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Abstract

In this paper, we introduce a class of linear non-cooperative games with linearly coupled constraints. It bears

striking connections with classical linear systems theory and finds itself pervasively used in network engineering

applications. We characterize its Nash equilibrium (NE) and provide iterative algorithms in a general form to

achieve the equilibrium. In addition, we analyze the issue of efficiency in constrained Nash games. In the second

part of the paper, we will illustrate this type of games by an application from OSNR-based power control in optical

networks, where we can view the slack variables as fictitious players. This powerful interpretation allows us to

bridge over the theory and the issue of implementation in engineering.
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I. INTRODUCTION

Recent academic interest in game theory has spawned the application of optimization theory to Nash

games, where each player seeks to optimize her own utility in a non-cooperative manner. Solving nonco-

operative games is largely dependent on optimization tools, such as nonlinear programming for continuous

strategy sets. However, Lagrangian methods are not always directly applicable. Extensions are usually made

to accommodate such needs. One of the major extensions is on Nash games with constraints. A common

practice in solving a constrained game involves the process of embedding the constraints as a penalty into

the utility function. This approach offers a way to circumvent the constrained problem by turning it into an

unconstrained game [1]–[3]. However, the problem becomes untractable when utilities are nonlinear and

strongly coupled. Furthermore, it is extremely challenging to find analytical solutions as the complexity of
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the functions grows. On the other hand, this approach is strongly problem-dependent. Different problems

may need a different construction of modified utility functions. As a result, this approach doesn’t provide

a unifying theory to solve a class of problems.

The recent work of Pavel in [4] develops an extension of duality theory to solve a general class of

constrained games. The idea centers around the hierarchical decomposition of the original constrained

problem into two unconstrained sub-problems. This work gives a general approach in dealing with

constraints for convex cost functions. However, in practice, the theory needs to be further reduced to a

certain form for any particular application. As a result, there exists a gap between engineering application

and the theory. It will be more useful if we can find a theory that is tailored for a special class of functions,

i.e., such as affine functions, commonly appearing in wireless and optical networks.

Motivated by this, we define a class of linear games with linearly coupled constraints and design a

novel approach to solve for its Nash equilibrium. Linear games without constraints have been seen in

classical Cournot games [5], [6], wireless power control games [7] and OSNR games [8]. However, it is

a challenge when it comes to games with coupled constraints. In this regard, we develop a theoretical

framework to characterize a solution for this specific type of games and study its efficiency. In addition,

we make use of linearity to develop a general algorithm that can be applied to any game that falls into

this category.

In the second part of the paper, we discuss an OSNR game with coupled capacity constraints. This

problem was first formulated in [8] towards optical signal-to-noise ratio (OSNR) optimization without

constraints as part of recent efforts to address dynamical aspects in optical networks. The extended problem

with constraints was later addressed in [1], [4], and [9]. We use the linear game theory and directly find

an iterative algorithm that bears similarity with the one used in [9]. In this application, we are also able

to interpret the slack variables as fictitious players that can be implemented as service channels. This idea

gives us a powerful and intuitive understanding of constraints in games.

Contribution of this work is two-fold. The main contribution is to first propose the notion of linear

games and characterize it as an important class of games in game theory. In comparison to general games,

it is relatively easy to tackle with and has several nice analytical properties. Filling the gap between game

theory and engineering, we develop applicable results for engineering applications for this particular class

of games. Secondly, based on the theory, we provide a novel viewpoint to implement constraints as

fictitious players in the network and solve capacity constrained OSNR Nash games by introducing game
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theoretical behavior on the optical service channel (OSC).

This paper is organized as follows. In section 2, we introduce the theory of linear games; specifically,

we characterize Nash equilibria, derive of iterative algorithms and study efficiency, etc. In section 3,

we review the OSNR model and unconstrained game model. In section 4, we will apply the theory to

the OSNR game with linearly coupled capacity constraints to show an iterative algorithm that directly

arises from the theory. In addition, we take into account the issue of implementation and see the imposed

constraint effected by a fictitious player. In section 5, we illustrate the constrained OSNR game with a

numerical example. We will point out the direction of future research and conclude the paper in section

6 and 7, respectively.

II. LINEAR GAMES WITH COUPLED CONSTRAINTS

In recent research of network routing, power control and protocol design, game theory is becoming a

useful tool to model multi-agent competition for limited resources and decentralized behavior of coupled

dynamics. Its distributed nature first lends its power to understand complicated behaviors such as bargaining

and markets [10] and auction theory [11] in microeconomics. Only in recent years has the research

community in engineering given attention to this tool to design algorithms and protocols for the purpose

of control and management of complex systems. However, gaps exist between the well-known theory

in economics and its applicability in engineering systems. With increasing literature on game theory in

engineering, it has been observed that this gap is being filled and this is becoming a necessary tool

for engineers to acquire in order to understand complicated system behavior. The first part of this paper

essentially bears this goal in mind and proposes a theory on linear games. In particular, we consider games

with coupled constraints, which are usually hard to deal with in a direct fashion. We will first review

basic concepts from noncooperative game theory [5], [12], [13] and then define our notion of linearity in

games.

A. Preliminaries and Definitions

Let’s consider a non-cooperative game defined by a triplet 〈N , Ai, Ji〉, where Ai = [ui,min, ui,max] is the

continuous strategy set, Ji : Ω =
∏N

i Ai → R is the cost function and N = {1, 2, · · · , N} is the index set

of players. Each player behaves according to its best response function BRi(u−i) to minimize its cost,

without knowing other player’s strategy or behavior.
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Definition 2.1: Best response function BRi(u−i), i ∈ N of a non-cooperative game 〈N , Ai, Ji〉 is

defined by BRi(u−i) = {ui ∈ Ai | Ji(ui,u−i) ≤ Ji(u
′
i,u−i),∀u′i ∈ Ai}, where u−i denotes a set of

actions other than oneself, i.e., u−i = [u1, · · · , ui−1, ui+1, · · · , uN ]T .

