i. (9)

When vi(p
∗
i ) − vi(p

′
i) ≤ 0, a simple sufficient condition for

(9) to hold is to have
∑

i vi(p
∗
i )p

∗
i ≥

∑
i vi(p

′
i)p

′
i. There-

fore, we only need to worry about the case when vi(p
∗
i ) ≥

vi(p
′
i). Using the same argument from [5], due to the fact

that vi(·) is an affine and separable function of the form
vi(p

∗) = vap∗i +vb, va, vb ∈ R+, we can observe that the area
formed by (vi(p

∗
i )− vi(p

′
i))p

′
i is always less than or equal to

1/4 of the area formed by vi(p
∗
i )p

∗
i , for every i. Thus, we

have ∑
i

(vi(p
∗
i )− vi(p

′
i))p

′
i ≤

1

4

∑
i

vi(p
∗
i )p

∗
i .

Therefore,
∑

i vi(p
∗)p∗i ≥ 4

3

∑
i vi(p

′
i)p

′
i ∀p′i. Equivalently,

taking the maximum of the right-hand side, we obtain∑
i vi(p

∗
i )p

∗
i

maxp

∑
i vi(pi)pi

≥ 4

3
.

Utility based proportional fairness can be seen as a weighted
proportional fairness criteria, whose weights depend on the
solution. Proposition 3.3 gives a sufficient condition on pro-
portional fairness. With the knowledge of the form of func-
tion vi, 3.4 gives a necessary condition. This result can be
extended for a more general form of vi. Different fairness cri-
teria results in a different point in the Pareto set. However,
since Nash equilibrium is not always in the Pareto set, the
fairness of Nash equilibrium needs to be otherwise defined.

3.2 Nash Bargaining Solution
Different from a central optimization approach and non-

cooperative game approach, Nash Bargaining Solution (NBS)
is a point with the property of proportional fairness and
Pareto Efficiency. NBS is based on Nash’s axiomatic model
of bargaining. The axiom of Pareto efficiency inherently
guarantees the efficiency of the solution. In optical networks,
we can analogously relate the situation of negotiation among
users for limited resources to the bargaining situation. We
are interested in the equilibrium of such negotiation rather
than the transient process of bargaining, which is commonly
modeled in extensive game form by the Rubinstein Bargain-
ing model [21].

Let’s review the results from Nash Bargaining Theory [21,
32]. Suppose there are N individuals. Each agent i(i ∈
{1...N}) has an utility function fi(·) and a minimal utility
requirement f0

i , where fi(·) is defined on a set X ⊂ RN and
is assumed to be upper-bounded. X is the set of feasible
strategies and is assumed to be a convex closed and non-
empty set. The set U ⊂ RN is defined as U = {u ∈ RN |
∃p ∈ X,u = (f1(p), ..., fN (p))} and it is assumed to be
non-empty, convex, and closed. Vector u0 is thus defined as
u0 = (f0

1 , ..., f0
N ).

The set U0 ∈ U is a subset of U in which agents achieve
more than their minimum requirements u0. U0 = {u ∈ U |
ui ≥ u0

i ,∀i ∈ {1, ..., N}}. Similarly, we define X0 = {X0 ⊂
X | fi(p) ≥ u0

i ,∀i ∈ {1, ..., N}} as the strategy set that
contribute to the utilities in set U0.

The mapping of f and the notions of defined sets are il-
lustrated in Figure 3.

Definition 3.4. a Nash bargaining solution (NBS) u∗ is
given by S(U,u0), where S : G → RN is a mapping that
satifies:

1. (FEA) Feasibility, i.e.,S(U,u0) ∈ U0

2. (PAR) Pareto efficiency, i.e., S(U,u0) is Pareto opti-
mal.



Figure 3: Illustration of Bargaining Solution.

3. (LIN) Linearity if φ : RN →RN , φ(u) = u′ with u′i =
aiui + bi, ai > 0, i = 1, ..., N then S(φ(u), φ(u0)) =
φ(S(U,u0)).

4. (IIA) Property of irrelevant alternatives if V ⊂ U, (V,u0) ∈
G, and S(U,u0) ∈ V , then S(U,u0) = S(V,u0)

5. (SYM) Property of Symmetry if U is symmetric with
respect to a subset J ⊆ {1, ..., N} of indices; i.e., if
u ∈ U and i, j ∈ J , then if u0

i = u0
j , then Si(U,u0) =

Sj(U,u0).

