
Pricing Design of Power Control Game in WDM
Optical Networks via State-space Approach

Quanyan Zhu
Department of Electrical and

Computer Engineering
University of Toronto

Toronto, Ontario M5S 3L1
Email: qzhu@control.utoronto.ca

Lacra Pavel
Department of Electrical and

Computer Engineering
University of Toronto

Toronto, Ontario M5S 3L1
Email: pavel@control.utoronto.ca

Abstract—The static nature of the noncooperative power
control game model in optical networks makes it difficult to
study and design an appropriate pricing scheme. In this paper,
we derive a first-order best response dynamics from the game-
theoretical model and formulate a general multi-input and multi-
output (MIMO) state-space model. We use classical linear system
theory to explain the controllability of the pricing and the
observability of the power states. We use the output regulator
theory to design a pricing policy for the network for a given
optical signal-to-noise ratio (OSNR) target. At the end of the
paper, we will illustrate the pricing design on a typical end-to-
end optical link in DWDM optical networks.

I. INTRODUCTION

Recent investigations of the dynamic and performance
aspect of optical wavelength-division multiplexed (WDM)
communication networks are inspired by the interest in an
intelligent network management system that can maintain
network stability and optical channel performance in an on-
line fashion [1], [2], [3]. Channel performance is closely
dependent on the optical signal-to-noise ratio (OSNR), dis-
persion and nonlinear effects, [4]. In [5], [6], some static
approaches have been developed for a single link optimization.
However, for a modern reconfigurable optical networks, where
different channels can travel via different optical paths, it is
desirable to implement a decentralized and iterative algorithm
to intelligently control the network.

As an alternative to traditional system-wide optimization,
non-cooperative game theory has been used to control and
optimize network performances. In a large-scale networks,
decisions are made independently with local network infor-
mation, as it is difficult to gather real-time complete informa-
tion for decision-making. Game theory’s inherent property of
distributedness and noncooperativeness makes itself an appro-
priate framework in the OSNR performance optimization.

Such non-cooperative model is considered in [7], where an
OSNR network model has been developed for decentralized
optimization. Each user has a payoff function that is composed
of utility and the cost calculated from network price. Under
such framework, a closed-form solution of the Nash equilib-
rium (NE) is found and an iterative algorithm is designed to
achieve the solution. However, the NE’s static nature makes
it difficult to further study and design the network pricing

policy that affects each channel’s utility function. Pricing of
networks is one of the crucial control mechanisms. Proposed
in [8], pricing is introduced to provide incentives or a control
signal to motivate users to adopt a social behavior, i.e., reach
some social optimal solution. A pricing policy is needed to
enforce a Nash equilibrium to attain a certain target solution.

In [7], [9], a limited investigation has been on some special
type of pricing schemes, such as uniform pricing and pro-
portional pricing. In [8], pricing algorithms are developed in a
heuristic way without a rigorous demonstration of convergence
and its uniform pricing policy doesn’t fully motivate the
service of differentiation. Therefore, it still remains a challenge
to find an appropriate framework to study the pricing issue
analytically.

In this regard, we develop a state-space model from each
channel’s best response dynamics and offer a different perspec-
tive towards the non-cooperative game in optical networks. In
our model, we view pricing as a controller determined by the
network manager and channel power as a network state. Using
the classical control theory, we are able to study the pricing
controllability of our system and design a pricing scheme to
drive the network to a desirable OSNR level. The systematic
approach adopted in this paper allows us to investigate other
interesting problems in the networks, such as robustness and
sensitivity.

The main contribution of this paper is to connect the state-
space control theory to the non-cooperative power control in
networks and build a novel framework to address the issue
of pricing in optical networks. We give a closed-form non-
uniform pricing policy to achieve given desired OSNR levels.
This paper is organized as follows. In section II, we review
the OSNR network model and basic concepts from the non-
cooperative game theory in optical networks. In section III, we
formulate the state-space model and use it to design pricing
mechanism in section IV. In section V, we will give examples
to illustrate the pricing design. We will point out future
directions of research within this framework and conclude in
section VI and VII, respectively.