The function BRi is set-valued; i.e., it associates a set of actions with other players’ actions. The

definition of Nash equilibrium can be based on the definition of best response functions.

Definition 2.2: Consider an N -player game, in which each player minimizes the cost functions Ji :

Ω → R. A vector u∗ = [u∗i ] or u∗ = (u∗−i, u
∗
i ) ∈ Ω is called a Nash equilibrium (NE) of this game if

u∗i ∈ BRi(u
∗
−i),∀i ∈ N , or equivalently, Ji(u

∗
i ,u

∗
−i) ≤ Ji(u

′
i,u

∗
−i),∀u′i ∈ Ai,∀i ∈ N

Proposition 2.1: Suppose utility functions Ji are continuously differentiable, strictly convex in ui, Ai =

[ui,min, ui,max] and ui,min, ui,max are sufficiently small and large respectively, so that they are not NEs of

the game. The unique best response function of the non-cooperative game is given explicitly by

BRi(u−i) = arg min
ui

Ji(ui,u−i), i ∈ N ; (1)

and implicitly by
∂Ji(ui,u−i)

∂ui

= 0, i ∈ N . (2)

Proof: Since Ai is a compact set, and Ji is continuous differentiable and strictly convex in ui, there

exists a minimizing u∗i , for any given u−i such that Ji(u
∗
i ,u−i) < Ji(ui,u−i),∀ui 6= u∗i . Since ui,min and

ui,max is chosen to be small and large enough, therefore there exists a slater point us such that us
i is in

the interior of Ai and ui,min and ui,max are not active constraints. Due to the convexity, a unique global

minimum is achieved by the necessary condition ∂Ji

∂ui
= 0. As a result, the best response function BRi is

given in (1) and (2).

Definition 2.3: A non-cooperative game 〈N , Ai, Ji〉 is linear if the best response function BRi(u−i)

is given by an implicit affine function in u, where ui ∈ Ai. A linear non-cooperative game (LNG) is

unconstrained when Ai = [ui,min, ui,max] and ui,min, ui,max are sufficiently small and large respectively, so

that they are not Nash solutions of the game.

In this case, best response function BRi(u−i) can be given explicitly by ui = BRi(u−i) = cT
−iu−i +

di,∀i, where cT
−i = [ci,1, · · · , ci,i−1, ci,i+1, · · · , ci,N ] or implicitly given by cT

i u − di = 0, where cT
i =

[ci,1, ci,2, · · · , ci,N ]. An explicit expression of BRi can always be written in an implicit way.

It is important to point out that our assumption of linearity does not imply loss of generality. In most

engineering applications, it is often at our disposal to choose a utility that represents the system. This
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latitude makes our assumption reasonable rather than confining. It should also be noted that linearity in

best response function doesn’t imply separability or quadratic form of cost functions. A counter-example

of non-separable and non-quadratic cost function that results in a linear best response function is given

by (25) in section III. A classification based on best response functions allows us to study a broader class

of cost functions, for example, non-separable and non-linear cost functions, which can be traditionally

difficult to tackle with directly from the cost functions.

Definition 2.4: A linear non-cooperative game with linearly coupled constraints (LCCG) is a linear

non-cooperative game (LNG) with u ∈ Ω ∩ Ω, where Ω is given by Ω = {u | g(u) ≤ 0}, g(u)T =

[g1(u), g2(u), · · · , gM(u)] and gi(u) = bT
i u − vi,bi ∈ RN , vi ∈ R, i = 1, · · · , M . Therefore, we can let

g(u) = Bu− v ≤ 0 ,where B = [b1, · · · ,bM ]T ∈ RM×N .

Definition 2.5: With the above definition, the Nash equilibrium to LCCG is defined as a point u∗ such

that Ji(u
∗
i ,u

∗
−i) ≤ Ji(u

′
i,u

∗
−i),∀u′i 6= u∗i ,∀i,∀u′i ∈ Ωi(u−i) where Ωi is the projection set defined in [4] as

Ωi(u
∗
−i) := {u′i ∈ Ai | g(u′i,u

∗
−i) ≤ 0}.

B. Characterization of Nash Equilibrium

To find points that satisfy Definition 2.5, we need to make use of the implicit best response functions

and the Lagrangian method outlined in [4], especially Lemma 2. In the characterization, we embed slacked

variables into the constraints to study the issue of efficiency in constrained games.

Theorem 2.2: Suppose the best response function of a corresponding unconstrained linear game (LNG)

is uniquely determined by (2). A Nash equilibrium u∗ to LCCG exists if and only if there exists an

xT = [uT , µT ] with µi, νi, i ∈ N being nonnegative, such that

L(u, µ) := Ψx = l, (3)

or equivalently, l ∈ R(Ψ); and the slackness condition

νTg(u) = 0. (4)

where L(u, µ) is defined as a quasi-Lagrangian as it is composed of best response functions and con-

straints. Ψ ∈ R(M+N)×(M+N) is called quasi-Lagrangian matrix and is given by Ψ =

 C 0

B I

.
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l =

 dT −BT ν

v

, with d ∈ RN , v ∈ RM and C = [c1, · · · , cN ]T ∈ RN×N defined earlier. R

denotes the range space.

