

Pricing in Telecommunication Networks: From Wireless to Optical Networks

Quanyan Zhu, B.ENG (McGill), M.IEEE

Control and Systems Group The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

> University of Toronto Toronto, Canada

> > December 5, 2006

Presentation details on <u>http://www.control.utoronto.ca/qzhu</u>

Contacts: <u>qzhu4@ieee.org</u> or <u>qzhu@control.utoronto.ca</u>

ECE 1654HF Final Project

Optical Networks: A Systems Control Perspective

Motivation

- From centralized to distributed protocols
 - Network size growth
 - Resource allocation (power, bandwidth,etc.)
- Tools: Optimization vs. Game theory
 - Agents: different channels
 - Strategy: feasible power consumptions
 - Preference: utility function
 - Information: local and myopic
 - Non-cooperative
- Implementation
 - Pricing schemes (proportional pricing, decentralized pricing, auctions, etc.)
- Example: Wireless and Optical Networks

Wireless Network

- CDMA uplink power control:
 - Conserve battery energy
 - Minimize the effect of interference \rightarrow SNR

Game Formulation

- A game defined by $\langle N, (A_i), (J_i) \rangle$
 - N=(1,2,...M), number of players
 - $(A_i)_{i \in N}$: set of actions
 - $(J_i)_{i \in N}$: preference relations represented by payoff functions:

$$J_i(p_i, p_{-i}) = \underbrace{\lambda_i p_i}_{\text{cost}} - \underbrace{\ln(1 + \gamma_i)}_{\text{utility}} \quad \forall i$$

(SNR)
$$\gamma_i = L \frac{h_i p_i}{\sum_{i \neq j} h_i p_j + \sigma^2}$$

• Each user i has her own best response as function:

$$BR_i(p_i, p_{-i}) = rg\max_{p_i} J_i(p_i, p_{-i})$$

• Nash equilibrium is unique when only one p^* satisfies

$$BR_1(p^*) = BR_2(p^*) = \dots = BR_N(p^*)$$

ECE 1654HF Final Project

Optical Networks: A Systems Control Perspective

Nash Equilibrium

"Best result comes when one is doing what is best for himself and the group."

Nash Solution and Algorithms

Unique solution of $Ap^* = b \iff A$ is strictly diagonally dominant $BR_1(p^*) = BR_2(p^*) = \dots = BR_N(p^*)$

$$\begin{split} & \left\{ \begin{aligned} p_i^{(n+1)}(p_{-1}^{(n)},\lambda_i) = \frac{1}{\lambda_i} - \frac{1}{Lh_i} \left(\sum_{j\neq i} h_j p_j^{(n)} + \sigma^2 \right) & \text{if } \sum_{j\neq i} h_j p_j^{(n)} \leq \frac{Lh_i}{\lambda_i - \sigma^2} \\ p_i^{(n+1)}(p_{-1}^{(n)},\lambda_i) = 0 & \text{otherwise} \end{aligned} \right. \end{split}$$

• Myopic iteration at each step

Random Update Algorithm

 $\begin{cases} p_i^{(n+1)} = p_{i,PUA}^{(n+1)}(p_{-i}^{(n)},\lambda_i) & \text{ with probability } \pi_i \\ p_i^{(n+1)} = p_i^{(n)} & \text{ with probability } 1 - \pi_i \end{cases}$

• Myopic iteration and randomized delays in update

Optical Networks

- A preferred means of transmission for signals
 - Low loss
 - Low levels of undesirable transmission impairment
 - Strong immunity to electromagnetic interference
 - Long life-span
- Network Management:
 - Centrally managed optical layer \rightarrow one controlled in distributed fashion
 - Add/drop dynamics

ECE 1654HF Final Project Optical Networks: A Systems Control Perspective

An Example of Optical Network Topology

- 1. Channel-channel interference
- 2. Spontaneous Emission Noise (ASE)
- 3. Multi-stage amplifications
- 4. More complicated network topology

ECE 1654HF Final Project

Optical Networks: A Systems Control Perspective

Mobile Users

ECE 1654HF Final Project Optical Networks: A Systems Control Perspective

From Wireless to Optical Network

$$OSNR_{i} = \frac{u_{i}}{n_{0,i} + \sum_{j \in \mathcal{M}} \Gamma_{i,j} u_{j}} \quad \forall i \in \mathcal{M}$$