The properties of LIN, IIA and SYM are the axioms of fair-
ness. The linearity property implies that the bargaining so-
lution is scale invariant, i.e., the bargaining solution remains
the same if new performance objectives are affine functions
of the old one. The irrelevant alternative property states
that the bargaining point is not affected by enlarging the
domain if the agreement can be found in the feasible set.
The symmetry property implies that users of the same ini-
tial points and objectives will realize the same performance.

The following Theorem 3.5 in [32] is based on the Nash so-
lution to the Nash axiomatic bargaining games. It is worth
pointing out that Nash’s four axioms uniquely define a bar-
gaining solution. It can be shown that none of the axioms
are superfluous. For each axiom, a solution that satisfies
the remaining three axioms and is different from Nash’s.
When the axiom axiom is generalized it can be shown that
NBS can also be extended to asymmetric Nash bargaining
solution (ANBS) [21]. To provide a complete picture of the
bargaining games, we have noticed that in the economics
literature, the third axiom in which solution is assumed to
have the IIA property is quite debatable. In addition, Kalai-
Smorodinsky solution (KSS) replaces this assumption with
monotonicity in [13].

Theorem 3.5. (Yaicke, Mazumdar and Rosenberg, [32])
Let the utility functions fi(·) : X → R be concave, upper-
bounded and defined on a convex and compact set X ∈ RN .
Let J be the set of users able to achieve a performance
strictly superior to their initial performance. Assume {fj}j∈J

are injective. Then, there exists a unique Nash Bargaining
Solution (NBS) p that satisfies the NBS properties and is a
unique solution to the problem of

max
∏
j∈J

(fj(p)− u0
j ),p ∈ X0. (10)

Equivalently, it is a solution to

max
∑
j∈J

ln(fj(p)− u0
j ),p ∈ X0. (11)

4. NBS IN POWER CONTROL OF OPTICAL
NETWORKS

To illustrate the Nash bargaining solution (NBS) con-
cept in the context of power control of optical networks,
let’s consider a problem setup: N channels compete for
their optimal OSNR in the fiber transmission. Each channel
i(i ∈ {1...N}) has an OSNR measure function OSNRi(·)
and a required initial OSNR given by γ0

i at the transmit-
ter, which guarantees the minimum quality of transmission.
Measure function OSNRi(·) : RN

+ → R+ is defined in (1).
Clearly, function OSNRi(·) is a nonseparable function in
terms of vector p. To be more general, the utility function
of each channel is defined as a function of OSNR measure-
ment,i.e., fi(·) = hi(OSNRi(·)). fi(·) is desirable to be
upper bounded and convex in pi. Provided that γi 6= 0 and
pi 6= 0, one choice of the utility functions fi(·) is given by

fi(·) =
βiOSNRi

1− Γi,iOSNRi
=

pi

δiX−i
, (12)

where δi = 1/βi. Similarly, the initial utility requirement
will be given by u0 = (f1(γ

0
1), ..., fN (γ0

N )).
Before applying Theorem 3.5, we need to show that ln fi(·)

is concave in p.

Proposition 4.1. Suppose pi ∈ [pmin, pmax], where pmin, pmax ∈
R+, and the noise term n0,i negligible. Function ln fi(·) :
X → R is concave in p, defined on a compact, convex set
X ⊆ RN . if δi ≤ pmin

pmax
≤ 1.

Proof. Let p1 and p2 be vectors in convex compact fea-
sible set X, which can be obtained from the constraints.

Let p0 = λp1 + (1− λ)p2. We need to show

ln fi(λp1+(1−λ)p2) ≥ λ ln fi(p
1)+(1−λ) ln fi(p

2), ∀λ ∈ [0, 1].
(13)

Using (12), we have

ln fi(λp1 + (1− λ)p2) =

ln

(
λp1

i + (1− λ)p2
i

δi

∑
j 6=i Γi,j(λp1

j + (1− λ)p2
j )

)
. (14)

and

λ ln fi(p
1) + (1− λ) ln fi(p

2) =

ln

(
(p1

i )
λ(p2

i )
1−λ

(
∑

j 6=i Γijp1
j )

λ(
∑

j 6=i Γijp2
j )

(1−λ)

)
. (15)

From Holder’s inequality [27], we know that

(p1
i )

λ(p2
i )

1−λ ≤ λp1
i + (1− λ)p2

i ,

since p1
i ,p

2
i ≥ 0. Similarly, using Holder’s inequality, we

have

δi

∑
j 6=i

Γi,j(λp1
j + (1− λ)p2

j )