Proof: Suppose we have implicit best response functions BRi(u−i) described by cT
i u−di = 0,∀i ∈ N

for the corresponding unconstrained LNG and the slacked constraint condition g(u) + µ = 0, where

µ = [µ1, ..., µM ]T is a vector with slack variables µi ≥ 0. If u∗ is an NE, then u∗ ∈ Ω and there exists

nonnegative µ∗ ∈ RM such that the slacked condition (5) holds.

Bu + IMµ = v, (5)

where IM ∈ RM×M . In addition, from the unconstrained linear best response functions, we can use (23)

in Lemma 2 from [4], i.e.,
∂Ji

∂ui

(ui,u−i) + νT ∂g

∂ui

(ui,u−i) = 0,∀i, (6)

and form a necessary condition in component-wise form given by cT
i u − di + bT

i ν = 0,∀i. where

νi ≥ 0 ∈ RM denotes the Lagrangian multiplier such that νT g(u) = 0. Expressed in matrix form, we

obtain

Cu = d−BTν. (7)

Therefore, we can augment the two matrix equalities (5) and (7) into

Ψx = l. (8)

where Ψ, xT and lT are defined in Theorem 2.2. From linear algebra theory [14], a solution exists for

the linear system (3) if and only if l is in the range space of Ψ.

To show the sufficiency, we resort to arguments used in Lemma 2 in [4]. Firstly, if (5) holds, u ∈ Ω∩Ω. In

addition, since the best response functions to LNG is uniquely determined from the cost functions, u∗ that

satisfies (7) also minimizes the component-wise Lagrangian Li(ui,u−i, ν) = Ji(ui,u−i)+νTg(u) from (6),

i.e., Li(u
∗
i ,u

∗
−i, ν) ≤ Li(u

′
i,u

∗
−i, ν),∀u′i ∈ Ωi(u

∗
−i). Using (4), we obtain Ji(u

∗
i ,u

∗
−i) ≤ Ji(u

′
i,u

∗
−i),∀u′i ∈

Ωi(u
∗
−i), so, according to Definition 2.5, u∗ is an NE.

Remark 2.1: We use a two-person Nash game to illustrate Theorem 2.2. Let Ai = [εi, 10], where

εi ∈ R is a sufficiently small positive number, i = 1, 2. Suppose the two players have cost functions

J1 = u1 − 2 ln
(
1 + 1

2
u1

u2

)
, and J2 = u2 − ln

(
1 + 2u2

u1

)
, which are convex in u1, u2 respectively. The best
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response functions of the unconstrained LNG are uniquely given by 2u1 + u2 = 2 and u1 + 2u2 = 2,

respectively. Suppose also the actions of two players are constrained by u1 + u2 ≤ C0 in a coupled way.

Therefore, Ψx = l is given by 
2 1 0

1 2 0

1 1 1




u1

u2

µ

 =


2− ν

2− ν

C0

 .

We look at three specific cases: (1) C0 = 1
2
, (2) C0 = 4

3
, and (3) C0 = 2. With the slack condition

ν(u1 + u2 − 1
2
) = 0, we can find a unique solution to the game with the coupled constraint of case (1)

given by u∗1 = u∗2 = 1
4
, ν∗ = 5

4
, µ∗ = 0. The constraint is active. The solution is obviously Pareto efficient

but in a win-lose situation, i.e., for one person to gain more, another has to lose. For the second case,

u∗1 = u∗2 = 2
3
, ν∗ = µ∗ = 0. Again, the constraint is active but the solution is given in an efficient and

win-win situation. For case (3), a unique solution is given by u∗1 = u∗2 = 2
3

and ν∗ = 0, µ∗ = 2
3
. The

constraint becomes inactive and not efficient in the Pareto sense.

Remark 2.2: Apparently, a Nash equilibrium doesn’t exist if the condition in Theorem 2.2 doesn’t hold.

We also can observe that the slack variable µi gives an interpretation of the efficiency with respect to the

constraints while the Lagrangian variable νi, usually interpreted as shadow price in linear programming, is

related to the sensitivity of the cost to constraints. In this sense, theorem 2.2 allows us to study efficiency

and sensitivity at the same time. From (4) and (5), we also note that µi and νi are interrelated in a trade-off

manner such that νT µ = 0.

We further describe an NE by separating into two cases when the existence condition holds: (1) Ψ is

nonsingular, which leads to a unique NE; (2) Ψ is singular, which gives multiple NEs.

1) Results for Nonsingular Quasi-Lagrangian Matrix:

Proposition 2.3: If matrix C is diagonally dominant and Ci,i > 0, then the following equivalent

statements hold.

1) C is a nonsingular matrix.

2) Ψ is a nonsingular matrix.

3) 0 is not an eigenvalue of matrix C.

Proof: Using Gershgorin Theorem [15], we can show that if matrix C is diagonally dominant, and

the diagonal entries are nonzero, then C is non-singular. Now we show that statement (1) is equivalent to



SUBMITTED TO JOURNAL OF SELECTED AREAS IN COMMUNICATIONS FOR REVIEW 8

(2). If C is nonsingular, then det(C) 6= 0. Since det(Ψ) = det(C) det(IM) and det(IM) = 1,det(Ψ) =

det(C) 6= 0. The reverse also holds. From [14], it follows immediately that that statement (3) is equivalent

to statement (1).

If Ψ is nonsingular from Proposition 2.3, we can invert the matrix and obtain

u∗ = C−1
(
d−BT ν

)
, (9)

µ∗ = −BC−1
(
d−BT ν

)
+ v. (10)

Theorem 2.4: Suppose vi > 0 in the constraints of LCCG and BC−1BT is nonnegative. If vi >
√

N‖B‖∞‖d‖∞
ρ(CT C)

,∀i, where ρ(·) denotes the spectral radius, then µ∗i > 0 and all the constraints are inactive.

