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1. Fixed Point Theorems

1.1. Some definitions.

Definition 1.1. (Upper Semicontinuity) Let f be a function defined on a
normed linear space X, and associating with each x ∈ X a subset f(x) of some other
normed linear space Y . Then f is said to be upper semicontinuous at a point
x0 ∈ X if , for any sequence {xi} converging to x0 and any sequence {yi ∈ f(xi)}
converging to y0, we have y0 ∈ f(x0). The function f is upper-semicontinuous
if it is upper semicontinuous at each point of X.

Remark 1.2. The major difference of u.s.c. from continuity is that we have y0 ∈
f(x0) in the definition. Semi-continuity is a property of real-valued functions that is
weaker than continuity. An example of upper semi-continuous function is f(x) = −1
for x < 0 and f(x) = 1 for x ≥ 0. The floor function f(x) = bxc is another example
of upper semi-continuous function.

Definition 1.3. (Set-valued Functions): A set-valued function f is a function
from X to subsets of X, denoted as 2X .

Exercise 1.4. this

Definition 1.5. (Closed Graph): The graph of a set-valued function is closed if
for every {xn} and {yn} such that yn ∈ f(xn) we have that if xn → x and yn → y
then y ∈ f(x).

Remark 1.6. A graph is a set {(x, f(x)) : x ∈ X}

Definition 1.7. (Quasi-concave function): A function f : Rn → R is a quasi-
concave function if ∀x1, x2 ∈ X and α ∈ [0, 1], we have f(αx1 + (1 − α)x2) ≥
min{f(x1), f(x2)}.

Definition 1.8. (Equicontinuous) Let the space of all real-valued bounded con-
tinuous functions on S, denoted C(S), be endowed with the sup norm. A subset
F of C(S) is equicontinuous if for every ε > 0, there exists a δ > 0 such that
‖x− y‖ < δ implies ‖f(x)− f(y) < ε‖, ∀f ∈ F

Remark 1.9. Please note that equicontinuity is defined for a set of functions. One
compact way to put the definition of equicontinuity is that
Let {fn} be a sequence of functions from X ⊂ R → R. {fn} is equicontinuous if
∀ε > 0, and x ∈ X,∃δ > 0(∀n, and x′ ∈ Bn

δ , |f(x)f (x′)| ≤ ε).
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Definition 1.10. (Lefschetz number) Let f : X → X be a continuous map from
a compact triangulable space X to itself. A point x of X is a fixed point of f if f(x) =
x. Define the Lefschetz number Λf of f by Λf =

∑
k≥0(−1)kTr(f∗|Hk(Z, Q)).

1.2. Some versions of fixed point theorems. Fixed-point theorem is one of the
most important mathematical tools for economists and mathematicians to prove
existence of a solution. One of the oldest fixed-point theorems, Brouwer’s Fixed-
Point theorem, was developed in 1910 and by 1928, Jon von Neumann used it to
prove the existence of a ’minimax’ solution to two-agent games. von Neumann in
1937 generalized Brouwer’ss theorem, which later was simplified by Kakutani. John
Nash was among the first to use Kakutani’s fixed point theorem.

Theorem 1.11. (Intermediate value Theorem) If f is continuous on a closed
interval [a, b], and c is any number between f(a) and f(b) inclusive, then there is
at lease one number x in the closed interval such that f(x) = c.

Remark 1.12. This theorem can be found in most undergraduate calculus textbook,
for example, Stewart, Single Variable Calculus, Fourth Edition.It is proven by ob-
serving f([a, b]) is a connected set because the image of a connected set under a
continuous function is connected.

Theorem 1.13. (Fixed Point Theorem) If g is a continuous function g(x) ∈
[a, b]∀x ∈ [a, b], then g has a fixed point in [a, b]

Remark 1.14. This fixed point theorem directly results from the intermediate value
theorem above.
Proof:
Suppose that g(a) ≥ a, g(b) ≤ b, i.e.,g(a)−a ≥ 0, g(b)−b ≤ 0. Since g is continuous,
the intermediate value theorem guarantees that c ∈ [a, b] such that g(c)− c = 0, or
g(c) = c.
Reference: http://mathworld.wolfram.com/FixedPointTheorem.html

Theorem 1.15. (Weiestrass Intermediate Value Theorem) Let f : [a, b] → R
be a continuous function, where [a, b] is a non-empty, compact, convex, subset of R
and f(a) · f(b) < 0, then there exists a x∗ ∈ [a, b] such that f(x∗) = 0.