= δi

λ
∑
j 6=i

Γi,jp
1
j + (1− λ)

∑
j 6=i

Γi,jp
2
j



≥ δi

∑
j 6=i

Γi,jp
1
j

λ∑
j 6=i

Γi,jp
2
j

1−λ (16)



Suppose the denominator in (15) is larger than the one in
(14). Using inequality from (16), we arrive at the necessary
condition in (17) that gives rise to (13).∑

j 6=i

Γijp
1
j

λ∑
j 6=i

Γijp
2
j

(1−λ)

≥ δi

∑
j 6=i

Γi,j(λp1
j + (1− λ)p2

j ) (17)

≥ δi

∑
j 6=i

Γi,jp
1
j

λ∑
j 6=i

Γi,jp
2
j

1−λ (18)

Therefore, it is necessary that δi ≤ 1, i.e., βi ≥ 1.
To ensure the assumption that the denominator in (15)

larger than the one in (14) holds, we need to impose a suf-
ficient condition such that

min
p1,p2

∑
j 6=i

Γijp
1
j

λ∑
j 6=i

Γijp
2
j

(1−λ)

≥ max
p1,p2

δi

∑
j 6=i

Γi,j(λp1
j+(1−λ)p2

j ).

(19)
Since pi ∈ [pmax, pmin], the minimum and maximum in (19)
are achieved at the boundary, and thus for 0 ≤ λ ≤ 1, we
need to have

δi ≤
∑

j 6=i Γi,jpmin∑
j 6=i Γi,jpmax

=
pmin

pmax
.

It is satisfied and naturally follows that it also satisfies the
necessary condition that δi ≤ 1.

By Theorem 3.5, the bargaining solution is uniquely solved
by the following maximization problem (OP ):

(OP )max
∏
i∈I

(fi(p)− u0
i ) p ∈ X0, (20)

where X0 denotes the set of power vector p that can achieve
beyond the minimum OSNR target, i.e.,X0 = {p ∈ X :
fi(u) ≥ f0

i for some i}. An equivalent problem to (OP ) is
(OP ′) given by

(OP ′)max
∑
i∈I

ln(fi(p)− u0
i ) p ∈ X0. (21)

The constraints are:

pi,min ≤ pi ≤ pi,max (C2)∑
i∈J pi ≤ C (C3)

(22)

Suppose constraint (C2) gives a feasible set W1 = {p |
pi,min ≤ pi ≤ pi,max} and constraint (C3) gives a feasible set
W2 = {p |

∑
i∈J pi ≤ C}. Therefore, X = XW = W1

⋂
W2.

Due to the high coupling and nonlinearity in utility func-
tion (12), it is challenging to find a closed form solution.
Instead, we can use change of variable to take advantage of
the resulting linearity to characterize the bargaining solu-
tion. It will eventually give the following proposition.

Proposition 4.2. Suppose conditions in Proposition 4.1
holds and u0 = 0. In addition, pi,min and pi,max are de-
termined sufficiently small and large such that they will not
behave as active constraints, then a necessary condition for
solving the optimality in OP is to consistently solve the fol-
lowing systems of equations for optimal solution p∗:

v = Γ0w + ν. (23)

Denote ri = 1
wi

and Dδ = diag{δ1, ..., δN}, then

r = DδΓ
0p. (24)

In addition, we have

pTv = N,wTr = N. (25)

where 1
δiX−i

= wi,
1
pi

= vi, and ν solves the slackness con-

dition ν(1T p− C) = 0.

Proof. Suppose pmax,i are chosen to be large enough to
be inactive constraints. To solve the above convex optimiza-
tion problem (21), we form the Lagrangian L(p, ν) as

L(p, ν) =
∑

i

ln

(
pi

δiX−i

)
+ νT (1T p− C).

Using the KKT first-order necessary condition, we have

∇piL(p, ν) = 0.

that is,

1

pi
=

Γ1i

δ1X−1
+ ... +

Γi−1,i

δ(i−1)X−(i−1)

+ ... +
Γi+1,i

δ(i+1)X−(i+1)

+

... +
ΓNi

δNX−N
+ ν.∀i.