A Nash equilibrium is thus given by

u∗ = C−1d, (11)

µ∗ = −BC−1d + v. (12)

Proof: Let ei be the elementary basis vector, i.e., ei = [0, · · · , 0, 1, 0, · · · , 0]T ∈ RM with all the

entries of the vector zeroes except ith element being 1. Therefore, eT
i v = vi and eT

i µ∗ = µ∗i . Using

|vi| ≥
√

N‖B‖∞‖d‖∞
ρ(CT C)

, we obtain

vi = |vi| >
√

N‖B‖∞‖d‖∞
ρ(CTC)

(13)

≥ ‖B‖∞‖d‖∞
‖C‖∞

=
‖eT

i ‖∞‖B‖∞‖d‖∞
‖C‖∞

(14)

≥ ‖eT
i BC−1d‖∞ = |(BC−1d)i|,∀i (15)

For the case where (BC−1d)i ≥ 0, knowing BC−1BT is nonnegative and νi > 0, we use (10) to obtain

µ∗i = vi−(BC−1d)i+(BC−1BT ν)i > 0. And when (BC−1d)i < 0, µ∗i ≥ −2(BC−1d)i+(BC−1BT ν)i >

0. Therefore, it follows that µ∗i > 0,∀i, i.e., all the constraints are inactive. Therefore, νi = 0,∀i. Following

(10) and (9), we obtain (11) and (12).

Theorem 2.4 gives a condition so that all the constraints are inactive and the NE can be reduced

to the form of (11). In the case of a single capacity constraint, as will be investigated later in section

IV, we can simplify the assumption of nonnegativity of BC−1BT into the semi-positive definiteness of

C. Theorem 2.4 also has implications in admission control. Specifically, it gives a good estimate on a
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sufficient allocation capacity for a fixed amount of users. Since µ∗i quantitatively reveals the efficiency

of the solution, such more-than-enough type of allocation will result in loss of efficiency. Any deviation

from µ∗i = 0 will result in loss of efficiency. This notion will be crystalized later in section 2.3.

2) Results for Singular Quasi-Lagrangian Matrix: In the case where Ψ is singular but l ∈ R(Ψ), we

can formulate the following linear program (GLP) to solve for an appropriate Nash equilibrium.

(GLP) minu aTx

s.t. Ψx = l, νTg(u) = 0

νi ≥ 0, µi ≥ 0, ui ∈ Ai, i ∈ N .

(16)

where aT = [a1, · · · , aN , 0, · · · , 0] ∈ R(N+M) are design parameters. For example, in engineering appli-

cation, ui may be commonly referred to as power consumption. GLP selects a Nash solution that will

minimize the weighted total power consumption. However, this choice of a may not be ideal in applications

where we wish to fully allocate the resources. Later, we will take the issue of efficiency into account and

revise the objective function.

When Ψ is nonsingular, we can still use GLP to solve for the unique Nash equilibrium. In this case,

the feasible set is simply a singleton.

C. Efficiency of Nash Equilibrium

A well-known fact about Nash equilibrium is that it may not be an efficient solution [16]. A celebrated

simple example is a matrix strategic game: Prisoners’ Dilemma, in which the noncooperative outcome

is worse than the cooperative gain. In addition, recent active research [17], [18] in the community of

computer science and operations research strives to quantify the notion of efficiency by price of anarchy,

the ratio between social utility and sum of individual utilities from the competition. Work done by Perakis

in [19], [20] extends the result of price of anarchy from [17] to general classes of cost functions, i.e.,

linear and separable functions in [19]; nonlinear and asymmetric functions in [20]. Analysis based on

cost/utility functions can become untractable when the function becomes nonseparable and nonlinear. It is

worth to notice that in engineering applications dealing with real physical situations, e.g. power control,

utility functions naturally arise as a function of signal-to-noise ratio. Therefore, it is challenging to apply

directly the results developed in [17]–[20]. In addition, most of the models considered in literature make

the results less than practical because they commonly assume no capacity constraints. In this section,

we study the efficiency for games with linearly coupled constraints, and develop a quantitative metric to
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measure the efficiency loss of resources.

An allocation is said to be Pareto efficient if Nash equilibrium u∗ is achieved on the Pareto front. From

(5), we observe that an allocation is not Pareto efficient if µ∗i > 0,∀i and thus, µ∗i gives us a sense of

how much resource is lost.

Proposition 2.5: If an allocation is Pareto efficient then µ∗i = 0 for some i.

Proof: Since we only consider linear constraints, if an allocation is Pareto efficient, it will be on the

Pareto front by fundamental theorem of linear programming [21]. Therefore, there must be an i such that

gi(u) = 0, and thus µ∗i = 0.

Proposition 2.6: Suppose Ψ is a non-singular matrix and M linearly coupled constraints, where vi >

0, i ∈ {1, 2, · · · , M}, ui ∈ Ai. The efficiency of the linear game is measured by ηE , which is defined as

follows

ηE =


maxi

(
(BC−1d)i/vi

)
, µ∗i 6= 0,∀i;

1, µ∗i = 0 for some i.
(17)

For the case where µ∗i 6= 0,∀i, ηE is bounded from above as follows.

ηE ≤ γBdmax

γCvmin

. (18)

where vmin = mini vi, dmax = maxi di,γB = ‖B‖∞ and γC = ‖C‖∞.

Proof: Start with the definition of ηE and we obtain for the case where µ∗i 6= 0,∀i:

ηE ≤ ‖BC−1d‖∞
vmin

≤ ‖B‖∞‖d‖∞
‖C‖∞vmin

=
γBdmax

γCvmin

.