II. OSNR GAME IN OPTICAL NETWORKS

A. Review of Optical Network Model

In this section, we will review the optical network model
and the basic game-theoretical framework. Consider a network
with a set of optical links L = {1, 2, .., L} connecting the
optical nodes, where channel add/drop is realized. A set N =
{1, 2, ..., N} of channels are transmitted, corresponding to a
set of multiplexed wavelengths. Illustrated in Figure 1, a link
l has Kl cascaded optically amplified spans. Let Nl be the
set of channels transmitted over link l. For a channel i ∈ N ,
we denote by Ri its optical path, or collection of links, from
source (Tx) to destination (Rx). Let ui be the ith channel input
optical power (at Tx), and u = [u1, ..., uN ]T the vector of all
channels’ input powers. Let si be the ith channel output power
(at Rx), and ni the optical noise power in the ith channel
bandwidth at Rx. The ith channel optical OSNR is defined as
OSNRi = si

ni
.

In optical networks, the dominant impairment affecting
OSNR is the noise accumulation in chains of optical amplifiers
and its spectral dependence. In [10], some assumptions are
made to simplify the expression for OSNR, typically for
uniformly designed optical links. It is assumed that

(i) (A1) ASE noise power does not participate in amplifier
gain saturation.

(ii) (A2) All the amplifiers in a link have the same same
spectral shape with the same total power target and are
operated in automatic power control (APC) mode.

Under A1 and A2, the dispersion and nonlinearity effects are
considered to be limited, the ASE noise accumulation will be
the dominant impairment in the model. The OSNR for the ith
channel is given as

OSNRi =
ui

n0,i +
∑

j∈N Γi,juj
,∀i ∈ N (1)

where Γ is the full n × n system matrix which characterizes
the coupling between channels. n0,i denotes the ith channel
noise power at the transmitter. System matrix Γ encapsulates
the basic physics present in optical fiber transmission and
implements an abstraction from a network to an input-output
system. This approach has been used in [9] for the wireless
case to model CDMA uplink communication. Different from
the system matrix used in wireless case, the matrix Γ given
in (2) is commonly asymmetric and is more complicatedly
dependent on parameters such as spontaneous emission noise,
wavelength-dependent gain, and the path channels take.

Γi,j =
∑
i∈Ri

Kl∑
k=1

Gk
l,j

Gk
l,i

(
l−1∏
q=1

Tq,j

Tq,i

)
ASEl,k,i

P0,l
,∀j ∈ Nl. (2)

where Gl,k,i is the wavelength dependent gain at kth span
in lth link for channel i; Tl,i =

∏Kl

q=1 Gl,k,iLl,k with Ll,k

being the wavelength independent loss at kth span in lth link;
ASEl,k,i is the wavelength dependent spontaneous emission
noise accumulated across cascaded amplifiers; P0,l is the
output power at each span.

Fig. 1. A Typical Optical Link in DWMW Optical Networks

B. Non-cooperative Game Approach

Let’s review the basic game-theoretical model for power
control in optical networks. Consider a game defined by
a triplet 〈N , (Ai), (Ji)〉. N is the index set of players or
channels; Ai is the strategy set {ui | ui ∈ [ui,min, ui,max]};
and, Ji is the payoff function. In [7], Ji is defined as

Ji(ui, u−i) = αiui − βi ln
(

1 + ai
ui

X−i

)
, (3)

where X−i is defined as X−i =
∑

j 6=i Γi,juj + n0,i. This
specific choice of utility function is non-separable, nonlinear
and coupled. However, Ji is strictly convex in ui and takes
a specially designed form such that its first-order derivative
takes a linear form with respect to u.

The solution from the game approach is usually character-
ized by Nash equilibrium (NE) [11], which is defined in the
context of optical networks as u∗ such that

Ji(u∗) = inf
u∗

i
∈[0,umax]

Ji(ui,u∗−i),∀i (4)

Provided that
∑

j 6=i Γi,j ≤ ai ,the resulting NE solution is
given in a closed form by

Γ̃u∗ = b̃, (5)

where Γ̃i,j = ai, for j = i; Γ̃i,j = Γi,j , for j 6= i and
b̃ = aibi

αi
− n0,i.