For example, for index i = 1 it yields

1

p1
=

Γ21

δ2X−2
+

Γ31

δ3X−3
+ ... +

ΓN1

δNX−N
+ ν

Let’s denote 1
pi

= vi and 1
δiX−i

= wi. We will have in

matrix form

v = Γ0w + ν, (26)

where

Γ0 =


0 Γ21 . . . ΓN1

Γ12 0 . . . Γ2N

...
...

. . .
...

Γ1N Γ2N . . . 0

 ,

denote ri = 1
wi

and Dδ = diag{δ1, ..., δN}, then

r = DδΓ
0p. (27)

In addition, we have

pTv =N,wTr = N. (28)

Therefore, a necessary condition for an optimal solution
is that it should simultaneously satisfy (26), (27), and (28)
for some ν.

Proposition 4.3. A necessary condition for optimal so-
lution p∗ is to satisfy

A(p̃)(D̂δp̃ + l̂) = n,

where n = [N, N ]T , p̃ = [wT ,pT ]T ,A(p̃) =

[
pT 0
0 wT

]
, D̂δ =[

Γ0 0
0 DδΓ

0

]
, l̂ =

[
ν
0

]



Proof. From Equations (26),(27), (28),the necessary con-
ditions can be formulated into[

v
r

]
=

[
Γ0 0
0 DδΓ

0

] [
w
p

]
+

[
ν
0

]
; (29)

[
pT 0
0 wT

] [
v
r

]
=

[
N
N

]
; (30)

The result will follow by substituting Equation (30) into
Equation (29), which completes the proof.

4.1 Alternative Formulation
Finding a closed form solution for OSNR-related objective

functions is quite challenging. Even if the linear transforma-
tion can simplify the nonlinear KKT conditions, the bilinear
matrix equality in Proposition 4.3 is still difficult to solve. In
addition, due to the inseparability and coupling in objective
functions, it is also difficult to decentralize the optimization
problem to achieve a distributed algorithm. However, we
can find an alternative way to formulate the problem, simi-
lar to the method that has been adopted in the central cost
approach. The problem will be transformed into a much
simpler optimization problem (AP ) with target OSNRs in
the constraints

(AP ) maxp

∏
i∈J(fi(pi)− fi(pmax,i))

subject to
OSNRi(p) ≥ γ0

i (C1)
pmin,i ≤ pi ≤ pmax,i (C2)∑

i∈J pi ≤ C (C3)
(31)

and its equivalent form (AP ′).

(AP ′) maxp

∑
i∈J gi(pi)

subject to
OSNRi(p) ≥ γ0

i (C1)
pmin,i ≤ pi ≤ pmax,i (C2)∑

i∈J pi ≤ C (C3)

(32)

where gi(·) : R→ R and is defined as gi(pi) =
∑

i∈J ln(fi(pi)−
fi(pmax,i)).

In the foregoing, fi(pi) is the utility function of each chan-
nel. It can be chosen to satisfy certain desirable properties,
such as upper-boundedness and concavity. As in [9], an ex-
ponential function can be chosen. The constraints (C1) and
(C2) can be transformed into a set of linear constraints given

by Γ̂p ≥ b and pmin,i ≤ pi ≤ pmax,i, where

Γ̂ =


1− Γ11γ

0
1 −Γ12γ

0
1 . . . −Γ1Nγ0

1

−Γ21γ
0
2 1− Γ22γ

0
2 . . . −Γ2Nγ0

2

...
...

. . .
...

−ΓN1γ
0
N −ΓN2γ

0
N . . . 1− ΓNNγ0

N

 ,

b =


γ0
1n0,1

γ0
2n0,2

...
γ0

Nn0,N

 .

Let D = diag{γ0
1 , ..., γ0

N}, then Γ̂ = IN −DΓ ,F1 = {p ∈
RN | OSNRi(p) ≥ γ0

i }, F2 = {p ∈ RN | pmin,i ≤ pi ≤
pmax,i} and F3 = {p ∈ RN |

∑
i∈J pi ≤ C}.

Using similar arguments as in [24] and with reference to
[11],[3], we can show the following Proposition 4.4.

Proposition 4.4. Let ρ(·) denote the spectral radius of a

matrix. There exists p > 0 such that Γ̂p ≥ b if one of the
following statements holds

(1) Γ̂ is diagonal dominant.
(2) ρ(DΓ) < 1

(3) Γ̂−1 =
∑∞

k=0(I −DΓ)k exists and positive component-
wise

Proposition 4.4 gives a sufficient condition on the feasibility
of constraints (C1) and (C2), or the non-emptiness of sets
F1 and F2. We next propose a sufficient condition for set
F3, or capacity constraint (C3).