And the loss of efficiency is given by ζE = 1−ηE . As the definition suggests, ηE measures the worst case

of efficiency loss among all non-active constraints. The solution is Pareto efficient if one of the coupled

linear constraints is active, as shown in Proposition 2.5.

A common situation might be with only one capacity constraint given by
∑

i∈N ui ≤ C0, C0 > 0, ui ∈

Ai. Then, the efficiency of the linear game can be simply reduced to

ηE =
C0 − µ∗

C0

≤ dmax

C0 maxi

(∑
j Cij

) (19)

The above results provide an estimate of the efficiency of resulting NE. We still need a mechanism

that can allow us to minimize the efficiency loss in the constrained game. We know that we can always
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embed variables such as pricing [22] or arbitrating parameters α ∈ RN into the problem and form Ψ(α).

Consequently, we formulate a general parametric optimization problem (GPLP) similar to (GLP) for

nonsingular Ψ(α), for all α.

(GPLP) minα ‖aTx‖

s.t. Ψ(α)x = l, νTg(u(α)) = 0

νi ≥ 0, µi ≥ 0, ui ∈ Ai, i ∈ N .

(20)

If matrix Ψ(α) may be singular, we also need to minimize over x(α) as in (SGPLP) .

(SGPLP) minα,u(α) ‖aTx‖

s.t. Ψ(α)x = l, νTg(u(α)) = 0

νi ≥ 0, µi ≥ 0, ui ∈ Ai, i ∈ N .

(21)

Since the slack variables µi determine the efficiency loss, we can design parameter aT as aT = [0, · · · , 0, âT ],

where âT ∈ RM , âi ≥ 0. Parametric programming is a relatively mature field in mathematics [23]. We

can again use the sensitivity analysis to solve GPLP and SGPLP by seeing α as parametric disturbances.

These can be done numerically by MATLAB optimization packages.

D. Iterative Algorithms

In engineering applications, it is desirable to find an algorithm that can iteratively lead to the optimal

solution rather than a static way to find the solution. To simplify the derivation, we assume an appropriate

admission control to ensure a sufficient allocation as in Theorem 2.4. With reference from [24], we

construct a distributed iterative algorithm based on (3). Since Dx = l − (Ψ−D)x, for any D, we

propose the following algorithm

xi(n + 1) =
1

Ψi,i

li −
∑
j

Ψa
i,jxi(n)

 (22)

where Ψa = Ψ−D,D = diag(Ψ1,1, Ψ2,2, · · · , ΨM+N,M+N).

Theorem 2.7: Algorithm (22) converges to the Nash equilibrium provided that Ψ is strictly diagonally

dominant, i.e., |Ψi,i| >
∑

j 6=i |Ψi,j|,∀i.

Proof: Appendix I

The rate of convergence in (22) is determined by σ1 = maxi
1

|Ψi,i|
∑

j 6=i |Ψi,j|. It may happen that

σ1 may be close to unity and result in slow convergence. To boost the convergence rate, we use the
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idea from successive over-relaxation (SOR) [25] and use ω ∈ R to modify (22) into xi(n + 1) =

ω
Ψi,i

(
li −

∑
j Ψa

i,jxi(n)
)

+ (1− ω)xi(n).

III. OSNR GAME IN OPTICAL NETWORKS

In this section, we apply the results of linear games to the OSNR Nash game in optical networks that has

been recently formulated in [8]. As recent technological advances have sparked the need for intelligent

network management and control, recent efforts address the issue of dynamic network configurations.

These are enabled by a new generation of optical wavelength-division multiplexed (WDM) communication

networks, in which devices such as optical add/drop MUXes (OADM), optical cross connects (OXC) and

dynamic gain equalizer (DGE) provide essential building blocks for smart optical networks [26].

Following [8], the focus of our application is on the end-to-end link level. Channel optical signal-

to-noise ratio (OSNR) is an important performance factor at this level as it directly relates to the bit

error rate (BER) in the transmission [27]. OSNR optimization is thus crucial to the improvement of

network performance. Recent research work on this is making an effort to derive iterative decentralized

OSNR optimization algorithms, particularly, based on a game-theoretical approach. However, it has been

a challenge to find an analytical solution for an OSNR game with capacity constraints. Research efforts

have been made to solve this problem by integrating constraints into utility functions [1], [2]. And, in

particular, theoretical work has been done in [4], [9] to deal with such constraints based on classical

Lagrangian duality theory. However, complexity of the solution grows in an undesirable way and it is

exceedingly difficult to give an analytical solution for OSNR Nash game.

In this section and the following section, we meet those challenges by using the theory of linear games

and interpreting the slack variables as power consumption of fictitious players that can be implemented

by optical service channels (OSC) in reality. We first review the optical network model and the basic

game-theoretical framework. Later, we will see that it is convenient for us to use the established theory

to derive problem-specific results.

A. Review of Optical Network Model

Consider a WDM network with a set of optical links L = {1, 2, .., L} connecting the optical nodes,

where channel add/drop is realized. A set N = {1, 2, ..., N} of channels are transmitted, corresponding

to a set of multiplexed wavelengths. Illustrated in Figure 1, a link l has Kl cascaded optically amplified

spans. Let Nl be the set of channels transmitted over link l. For a channel i ∈ N , we denote by Ri
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its optical path, or collection of links, from source (Tx) to destination (Rx). Let ui be the ith channel

input optical power (at Tx), and u = [u1, ..., uN ]T the vector of all channels’ input powers. Let si be the

ith channel output power (at Rx), and ni the optical noise power in the ith channel bandwidth at Rx.