III. STATE-SPACE MODEL OF OSNR GAME

State-space method is a powerful tool to study dynamical
systems. It provides a different viewpoint from the input-
output frequency domain method and allows a way of system-
atic study of coupled systems. In this section, we will use the
feature of state-space methods based on the derivation of best
response dynamics of the OSNR game; and we will design
pricing schemes that can regulate the output to track a given
reference signal.

The static best response function for payoff functions in (3)
can be derived by taking its first derivative with respect to ui

as follows.

ui = BR(u−i) = arg min
ui

Ji(ui,u−i) =
βi

αi
− X−i

ai
. (6)

From (6), we can derive the first-order best response dynamics
as in (7).

ẋi =
aiβi

αi
−X−i − aixi. (7)



or equivalently,

ẋi = −aixi −
∑
j 6=i

Γi,jxj +
aiβi

αi
− n0,i,∀i (8)

where xi = ui is the state variable of the channel power i.
To keep the state-space in a linear form, we can define

optical signal-noise difference (OSND), based on (1) as

OSNDi = ui −mi = (1− Γi,j)ui −
∑
i 6=j

Γi,juj ,∀i (9)

where mi is defined from (1) as mi = Γi,jui +
∑

i 6=j Γi,juj .
OSND measures transmission quality just as OSNR does.
Since OSND measures the difference of the optical power,
we will use unit of dBm for it. It is obvious that the higher
the value of OSND, the better the transmission quality will
be.

For the simplicity of notation, let γd
i = OSNDi and γr

i =
OSNRi. Since γd

i = ui−mi and γr
i = ui/mi, we can relate

γd
i and γo

i by equation (10).

γr
i =

ui

ui − γd
i

. (10)

Definition 3.1: A γr-feasible power vector u ∈ RN is such
that γr

i = ui − ni = OSNRi(u) = ui

Γi,iui+X−i
,∀i.

Since not all given γr can be realized by a power vector u ∈
RN , Definition (3.1) gives a condition on the feasibility of γr

that can be chosen. With a given γd
i , we can calculate γr

i from
(10) by a γr-feasible choice of signal u.

With (8) and (9), the state-space form of the best response
dynamics is given by

ẋ = Ax + Bv − n (11)
y = Cx− n (12)

where x ∈ RN is the state-vector physically modelling
the evolution of the power vector u in optical networks;
v ∈ RN is a vector of control variables relating to the pricing
parameters component-wise by vi = 1/αi,∀i; y is the output
vector that observes the OSND. The vector n and matrices
A,B and C are given as follows.

A ∈ RN×N =


−a1 −Γ12 · · · −Γ1N

−Γ21 −a2 · · · −Γ2N

...
...

. . .
...

−ΓN1 · · · · · · −aN

 ,

B ∈ RN×N =


a1β1 0 · · · 0

0 a2β2 · · · 0
...

...
. . .

...
0 · · · · · · aNβN

 ,

C ∈ RN×N =


1− Γ11 −Γ12 · · · −Γ1N

−Γ21 1− Γ22 · · · −Γ2N

...
...

. . .
...

−ΓN1 · · · · · · 1− ΓNN

 ,

n ∈ RN =


n0,1

n0,2

...
n0,N


State-space model (11) is a multi-input and multi-output

(MIMO) system; however, the model is single-input and multi-
output (SIMO) system, if Bv in (11) is replaced by Bv, where
B ∈ RN is a vector given by [a1β1, · · · , aNβN ]T and vi ∈
R, vi = 1/αi is a scalar pricing parameter. SIMO represents
a uniformly priced Nash game, in which the network assigns
a single network price to every user.

Due to the nonlinearity of OSNR expression, a direct
OSNR output formulation will result in solving for a difficult
nonlinear set of equations. Without losing generaltiy, we next
study a design of pricing to achieve desirable OSNR in the
form of OSND as OSNR can be determined from OSND by
(10) if there exist a γr-feasible power vector x. In this way,
we are able to take the advantage of linearity of OSND and
derive a closed form for the pricing scheme.

The state-space model (11) naturally allows us to examine
the pricing design problems based on classical control theory
by viewing it a controller. In the following development, we
will ignore the term n, since it is important to first develop
some insightful results and then complicate the model by
viewing the noise as a disturbance to the system. Furthermore,
the term n in a typical network is usually on the magnitude
of 1.0× 10−4mW, that is, less than 1%− 5% of the common
signal power.