Theorem 1.16. (Banach Fixed Point Theorem, a.k.a., Contraction Map-
ping Theorem) Let (X, d) be non-empty complete metric space. Let T : X → X
be a contraction mapping on X, i.e., there exists a nonnegative real number q < 1
such that d(Tx, Ty) ≤ q · d(x, y)∀x, y ∈ X. Then the map T admits one and only
one fixed point x∗ ∈ X, Tx∗ = x∗.

Furthermore, this fixed point can be found as follows:
(1) Start with an arbitrary element x0 ∈ X.
(2) Define an iterative sequence by xn = Txn−1 for n ∈ Z+.
(3) This sequence converges and it limit is x∗.
(4) The speed of convergence is described by d(x∗, xn) ≤ qn

1−q d(x1, x0).
(5) The smallest such value of q is sometimes called the Lipschitz constant.

Remark 1.17. It guarantees the existence and uniqueness of fixed points of certain
self maps of metric spaces, and provide constructive method to find those fixed
points. It was first stated in 1922.
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Theorem 1.18. (Brouwer’s Fixed Point Theorem) Suppose that A ⊂ Rn is
a non-empty, compact, convex set, and that f : A −→ A is a continuous function
from A into itself. Then f(·) has a fixed point; that is, there is an x ∈ A such that
x = f(x).

Remark 1.19. An intuition behind Brouwer’s theorem is the following: Consider
we have two pieces of paper on top each other. We first take the paper on the top
and crush it in a ’continuous’ fashion and the if we make the crushed paper flat
and put it on the top of the other paper, then Brouwer’s fixed point theorem tells
that there is at least one point on that crushed paper which remains in the same
location as it was before. This example can be extended to 3-D by considering a
bottle of water and stirring the water.

Remark 1.20. There are several ways to prove Brouwer’s theorem and one of the
approaches is to invoke Sperner’s Lemma, which is a combinatorial result about
labeled simplical subdivisions. This approach also provides insights into computa-
tional algorithms for finding approximations to fixed points.
Reference: http://www.math.hmc.edu/funfacts/

Lemma 1.21. (Sperner’s Lemma in 2D) Given a triangle ABC and a trian-
gulation T of the triangle. The set S of vertices of T is colored with three colors in
such a way that

(1) A,B, C are colored 1,2,3 respectively
(2) Each vertex on an edge of ABX is to be colored only with one of the two

colors of the ends of its edge. For example, each vertex AC must have a
color either 1 or 3.

Then, there exists a triangle from T ,whose vertices are colored with three different
colors.

Theorem 1.22. (An application of Fixed-Point theorem: Minimax Theorem)Let
X and Y be mixed strategies for players A and B. Let A be the payoff matrix. Then
maxX minY XT AY = minY maxX XT AY = v, where v is called the value of the
game and X and Y are called the solutions. If there is more than one optimal mixed
strategy, then there are infinitely many.

Proof: (More to come).

Theorem 1.23. (Kakutani’s Fixed Point Theorem) Suppose that A ⊂ Rn is a
non-empty, compact, convex set and that f : A −→ A is an upper semi-continuous
correspondence from A into itself with the property that the set f(x) ⊂ A is non-
empty and convex for every x ∈ A. Then f(·) has a fixed point; that is, there is an
x ∈ A such that x = f(x)

Remark 1.24. Kakutani’s Fixed Point Theorem was first applied to show the ex-
istence of Nash equilibrium and the proof of the following theorem is the direct
application of Kakutani’s Fixed Point Theorem.

Theorem 1.25. (Existence of Nash Equilibrium)The strategic game 〈N, (Ai), (ui)i∈N 〉
has a Nash equilibrium if ∀i:

(1) The set Ai if actions is nonempty convex, compact, subsets of Euclidean
space.

(2) The preference relation �i is continuous.
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(3) The preference relation �i is quasi-concave on Ai.

Theorem 1.26. (Tarsky’s Fixed Point Theorem) Suppose that f : [0, 1]n −→
[0, 1]n is a nondecreasing function. Then f(·) has a fixed point, that is, there exists
an x ∈ A such that x = f(x).

Theorem 1.27. (Schauder’s Fixed Point Theorem) Let S be a bounded subset
of Rn, and let C(S) be the space of real-valued bounded continuous function on S,
endowed with the sup norm. Let F ⊂ C(S) be non-empty, closed, bounded and
convex. Then if the mapping T : F → F is continuous and the family T (F ) is
equicontinuous, T has a fixed point in F .