The ith channel optical OSNR is defined as OSNRi = si

ni
. In [28], it is assumed that the dispersion and

nonlinearity effects are considered to be limited, the ASE noise accumulation is the dominant impairment

in the model. This assumption simplifies the OSNR expression, and thus the OSNR for the ith channel

is given as

OSNRi =
ui

n0,i +
∑

j∈N Γi,juj

, i ∈ N (23)

where Γ is the full n× n system matrix which characterizes the coupling between channels. n0,i denotes

the ith channel noise power at the transmitter. System matrix Γ encapsulates the basic physics present in

optical fiber transmission and implements an abstraction from a network to an input-output system. This

approach has been used in [7] for the wireless case to model CDMA uplink communication. Different

from the system matrix used in wireless case, the matrix Γ given in (24) is commonly asymmetric and is

more complicatedly dependent on parameters such as spontaneous emission noise, wavelength-dependent

gain, and the path channels take.

Γi,j =
∑
i∈Ri

Kl∑
k=1

Gk
l,j

Gk
l,i

l−1∏
q=1

Tq,j

Tq,i

 ASEl,k,i

P0,l

,∀j ∈ Nl. (24)

where Gl,k,i is the wavelength dependent gain at kth span in lth link for channel i; Tl,i =
∏Kl

q=1 Gl,k,iLl,k

with Ll,k being the wavelength independent loss at kth span in lth link; ASEl,k,i is the wavelength

dependent spontaneous emission noise accumulated across cascaded amplifiers; P0,l is the output power

at each span.

It is also shown in [28] that the OSNR model can be further extended to include crosstalk terms due to

WDM components at the optical nodes (OADM or OXC), such as optical filters, demultiplexers, add/drop

modules, routers or switches [27].

B. Non-cooperative Game Approach

Let’s review the basic game-theoretical model for power control in optical networks without constraints.

Consider a game defined by a triplet 〈N , (Ai), (Ji)〉. N is the index set of players or channels; Ai is the

strategy set {ui | ui ∈ [ui,min, ui,max]}; and, Ji is the cost function, chosen such that minimizing the cost
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Fig. 1. A Typical Optical Link in DWMW Optical Networks

is related to maximizing OSNR level. In [8], Ji is defined as

Ji(ui, u−i) = αiui − βi ln

(
1 + ai

ui

X−i

)
, i ∈ N (25)

where αi, βi are channel specific parameters, that quantify the willingness to pay the price and the desire to

maximize its OSNR, respectively, ai is a channel specific parameter, X−i is defined as X−i =
∑

j 6=i Γi,juj+

n0,i. This specific choice of utility function is non-separable, nonlinear and coupled. However, Ji is strictly

convex in ui and takes a specially designed form such that its first-order derivative takes a linear form

with respect to u, i.e. is in the class of linear games defined in section 2.

The solution from the game approach is usually characterized by Nash equilibrium (NE) in Definition

2.2. Provided that
∑

j 6=i Γi,j ≤ ai ,the resulting NE solution is given in a closed form by

Γ̃u∗ = b̃, (26)

where Γ̃i,j = ai, for j = i; Γ̃i,j = Γi,j, for j 6= i and b̃i = aibi

αi
− n0,i.

Similar to the wireless case [7], we are able to construct iterative algorithms to achieve the Nash

equilibrium. A simple deterministic first order parallel update algorithm can be found by ui(n + 1) =

βi

αi
− X−i(n)

ai
, or equivalently in terms of OSNRi,

ui(n + 1) =
βi

αi

− 1

ai

(
1

OSNRi(n)
− Γi,i

)
ui(n). (27)

As proved in [8], the algorithm (27) converges to Nash equilibrium u∗ provided that 1
ai

∑
j 6=i Γi,j ≤ 1,∀i.

IV. CONSTRAINED NON-COOPERATIVE OSNR GAME

In optical networks, a saturation power level exists in each link of channel paths [2]. A launched power

has to be below or equal to this threshold so that the nonlinear effects in the span following each amplifier

are kept minimum [29]. We can easily interpret this effect as a capacity constraint on an optical link in the
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network. In this section, we consider the game described in section 3 with such constraint. Before applying

the linear game theory, we consider implementing the slack variable as a fictitious player, labeled F . The

fictitious player can be regarded as an additional player implemented via a channel that doesn’t participate

in the game for its need for quality of transmission. An example is the optical service channel (OSC) in

optical networks [26]. It only requires a certain amount of power to transmit network information and

doesn’t aim for OSNR optimization. It rather behaves as a player to regulate the network performance.

We will use this interpretation to solve an (N + 1)-person non-cooperative game with constraint of

∑
i∈N∪{F}

ui ≤ C0. (28)

Let the payoff function of user i ∈ N given by (25) and we choose the payoff function of user F to

be

JF (uF , u−F ) = αF uF − βF

C0 −
∑
j 6=F

uj

 ln aF uF . (29)

Function JF is convex when
∑

j 6=F uj ≤ C0. Since the fictitious player may not ask for an optimal quality

of transmission, we do not design function (29) directly related to OSNR, but in terms of power and

capacity constraint instead. It is composed of two parts with the first term describing the cost on power

usage uF and the second term the capacity-dependent utility. With the assumption of convexity, the best

response function for JF is given by an implicit expression as in (30).

ωF uF +
∑
j 6=F

uj = C0, (30)

where ωF = αF

βF
. We let ui ∈ [ui,min, ui,max], where ui,min ∈ R+ and ui,max ∈ R+ can be chosen to be

sufficiently small and large respectively, so that they will not be solutions to the minimization of the cost

function Ji, i ∈ N ∪ {F}.

We can observe that if ωF ≥ 1, then any solution u that satisfies (30) is within the feasible set described

by (28). Furthermore, when ωF = 1, the best response function of user F will impose an equality capacity

constraint,
∑

i∈N∪{F} ui = C0, and the solution will be efficiently achieved on the boundary of the feasible

set. Increasing ωF to be strictly greater than 1 will result in a less efficient solution.