Lemma 3.1: The steady-state of the first order dynamics
described in (8) is given by the Nash Equilibrium if the system
is stable. If (8) has only one equilibrium, it will corresponds
to a unique Nash equilibrium in the OSNR game.

Proof: The Nash equilibrium u∗ to the OSNR game is
determined by (5). The steady-state of (8) is at its equilibrium
point(s) u0 determined by letting

aiβi

αi
−X−i − aiui = 0.∀i (13)

It it obvious that for a u0 that satisfies (13) will also satisfy (5).
Similarly, if u∗ satisfies (5), it will also satisfy (13). Therefore,
if (8) results in a unique equilibrium, it will corresponds to
the unique Nash equilibrium to OSNR game.

IV. PRICING DESIGN

A common problem in OSNR Nash game is to design
a pricing mechanism so that players can reach their OSNR
targets at their steady-state, i.e., the best response dynamics
ẋ = Ax + Bv will give a solution x(t) = x′ at a sufficiently
large t and for some given x′. In this section, we investigate the
problem using OSND targets, as its linearity allows us to give
some fundamental results in controllability and observability.

Theorem 4.1: The entire OSNR game is pricing control-
lable if we can reach every given state x′ at a given time
t, i.e. the solution to (11) will yield x(t) = x′ for some
initial condition x(0). Necessary and sufficient conditions of



pricing controllability are given by the following equivalent
statements.

(i) The controllability Grammian Wc(t) in (14) is positive
definite for any given t > 0.

Wc(t) =
∫ t

0

eAτBBT eAT τdτ (14)

(ii) The controllability matrix C has full rank, i.e. rank(C) =
N .

C =
[
B,AB, · · · ,An−1B

]
. (15)

(iii) The matrix [A− Iλ,B] has full row rank for all λ’s, the
eigenvalues, of A.

Theorem 4.1 is a direct application of Theorem 3.1 from
[12] (pp. 47-49). It provides a very strong condition because
it ensures that every state x′ to be reachable at any given time
t. If we know (A,B) gives pricing controllability, we can
thus design a pricing policy to drive the OSNR game to any
γr-feasible set of power vector x that can attain given OSNR
levels.

Theorem 4.2: The state-space model described in (11) is
power observable if, for any given t1 > 0, the initial state
x(0) can be determined from the time history of the input u(t)
and the output y(t) in the interval [0, t1]. The necessary and
sufficient conditions for observability is given in the following
equivalent statements.

(i) The observability Grammian Wo(t) in (16) is positive
definite for any given t > 0.

Wo(t) =
∫ t

0

eAT τCT CeAτdτ (16)

(ii) The controllability matrix O in (17) has full rank, i.e.
rank(O) = N .

O =


C

CA
CA2

...
CAN−1

 . (17)

(iii) The matrix
[

A− λI
C

]
has full row rank for all λ’s,

the eigenvalues, of A.

Theorem (4.2) is adapted from [12](pp. 50-51). Observability
is a measure for how well internal states of a system can be
inferred by knowledge of its external outputs. If an OSNR
game is observable, then, for any possible sequence of state
and control vectors, the current state can be determined in
finite time using only the outputs. In other words, this means
all the current values of its states can be determined through
output sensors. In our state-space model in terms of OSND,
we wish to know the systems state, the power vectors, from
our OSND output and, therefore, the corresponding OSNR is
calculable via (10).

A. Constant Reference Signal Tracking

In this subsection, we study a regulator problem in which the
output is desired to track given feasible OSNR levels. We will
use classical regulator theory [13] to develop insights into this
pricing problem. Let’s construct a dynamical system whose
output is the given OSND γd. Such a reference system is
given by (18).

ẇ = Sw (18)
y = yd (19)

Since the given performance target OSND is a constant signal,
we let S ∈ RN×N = 0, yd = γd and w ∈ RN ,w(0) = 1. It
is obvious that (18) will give w(t) = 1,∀t. We need to find
a v such that e(t) = y − yd will converge to 0.

Theorem 4.3: Suppose there exists v = F2, where F2 ∈
RN and a map Π : RN → RN such that

0 = AΠ + BF2 (20)
CΠ = γd (21)

If x(0) = Π, then y(t) → γd, as t → 0.
Proof: Suppose there exists u = F2w that satisfies (20).