Theorem 1.28. (Lefschetz Trace Formula) Let K be a finite complex, let h :
[K] → [K] be a continuous map. If Λ(h) 6= 0, then h has a fixed point.

Remark 1.29. It is used when we can’t conclude anything about convexity of a
function.

1.3. Application in Systems and Control.

Lemma 1.30. Suppose B is a nonempty, closed, bounded, convex set in Rn that is
invariant with respect to the system ẋ = f(x), where f is smooth. Then this system
has an equilibrium point in B.

Remark 1.31. This lemma is taken from lecture notes by B.Francis. It illustrates
how Brouwer’s Fixed Point theorem can be used in dynamical systems. The set
B is said to be (positively) invariant with respect to a system ẋ = f(x) because
if x(0) is in B then x(t) ∈ B∀t > 0. The proof starts by letting φ(t, x(0)) =
x(0) +

∫ t

0
f(φ(τ, x(0)))dτ , and then uses the fixed-point theorem to show that∫ t

0
f(φ(t, qt)) = 0 for some qt. Finally to show that f(x) = 0 for some x.

2. Nonlinear Discrete Dynamics

Nonlinear difference equations are often seen in the distributed algorithm to
compute for complex behavior of a dynamical systems. Wide applications are
found in engineering, economics and computer science. The first-order single dif-
ference equations system in the one time variable yt can be written in the form of
yt+1 = f(y), where f represents a function that acts as an updating rule for the
feasible y in the relevant range. Similar to continuous time trajectories, modeled by
ordinary differential equations, the discrete dynamical systems can also be studied
or characterized by its phase curves or time path.

2.1. The Four Types of Time Path. The four types are:
Type (1) Damped without Oscillations when 0 < df(yt)

dyt
< 1.

Type (2) Explosive without Oscillations when df(yt)
dyt

> 1.

Type (3) Damped Oscillations when −1 < df(yt)
dyt

< 0.

Type (4) Explosive Oscillations when df(yt)
dyt

< −1.
There is a second type of phase line forming a limit cycle, which can produce

cycles that either explode nor disappear.
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2.2. Notes on Difference Equation. In set theory, recursion theorem, guaran-
tees that recursively defined functions exist.

Theorem 2.1. (Recursion Theorem)Given a set X, an element a of X and a
function f : X → X, the theorem states that there is a unique function F : N → X
such that F (0) = a, F (n + 1) = f(F (n)).

2.3. On Discrete Lyapunov Equation.

2.4. Notes on Stochastic Difference Equations.

3. Some Results from Matrix Analysis

The reference for this section comes from R. Horn, C.Johnson, Matrix Analysis,
Cambridge University Press, 1985.

3.1. On Eigenvalues.

Theorem 3.1. (Ostrowski) Let A = [aij ] ∈ Mn, let α ∈ [0, 1] be given and let
R′i and C ′

i denote the deleted row and column sums of A, respectively, that is,
R′i =

∑n
j=1,j 6=i ‖aij‖,C ′

i =
∑n

j=1,j 6=i ‖aji‖. Then all the eigenvalues of A are located

in the union of n discs ∪n
i=1{z ∈ C : ‖z − aij‖ ≤ R

′α
i C

′(1−α)
i }.

Exercise 3.2. Let’s try it on a 2 × 2 matrix, say
(

0 1
2 5

)
, and compare it with

gershgorin disc.

Theorem 3.3. (Courant-Fischer Minimax Theorem) If A ∈ Rn×n is sym-
metric, then λk(A) = maxdim(S)=k miny 6=0,y∈S

yT Ay
yT y

for k = 1..n.

3.2. Function of Matrices. There are a lot of rigorous ways to establish the
notion of a matrix function. One of the most elegant approach is in terms of line
integral.

Definition 3.4. Suppose f(z) is analytic inside on a closed contour Γ which en-
circles λ(A). We define f(A) be the matrix

f(A) = 1
2πi

∮
Γ

f(z)(zI −A)−1dz, or equivalently,
[f(A)]ij = 1

2πi

∮
Γ

f(z)eT
k (zI −A)−1ejdz.

We need result from complex variables to calculate this integral, namely, residue
calculus.

Exercise 3.5. (Jordan Block Characterization) Let Ji ∈ Cmi×mi to be a Jor-

dan block of the form:Ji =



λi 1 · · · · · · 0
0 λi 1 · · · 0
...

. . . . . . . . .
...

...
...