The construction of the best response function (30) can be seen as a slacked constraint from (31)

ω′F uF + uF +
∑
j 6=F

uj = C0, (31)
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where ω′F = ωF − 1, and ω′F uF > 0 slacks the capacity constraint (28) .

A. Characterization of Nash Equilibrium

We use the same approach as in [8] to characterize the equilibrium of the game. By the definition of

Nash equilibrium in [5], a Nash equilibrium uF with a fictitious player is a point which jointly satisfies

the best response functions as follows.

aiu
F
i + XF

−i =
aiβi

αi

, for i ∈ N . (32)

ωF uF
F +

∑
j 6=F

uF
j = C0 , for i = F. (33)

Expressed in matrix form, they become

ΓuF = b. (34)

where uF = [uF
1 , · · · , uF

N , uF
F ]T , b = [a1β1

α1
− n0,1, · · · , aNβN

αN
− n0,N , C0]

T ,

Γ =



a1 Γ12 · · · Γ1N Γ1F

Γ21 a2 · · · Γ2N Γ2F

... . . . . . . ...
...

ΓN1 ΓN2 · · · aN ΓNF

1 1 · · · 1 ωF


.

Based on a similar argument as in the sufficiency proof of Theorem 2.2, from (34), we can conclude

directly that a necessary and sufficient condition for Nash equilibrium to exist is to require b ∈ R(Γ).

To further characterize the Nash equilibrium, we resort to Theorem 2.4. Accordingly, we assume some

special features of the game, for example, diagonal dominance of the matrix Γ and convexity of the utility

functions Ji. Theorem 4.1 summarizes these conditions and gives a sufficient condition on the uniqueness

and existence of the Nash equilibrium to the OSNR game with fictitious player (GFP).

Theorem 4.1: If maxi bi

√
N+1√

ρ(Γ
T
Γ)

≤ C0 and ai >
∑

j 6=i Γij , ωF > N , then the game with a fictitious player

(GFP) will have a unique Nash equilibrium.

Proof: Appendix II.

Remark 4.1: We can make the connection with Theorem 2.4 by taking C = Γ,B = 1T , IM = 1,d = b,

and v = C0. In this case, Ψ has its two last rows coming from the same constraint (28): one is from the

fact that we implement the fictitious player via a channel and the other comes from the slacked constraint
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(31) as needed in Theorem 2.4. It is obvious from (30) and (31) that µ = ω′F uF . With the inequality on

C0, the conditions in Theorem 2.4 are satisfied. As a result, we observe that these conditions result in a

game with inactive constraints. Therefore, we can determine a unique NE in a closed form as in (11). In

comparison with the approach adopted in the proof, this shows that an interpretation of an unconstrained

N-person game with an additional fictitious player with utility function (29) that satisfies the conditions in

Theorem 4.1 is equivalent to an (N+1)-person game interpretation with capacity constraint as in Theorem

2.4.

Remark 4.2: If we further assume that C0 ≥ aibi

αi
− n0,i,∀i, then the inequality condition on C0 in

Theorem 4.1 is reduced to ρ(Γ
T
Γ) ≥ N + 1. This result alludes to the maximum number of channels to

be admitted in the network for a fixed capacity.

Though we notice that some portion of the power is allocated to the service channel or the fictitious

player, we need to accept that this amount of power is a necessary allocation for the network to operate.

Furthermore, this power consumption can be adjusted through parameter ωF . On the other hand, we should

also note that the strong assumption of diagonal dominance, in particular, ωF > N > 1 may not lead to

an efficient solution as mentioned earlier. However, due to the sufficiency of Theorem 4.1, a unique and

efficient solution may still exist when ωF = 1.

B. Iterative Algorithm

Following (22) and (27), the algorithm for the game with a fictitious player is given by a synchronous

algorithm given in (35). An update includes two sub-steps: an initial update on ui(n + 1), i ∈ N and one

on uF . 
ui(n + 1) = βi

αi
− 1

ai

(
1

OSNRi(n)
− Γi,i

)
ui(n), ∀i ∈ N ;

uF (n + 1) = 1
ωF

[
C0 −

∑
j 6=F uj(n)

]+
, for F.

(35)

where [z]+ = max{0, z}. Since we implement the fictitious player as an OSC, we leave out the algorithm

for µ. From Remark 4.1, the µ algorithm is closely related to uF by µ = ω′F uF .

Proposition 4.2: The algorithm described by (35) converges to uF provided that ai >
∑

j∈N Γij and

ωF > N .

The proof of convergence can be obtained by modifying the proof of the general algorithm in (22).

We note that the use of [z]+ function is to ensure that uF will not be negative in the process of updates.

Parameters ai, i ∈ N , and ωF determine the rate of convergence. On average, increasing ai, i ∈ N results
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in a faster convergence for ui, i ∈ N ∪{F}. And increasing ωF will lead to a boost in convergence speed

of user F ’s algorithm.

We also can observe a similarity with the algorithm derived based on duality theory in [4], where uF in

(35) is closely related to the dual variable in [4]. The difference between the two is that we used a fictitious

player in the game in the position of the dual variable and the player has it own rule of interactions with

other players.