Proposition 4.5. Assume that Γ̂ is diagonally dominant
and thus non-singular. In addition, pi,min and pi,max are
small and large enough. Let κ be the condition number of

Γ̂. If C ≥ κ maxi γ0
i n0,i

√
N√

ρ(Γ̂TΓ̂)
, then C ≥ 1T Γ̂−1b. Further-

more, if equivalent conditions in Proposition 4.4 hold, then
the feasible set X = XF = F1 ∩ F2 ∩ F3 is nonempty.

Proof. Using the definition of condition number κ =

‖Γ̂‖‖Γ̂−1‖ and matrix norm inequality ‖Γ̂N×N‖2 ≤
√

N‖Γ̂N×N‖∞
[11],we can obtain an upper bound on ‖1T Γ̂−1b‖∞.

‖1T Γ̂−1b‖∞ ≤ ‖1T Γ̂−1‖∞‖b‖∞ ≤ κ

‖Γ̂‖∞
‖b‖∞ ≤

κ maxi bi

‖Γ̂‖∞
≤ κ maxi γ0

i n0,i

√
N

‖Γ̂‖2
=

κ maxi γ0
i n0,i

√
N√

ρ(Γ̂TΓ̂)

.

From the first and last inequality, it follows that C ≥ 1T Γ̂−1b

if capacity is chosen such that C ≥ κ maxi γ0
i n0,i

√
m√

ρ(Γ̂TΓ̂)
. Further-

more, Γ̂ is an M-matrix [3],[11], which has the monotone

property, i.e., Γ̂p ≥ b > 0 implies p ≥ 0. Therefore, un-
der the assumption that conditions in Proposition 4.4 hold,

letting C ≥ 1T p ≥ 1T Γ̂−1b ensures that F1 ∩ F3 is non-
empty.

Capacity is dependent on the size of the matrix, i.e., the
number of users.When OSNR targets are uniform,i.e. γi =

γ, and Γ̂ is symmetric, then C needs to satisfy C ≥ κγ
√

m
λmax

,where

λmax = ρ(Γ̂). On the other hand, given a capacity, we can
use the inequality to estimate the number of channels that
we shall admit.

Based on Proposition 4.4 and 4.5, the feasible set XF can
be ensured to be compact, nonempty, and convex. Thus,
(AP ′) is a convex program if we choose gi(pi) to be a convex
function in pi,∀i.

Proposition 4.6. The system problem (AP ′) can be de-
composed into two sub-problems: User’s problem (UP ) and
Network problem (NP ), which are defined as follows.

USER Problem (UP ): maxpi gi

(
wi
λi

)
− wi

subject to λipmin,i ≤ wi ≤ λipmax,i (CD1)
(33)

NETWORK Problem (NP ): maxp

∑
i wi ln(pi)

subject to Γ̃p ≥ b̃, (CD2)
(34)



where Γ̃T = [Γ̂T ,−1T ] and b̃T = [bT ,−C], and pi = wi/λi.
wi and λi can be regarded as the user payment per unit of
time and charge per unit of power, respectively [15].

Proof. Without losing generality, assume pi,min = 0 to
save the heavy notation. The proof will be similar otherwise.
Use the idea from [14], we can form a Lagrangian from (AP ′)
as

L(p, ξ, θ) =
∑

i

gi(pi) + ξT (−Γ̃p + b̃) + θT (p− pmax),

where ξ ∈ R(N+1), θ ∈ RN , (pmax)i = pmax,i. Rearranging
the terms, we can obtain

L(p, ξ, θ) =
∑

i

gi(pi) + (θT − ξT Γ̃)p + ξT b̃− θT pmax.

Use KKT necessary condition for optimality.

∇piL = g′i(pi)− (Γ̃T ξ)i + θi = 0.∀i (35)

We can also form Lagrangian from (NP ) and (UP ) as well.

LUP (p, α, γ) = gi

(
wi

λi

)
− wi + γi(wi − λipi,max),

hence, a necessary condition is given by

∇wiLUP =
g′i(pi)

λi
− 1 + γi = 0.