Let’s define z = x−Πw.

ż = ẋ−Πẇ (22)
= Ax + BF2w −Πẇ (23)
= Ax−AΠw + AΠw + BF2w −Πẇ (24)
= Az (25)

The last step comes from the regulator equations (20). From
the assumption z(0) = x(0)−Πw(0) = 0, we can conclude
that z(t) = 0,∀t > 0.

Let e(t) = y(t) − γd = Cx(t) − γd. Using (20) and the
fact that w(t) = w(0) = 1, we obtain

e(t) = Cz(t) + CΠw(t)− γd (26)
= Cz(t) + CΠw(t)−CΠ (27)
= Cz(t) (28)

Therefore, e(t) → 0 as z(t) → 0. As a result, y(t) → γd.
Equations (20) are called classic regulator equations or FBI

equations named after Francis-Byrnes-Isidori [13]. This set of
equations can be structured into a matrix form of linear system
of equations (29) and solved under some regularity conditions.(

A B
C 0

)(
Π
F2

)
=
(

0
γd

)
(29)

Equation (29) will yield

F2 = −B−1AC−1γd (30)
Π = C−1γd (31)

under the assumption that

Φ =
(

A B
C 0

)
is non-singular. (32)



and B,C ∈ RN×N . Condition (32) is actually equivalent to
C and B being non-singular. This result is summarized in the
following proposition.

Proposition 4.4: Consider the MIMO system described in
(11). Suppose B ∈ RN×N . There exists a unique solution
(30) to (20) if and only if B and C are nonsingular.

Proof: Firstly, we show that ,under the necessary and
sufficient condition of (32), (29) gives a unique solution
(Π,F2) in (30).

Under the assumption that (32), we can solve (29) by
inverting the incident matrix Φ and the solution given in (33).(

F2

Π

)
=
(

C−1 0
−B−1AC−1 B−1

)(
γd

0

)
(33)

Equation (33) will eventually lead to the solution in (30).
We next show that condition (32) holds if and only if B

and C are nonsingular. det(Φ) = det(B)det(C). Therefore
det(Φ) 6= 0 if and only if both det(B) and det(C) are non-
zeros, i.e., B,C are non-singular. Therefore, it completes the
proof.

Using the regulator equation, we can find that a control v
that can maintain an output y at given γd. It is analytically
found to be v = F2w = −B−1AC−1γd for an initial
condition x = Π; and thus the pricing parameter in OSNR
game is found as αi = 1/vi.

B. Asymptotic Tracking

With an appropriate initial condition, the above result shows
a perfect tracking of the constant reference signal. However,
in most cases, we wish to find an asymptotic tracking for
any given initial conditions. We will consider modifying the
control v = F2w + F1(x−Πw) = F1x + F2w.

Theorem 4.5: Suppose A = A + BF1 is Hurwitz. A
regulator u = F2w + F1(x−Πw) exists if and only if there
exists maps Π and F2 satisfying equations (20).

Proof: Firstly, let’s prove the sufficiency. Suppose there
exists (Π,F2) satisfying (20). Define z = x −Πw and take
its derivative with respect to time as follows.

ż = ẋ−Πẇ

= (A + BF1)x + (BF2 −BF1Π)w −Πẇ

= Ax−AΠw + AΠw + (BF2 −BF1Π)w −Πẇ

= Az

Since A is Hurwitz, z(t) → 0 for any given initial condition
z(0). y = Cx − CΠw + CΠw = Cz + γd. As t → ∞,
y(t)− γd → 0; and therefore, y(t) asymptotically tracks γd.

Secondly, we will show the necessity. Since eigenvalue of
S = 0 is in the closed right-half complex plane, by Sylvester’s
Theorem [14], there exists a unique solution Π satisfying

Π−AΠ = BF2.

Letting F2 = F2 + F1Π, we obtain (20). As shown above,
z = Az. Hence z(t) → 0 as t → ∞. Also as above, e(t) =
Cz + CΠw− γdw. By assumption e → 0 and since z → 0,
it must be that CΠw − γdw → 0 for all initial conditions

Fig. 2. System Diagram of Best Response Dynamics of OSNR Nash Game

w(0). Since eigenvalue of S = 0 is on the closed right half
plane, w(t) doesn’t converge to zero. Hence, CΠ = γd.