V. NUMERICAL EXAMPLE

In this section, we illustrate the linear OSNR Nash game by a MATLAB simulation. We consider an

end-to-end link described in Figure 1 with 5 amplified spans. We assume 3 channels are transmitted at

wavelengths distributed from 1554nm to 1556nm with channel separation of 1nm. Suppose input noise

power is 0.5 percent of the input signal power and the total power constraint is C0=7.0mW. The gain

profile for each amplifier is identically assumed to be parabolic as in Figure 2 and gives G1 = 29.2dB,

G2 = 30.0dB, and G3 = 29.2dB, respectively. The 3-by-3 Γ matrix is thus given as

Γ =


6.187× 10−4 1.094× 10−4 2.732× 10−4

4.063× 10−4 6.786× 10−4 2.206× 10−4

2.728× 10−4 3.752× 10−4 2.728× 10−4


In Figure 3, we show the convergence of channel power evolution in steps with a fictitious channel. This

takes 0.5035mW of the remaining power from the capacity and achieves a power allocation efficiency of

92.81% for the link, calculated from (17). Figure 4 shows the resulting OSNR levels in the game.

VI. DIRECTION OF FUTURE RESEARCH

This paper deals with linear non-cooperative games, in which interesting results are derived from the

inherent property of linearity. Since our interest is to solve power control games in optical networks, we

haven’t discussed yet a special case where C is symmetric. This case is commonly found in Cournot

games and wireless power control game. With additional property of symmetry and positive definiteness,

it is possible that we can examine the method of conjugate gradient iterative algorithm to solve the

game. Furthermore, our definition of linear games is based on best response function. Since best response

functions are derived from cost functions, we can directly define the quasi-Lagrangian in terms of Ji.
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Fig. 2. Optical Amplifier Spectral Profile

Fig. 3. Channel Power in Time Steps

In addition, it will be more challenging to extend this result to nonlinear problems or a special case of

nonlinear problems, where quasi-Lagrangian needs to be otherwise defined.

In this paper, we assumed that the best response function is a static function without any dynamics.

We can actually further study a dynamic game with best response functions governed by a first-order

differential equation. This study would allow us to include dynamics in the OSNR optical network model

and address other practical physical phenomena in optical networks. Furthermore, the feature of linearity

could enable an in-depth analysis of pricing design based on classical linear system control theory.
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Fig. 4. Channel OSNR in Time Steps

VII. CONCLUSION

In this paper, we examined a class of linear games and discussed several issues such as existence and

uniqueness of NE, iterative algorithms and efficiency analysis. The appealing feature of this class lies in

the freedom to choose cost functions. Thus, a variety of engineering problems with practical concerns

of constraints can be solved. As a special case or an extension to the duality theory in [4], linear game

theory is a useful tool to solve a class of problems. We illustrate an application of the theory to derive

the algorithm, which is very similar to the one described in [9]. In the example of an OSNR game, we

can intuitively interpret the slack variables as fictitious players and extend the linear game framework to

address a practical issue of implementation.

APPENDIX I

Let’s define ei(n) = xi(n)−x∗i and e(n)=[ei(n)]. Since Ψx∗ = l, Ψi,ix
∗
i +
∑

j 6=i Ψi,jx
∗
j = li. Substitute the

expression for x∗i into ei(n+1), and we obtain ei(n+1) = xi(n+1)−x∗i = − 1
Ψi,i

[∑
j 6=i Ψi,j(xj(n)− x∗j)

]
.

Therefore,

‖e(n + 1)‖∞ ≤ max
i

∣∣∣∣∣∣ 1

Ψi,i

∑
j 6=i

Ψi,j(ei(n))

∣∣∣∣∣∣ (36)

≤ max
i

1

|Ψi,i|
∑
j 6=i

|Ψi,j|‖e(n)‖∞. (37)
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Since we assumed that
∑

j 6=i |Ψi,j| < |Ψi,i|,∀i, we can conclude that ‖e(n)‖ → 0 from the contraction

mapping theorem. As a result, we have xi(n) → x∗i as n →∞.

APPENDIX II

First of all, we need to show that the utility functions are convex and there exists a minimizing uF . It

has been proved in [8] that functions (25) is convex in ui. We just need to show the convexity of JF in

uF . Knowing that JF is formed by an addition of two functions and that sum of convex functions results

in a convex function, we only need to guarantee the pricing and utility functions are convex. The linear

pricing function is already convex. With the condition that
∑

j 6=F uj ≤ C0, the convexity of JF in uF will

follow. Due to the fact that ui ∈ [ui,min, ui,max] gives a closed compact set, there exists a minimizing uF ,

for any given u−i, such that Ji(u
F
i ,u−i) < Ji(ui,u−i),∀ui 6= uF

i , i ∈ N ∪ {F}.

Secondly, we derive a sufficient condition for convexity of JF in uF . Starting with the condition∑
j 6=F uj ≤ C0, we use matrix norm inequality ‖Γm×n‖2 ≤

√
m‖Γm×n‖∞ [14] to obtain an upper bound

on ‖1T
Γ
−1

b‖∞, where 1
T

= [1, ..., 1, 0].

‖1T
Γ
−1

b‖∞ ≤ ‖1T
Γ
−1‖∞‖b‖∞ ≤ ‖b‖∞

‖Γ‖∞
=

maxi bi

‖Γ‖∞
≤ maxi bi

√
N + 1

‖Γ‖2

=
maxi bi

√
N + 1√

ρ(Γ
T
Γ)

.

If inequality maxi bi

√
N+1√

ρ(Γ
T
Γ)

≤ C0 holds, then the condition of convexity of the fictitious player will hold.

We note that this inequality corresponds to the condition on vi in Theorem 2.4.

Lastly, we prove that there exists a unique solution under the assumption of diagonal dominance of

matrix Γ. With ai >
∑

j 6=i Γij , ωF > N , matrix Γ becomes diagonally dominant. From Gershgorin’s

Theorem [15], it follows that Γ is nonsingular and there exists a unique solution to linear system (34).
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