Game and Nash Solution

- A game defined by $\langle N, (A_i), (J_i) \rangle$
 - N=(1,2,...M), number of players
 - $(A_i)_{i \in \mathbb{N}}$: set of strategies $[0, u_{\max}]^{\mathbb{N}}$
 - $(J_i)_{i \in \mathbb{N}}$: preference relations represented by payoff functions:

$$J_i(u_i, u_{-i}) = \alpha_i u_i - \beta_i \ln(1 + a_i \frac{u_i}{X_{-i}})$$

• Implicit Best response function $BR_i(u_i, u_{:i})$

$$a_{i}u_{i}^{*} + X_{-i}^{*} = \frac{a_{i}\beta_{i}}{\alpha_{i}}, \text{ where } X_{-i} = \sum_{j \neq i} \Gamma_{i,j}u_{j} + n_{0,i}$$

Aggregate into a matrix:

$$\tilde{\Gamma}u^* = \tilde{b}$$

ECE 1654HF Final Project Optical Networks: A Systems Control Perspective

Game and Nash Solution (Cont'd) $\begin{bmatrix} a_1 & \Gamma_{1,2} & \cdots & \Gamma_{1,M} \\ \Gamma_{2,1} & a_2 & \cdots & \Gamma_{2,M} \\ \vdots & \vdots & \ddots & \vdots \\ \Gamma_{M,1} & \Gamma_{M,2} & \cdots & a_M \end{bmatrix} \begin{bmatrix} u_1^* \\ u_2^* \\ \vdots \\ u_M^* \end{bmatrix} = \begin{bmatrix} \frac{a_1\beta_1}{\alpha_1} - n_{0,1} \\ \frac{a_2\beta_2}{\alpha_2} - n_{0,2} \\ \vdots \\ \frac{a_M\beta_M}{\alpha_M} - n_{0,M} \end{bmatrix}$ $\tilde{\Gamma} u^* = \tilde{b}$ $Im(\lambda_i)$ $\rho = \sum_{j \neq i} \Gamma_{i,j}$ Existence and Uniqueness of Solution under a sufficient condition: Strictly Diagonal Dominance: $\sum_{i \neq i} \Gamma_{i,i} < a_i$ $Re(\lambda_i)$ \boldsymbol{a}_{i} $a_i > 0 \rightarrow \widetilde{\Gamma}$ strictly positive definite **Gershgorin Disk**

ECE 1654HF Final Project Optical Networks: A Systems Control Perspective

Nash Equilibrium and Iterative Algorithm

$$\begin{split} u_i(n+1) &= \frac{\beta_i}{\alpha_i} - \frac{X_{-i}(n)}{a_i} \\ u_i(n+1) &= \frac{\beta_i}{\alpha_i} - \frac{1}{a_i} \bigg(\frac{1}{OSNR_i(n)} - \Gamma_{i,i} \bigg) u_i(n) \end{split}$$

Nash Equilibrium Solution (Static) Iterative Algorithm (Dynamic)

- The game is in strategic form and the decisions are just made once
- The iterative algorithm is distributed.

Some questions:

- What is the rate of convergence in the iterative algorithm?
- How robust is the algorithm?

ECE 1654HF Final Project Optical Networks: A Systems Control Perspective

Iterative Algorithm: Rate of Convergence

$$\begin{split} u_i(n+1) &= \frac{\beta_i}{\alpha_i} - \frac{1}{a_i} \bigg(\frac{1}{OSNR_i(n)} - \Gamma_{i,i} \bigg) u_i(n) \\ u_i(n+1) &= \frac{\beta_i}{\alpha_i} - \frac{X_{-i}(n)}{a_i} \end{split}$$

$$\begin{array}{ll} \text{Define} & e_i(n) = u_i(n) - u^* \\ & e_i(n+1) = -\frac{1}{a_i} \sum_{j \neq i} \Gamma_{i,j} e_j(n) \\ & || \, e_i(n+1) \, ||_{\infty} = \max_i \, | \, e_i(n+1) \, | \leq \max_i (\frac{1}{a_i} \sum_{j \neq i} \Gamma_{i,j}) \, || \end{array}$$

Contraction Mapping!

Rate of convergence

 $e_i(n) \mid \mid_{\infty}$

Parameter a_i determines the rate of convergence!

ECE 1654HF Final Project

Optical Networks: A Systems Control Perspective

Iterative Algorithm: Robustness

$$\begin{split} u_i(n+1) &= \frac{\beta_i}{\alpha_i} - \frac{1}{a_i} \bigg(\frac{1}{OSNR_i(n)} - \Gamma_{i,i} \bigg) u_i(n) \\ u_i(n+1) &= \frac{\beta_i}{\alpha_i} - \frac{X_{-i}(n)}{a_i} \end{split}$$