Therefore, equivalently,

g′i(pi) = λi − γiλi. (36)

As for (NP ),

LNP (p, β) =
∑

i

wi ln(pi) + βT (−Γ̃p + b̃),

hence the necessary condition gives

∇piLNP =
wi

pi
+ (−Γ̃T β)i = 0 (37)

Since λi = wi/pi, use (37) and substitute into (36), and we
obtain

g′i(pi)− (Γ̃T β)i + γiλi = 0,∀i (38)

Comparing to (35), it can be easily observed that the first-
order KKT conditions are the same when ξ = β and θi =
γiλi,∀i. Therefore, since both (UP ) and (NP ) are convex
problems with linear constraints, the first-order KKT con-
dition is both necessary and sufficient. Thus, they form an
equivalent problem with (AP ′).

Such decomposition provides a framework to decentralize
our algorithm in power control. Users optimize their own
utility by submitting an amount to pay and the network col-
lects these payments and determines the allocation to each
user. The network problem also maintains the property of
proportional fairness.

4.2 Exponential Utility Function
In this section, we particularly choose fi(pi) = −epi , an

exponential function defined on the interval [pmin,i, pmax,i],
as in [9]. Directly following system model (AP ), the system

problem (EP ) will become

(EP ) maxp

∏
i∈J(epmax,i − epi)

subject to
OSNRi(p) ≥ γ0

i (C1)
pmin,i ≤ pi ≤ pmax,i (C2)∑

i∈J pi ≤ C (C3)

(39)

Due to the fact that the chosen objective function is sepa-
rable and the constraints are linearly coupled, the optimiza-
tion problem (EP ) can thus be decomposed into user’s prob-
lem and network problem as appeared in Proposition 4.6. By
Thereom 3.5, system problem (EP ) is equivalent to system
problem (EP ′) as follows.

(EP ′) maxp

∑
i∈J ln(epmax,i − epi)

subject to
OSNRi(p) ≥ γ0

i (C1)
pmin,i ≤ pi ≤ pmax,i (C2)∑

i∈J pi ≤ C (C3)

(40)

By Proposition 4.6, system problem (EP ′) can be decom-
posed into the user problem (EUP ) and network problem
(ENP ) as follows.

(EUP ) maxwi ln(epmax,i − ewi/λi)− wi

subject to λipmin,i ≤ wi ≤ λipmax,i (CD1)
(41)

(ENP ) maxp

∑
i wi ln(pi)

subject to Γ̃p ≥ b̃ (CD2)
(42)

5. FUTURE WORK
In this paper, we proposed Nash bargaining model for

the power control problem in optical networks. Its inher-
ent properties of proportional fairness and efficiency are at-
tractive for our applications. We formulated two different
optimization problems. We find it a challenge to give a
closed form solution for the direct OSNR-based optimiza-
tion. However, it is possible to develop numerical techniques
such as in [2] to find an iterative and feedback algorithm to
attain the optimal solution. On the other hand, the in-
direct power minimization approach with target OSNR in
constraints gives a relatively simpler optimization problem.
We should be able to derive distributed and iterative algo-
rithms by using Proposition 4.6 as a starting point.

The fairness criteria that we used for Nash bargaining
model in this paper is proportional fairness. We can gen-
eralize NBS by solving a parametric class of problems for
different fairness criteria in Definition 3.2. With the as-
sumption of separability in utility function, we observe that
the general optimization problem falls into a class of prob-
lem of monotropic programming in [4]. With this tool, we
may further characterize the generalized NBS and apply du-
ality theory to achieve a hierarchical decomposition of the
problem.

6. CONCLUSION
Noncooperative game and central cost approaches are two

commonly used tools for network power control. However,
Nash equilibrium may not guarantee efficiency; and central
optimization may yield an unfair solution. We used the con-
cepts from Nash bargaining model and its inherent proper-
ties to achieve an efficient and proportionally fair solution.
We formulated two optimization problems in the context of



power control in optical networks and characterize the solu-
tions in each model. This theoretical work will lead us to
find a distributed, iterative and feedback algorithm to be
implemented in optical network.
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[31] N. Stefanovic and L. Pavel. Application of robust l2
control to erbium-doped fiber amplifier: input and
state uncertainty. Proc. IEEE Conference on Control
Applications, pages 686–692.

[32] H. Yaiche, R. Mazumdar, and C. Rosenberg. A game
theoretic framework for bandwidth allocation and
pricing in broadband networks. IEEE/ACM
Transaction on Networking, 8(5):667–678, 2000.

[33] A. Yassine, O. Kabranov, and D. Makrakis.
Competitive game theoretic optimal routing in optical
networks. Proc. SPIE on Optical Networking II,
4910(11):27–36, September 2002.