The above gives a necessary and sufficient condition to
design pricing values for an asymptotic tracking of given trans-
mission performance OSND targets in OSNR Nash games.
If we choose ai such that −A is diagonally dominant, i.e.,
ai >

∑
i Γi,j ,∀i. A = A itself is already Hurwitz. Thus, we

can let F1 = 0 and the pricing design can be simply found by
v = F2w. Different from an open-loop style pricing described
in [9], [7], the general controller described in Theorem (4.5)
provides a feedback mechanism on the OSNR game dynamics
and gives another degree of freedom in F1 to adjust the
dynamical response in addition to the choice of ai. It is
desirable because the network is able to adjust the dynamics
via F1 once ai are set and submitted to the network.

We can summarize the state-space with the controller in
Theorem 4.5 in Figure 2, where v,y,di,d0 ∈ RN , vref ∈
RN = F2 − F1Π, K ∈ RN×N= F1C−1, It is obvious that
when ai >

∑
i Γi,j ,∀i and F1 = 0, it will be reduced to an

open loop system

V. NUMERICAL EXAMPLES

We consider an end-to-end optical link described in Figure
1. A common Γ has its entries varying from 1.2 × 10−4 to
1.3× 10−4. First, we will consider a two-channel case, where
we set a1 = 3.419, a2 = 3.032; β1 = 3, β2 = 4, and

Γ =
(
−1.210× 10−4 −1.271× 10−4

−1.242× 10−4 −1.277× 10−4

)
,

In addition, we wish to the power level to be on the magnitude
of 0.05mW and the OSNR to be around 35dB. Therefore, we
choose γd

1 = 0.0337mW and γd
2 = 0.06mW. Fig. 3 shows the

converging OSNR for channel 1 to 37.06dB and channel 2
34.56dB. By Fig. 4, we demonstrate the similar concept for
20 channels.

VI. DIRECTION OF FUTURE RESEARCH

This paper outlines a state-space approach to design pricing
for the optical networks. It builds a framework for a gener-
alized study of pricing policy in the networks. In this paper,



Fig. 3. Pricing Controlled Optical Link: 2 channels

Fig. 4. Pricing Controlled Optical Link: 20 channels

we only considered a non-uniform design which leads to a
closed form solution described in Theorems (4.3) and (4.5).
Using the same framework, we can easily extend those results
to a dynamical pricing policy that depends on the states. In
addition, with more advanced tools from robust control theory,
we are also able to analyze the robustness and sensitivity of
the OSNR game.

Throughout the paper, we used OSND to replace OSNR
so that we have a linear system in (11), which is relatively
easy to tackle and to give constructive analytical results.
Constructing an output directly from OSNR can give rise to a
nonlinear state-space model. Its analysis will be more difficult
as the paper describes that it involves solving a non-linear
set of equations and nonlinear description of the observability
criteria. However, as an extension, it is still possible to use
nonlinear control theory to give some results for nonlinear
state-space models.

Another possible extension of the paper is on a constrained
state-space which corresponds to a constrained OSNR game.
A typical constraint in optical networks is capacity constraints:
the sum of optical power within the network needs to be
within an operational range. In the language of state-space
model, it means that our states needs to be in a simplex. The
pricing design may need to consider a penalty on the states.
Furthermore, the result for reachability or controllability will
be much more involved. In addition, it is also desirable to
design an efficient pricing scheme such that the constrained
states will results in a Pareto efficiency.

The state-space model gives a rich insight into the OSNR
games. It opens a few doors of possibility of research in this
area. It will be interesting to investigate further proposals in
the future.

VII. CONCLUSION

In this note, we developed a state-space framework for the
pricing design in the OSNR game. The classical control theory
enables us to view pricing from a control design point of view
and helps us develop insights into the pricing controllability of
the network. As a result, we use regulator equations to find an
analytical pricing policy so that the network is able to attain
a given set of OSNR targets. We hope this study will initiate
further investigations and extensions of this model in this area,
in particular, the nonlinear case and the game with constraints.
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