 $W\Delta$

Example (3 channels):

$$e_{1}(z) = -z^{-1} \left[\frac{1}{a_{1}} \Gamma_{1,2} e_{2}(z) + \frac{1}{a_{1}} \Gamma_{1,3} e_{3}(z) \right]$$
$$e_{2}(z) = -z^{-1} \left[\frac{1}{a_{1}} \Gamma_{2,1} e_{1}(z) + \frac{1}{a_{1}} \Gamma_{2,3} e_{3}(z) \right]$$
$$e_{3}(z) = -z^{-1} \left[\frac{1}{a_{1}} \Gamma_{3,1} e_{1}(z) + \frac{1}{a_{1}} \Gamma_{3,2} e_{2}(z) \right]$$

Robustness Criteria:

 $||W\Delta||{<}1/\beta \text{ if }||M||\leq\beta$

Random Update Algorithm

$$\begin{aligned} u_i(n+1) &= \frac{\beta_i}{\alpha_i} - \frac{1}{a_i} \left(\frac{1}{OSNR_i(n)} - \Gamma_{i,i} \right) u_i(n) & \text{with probability } \pi_i \\ u_i(n+1) &= u_i(n) & \text{with probability } 1 - \pi_i \end{aligned}$$

• Can deal with the randomized delay in updates Convergence in Expectation:

$$\mathbf{E}[e_i(n+1)] = \mathbf{E}[u_i(n+1) - u_i^*] = \pi \mathbf{E}[(-\frac{1}{a_i}\sum_{j\neq i}\Gamma_{i,j}e_j(n)] + (1 - \pi_i)\mathbf{E}[e_j(n)]$$
$$\leq [-\frac{1}{a_i}\sum_{j\neq i}\Gamma_{i,j}\pi + (1 - \pi)]\mathbf{E}(e_j(n)).$$
$$< \mathbf{1}$$

Convergence in Probability (Almost surely):

$$\begin{split} \sum_{n=1}^{\infty} P(|e_i(n)| > \epsilon) &\leq \sum_{n=1}^{\infty} \frac{\mathbf{E}(|e_i(n)|)}{\epsilon} \leq \frac{1}{\epsilon} \sum_{i=1}^{\infty} \|e(n)\|_{\infty} \\ \|e(n)\|_{\infty} &\leq \kappa \|e(n-1)\|_{\infty} \leq \ldots \leq \kappa^n \|e(0)\|_{\infty}, \longrightarrow \sum_{n=1}^{\infty} P(|e_i(n)| > \epsilon) \leq \frac{K}{\epsilon(1-\kappa)} \longrightarrow \begin{array}{c} \mathbf{Converge} \\ \mathbf{In \ Probability} \\ \mathbf{Borel-Cantelli} \\ \end{split}$$

Pricing Schemes

$$J_i(u_i, u_{-i}) = \alpha_i u_i - \beta_i \ln(1 + a_i \frac{u_i}{X_{-i}})$$

- α_i : directly determines the pricing of unit power
- a_i : influences the rate of convergence
- β_i : closely related to the bounds on desired OSNR γ^*

Example: proportional pricing, i.e., $\alpha_i = \Gamma_{i,i} k_i$

$$\frac{1}{\gamma_i^*}u_i^* = (\Gamma_{i,i} - a_i)u_i^* + \frac{a_i}{\Gamma_{i,i}}\frac{1}{k_i} \quad \forall i \qquad \text{or} \qquad \Sigma \mathbf{u}^* = \mathbf{v}.$$

 a_i doesn't affect the upper bound of γ_i if $\rho(\tilde{\Gamma}\Sigma^{-1}) < 1$

$$\gamma^* < \frac{1}{\sum_j \Gamma_{\mathbf{i}, \mathbf{j}}}$$

$$\begin{split} \beta_i &> \frac{1 + \left(a_i - \Gamma_{i,i} \gamma_i^*\right)}{1 - \Gamma_{i,i} \gamma_i^*} \frac{\alpha_i}{a_i} X_{-i} \quad \forall i \\ \beta_i &< \frac{\alpha_i}{a_i} [u_{max}(a_i + \sum_{j \neq i} \Gamma_{i,j}) + n_0] \quad \forall i \end{split}$$

Pricing Schemes

- More in-depth pricing schemes
- Criteria on pricing schemes
 - Stability and convergence
 - Computationally efficient
 - Fairness and allocation efficiency
- More economical basis needs to be investigated.

Extension of Current Framework

- Unanswered question under the current framework
 - Algorithms that deal with capacity constraints
 - Deal with nonlinearity effects as optimization constraints
 - Robustness of the algorithm with the presence of the uncertainties
- From strategic form to extensive form
 - Each players are allowed to make multi-stage decisions
 - Algorithm based on multi-stage decision making, that truly describes the dynamics of players.
- Two kinds of extensive forms
 - Time-based extensive game: Nash bargaining game, auctions
 - Space-based extensive game: unique to the optical networks

ECE 1654HF Final Project Optical Networks: A Systems Control Perspective