. . . . . . 1
0 · · · · · · · · · λi

, then verify that f(Ji) =
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f(λi) f (1)(λi) · · · · · · fmi−1(λi)
(mi−1)!

0 f(λi) 1 · · · 0
...

. . . . . . . . .
...

...
...

. . . . . . f (1)(λi)
0 · · · · · · · · · f(λi)


. Use this result to compute eAt for

A =

 1 1 0
0 1 0
0 0 2


This is an alternative way from the one in lecture notes for ECE557.

4. Linear System

4.1. Supplementary Results from Linear Systems.

Theorem 4.1. (Abel-Jacobi-Liouville Theorem) If Φ is the transition matrix for
ẋ(t) = A(t)x(t), then det Φ(t, t0) = exp

∫ t

t0
trA(σ)dσ.

4.2. Controllability and Observability. The system (A,B) is controllable if ev-
ery state is reachable. If the controllability matrix Qc = [BABA2B...An−1B] is
of rank n, then the system (A,B) is controllable. If the observability matrixQ0 =

C
CA
...

CAn−1

 is rank n ,then the system (C,A) is observable.

If the system is not controllable or observable, then we can use the PBH test to
see which eigenvalue/pole give rise to the uncontrollability or unobservability. For
a particular λ to be controllable, rank([A − λIB]) = n; otherwise it is not. For a

particular λ to be observable, rank

([
A− λI

B

])
= n..

Theorem 4.2. (PBH Test) (A,B) is controllable if and only if rank([A−λIB]) =

n for all eigenvalues λ of A. (A,C) is observable if and only if rank

([
A− λI

B

])
=

n for eigenvalues λ of A.

Exercise 4.3. Let SISO system transfer function be G(s) = s−1
s2−1 . Put it in the

state space form and determine whether the system is controllable or observable
for each λ.

Hint: Let s−1
s2−1 = v

u
y
v , where v is an intermediate variable.

4.3. Riccati Equation.

Theorem 4.4. If the inner product between two matrices X and P is trPT X,
then the adjoint differential equation associated with Ẋ(t) = A1(t)X(t)+X(t)A2(t)
(LM)is Ṗ (t) = −P (t)AT

2 (t)−AT
1 (t)P (t) (MA).

Theorem 4.5. If the eigenvalues of A have negative real parts, then AT P +PA =
−Q can be solved for Q and the solution will be unique. Moreover, under this same
hypothesis, P ∗ is given by the convergent integral P ∗ =

∫∞
0

eAT tQeAtdt.
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Proof: Let d
dt (e

AT tQeAt) = AT eAT tQeAt +eAT tQeAtA and notice that AT P ∗+
P ∗A =

∫∞
0

AT eAT tQeAtdt+
∫∞
0

eAT tQeAtAdt =
∫∞
0

d
dt (e

AT tQeAt)dt = eAT tQeAt|∞0 =
−Q. The integral converges as the matrix A is Hurwitz, all the eigenvalues are neg-
ative in real parts. Next, to show the uniqueness of the solution, let’s define an
operator L : R(n2) → R(n2) such that L(P ) = AT P + PA. For every Q, there is a
P ∗; thus the range space of this mapping is n2 and the null space is {0}.

In undergraduate level differential equation class, we might have acquainted
ourselves with the Riccati types of equations. One common type of Riccati equation
is given by dy

dx = f(x, y). If we approximate f(x, y) = P (x) + Q(x)y + R(x)y2 + ...,
then we have an equation of the following: dy

dx = P (x) + Q(x)y + R(x)y2.Suppose
we know one of its particular solution y1 and let the new function z = 1

y−y1
,the

ODE can be reduced to z
x = −(Q(x)+2y1R(x))z−R(x), which is a first order and

we can solve easily.

Exercise 4.6. Evaluate the integral
∫ 2π

0
sin(sin(t)) cos(sin(t))dt.

4.4. Linear Time-Varying System. The general phase flow of linear time-varying
(LTV) system of the form ẋ(t) = A(t)x(t) is given by Φ(t, t0) = I +

∫ t

t0
A(σ1)dσ1 +∫ t

t0
A(σ1)

∫ σ1

t0
A(σ2)dσ2dσ1 + .... This expression is called the Peano-Baker series

and, for linear time invariant system, it can simply reduced to eAt.

Theorem 4.7. All solutions of the periodic equation ẋ(t) = A(t)x(t);A(t + T ) =
A(t); approach zero as t approaches infinity if the zeros det[Is − Φ(t0 + T, t0)] lie
in the disk |s| < 1. Bounded if |s| ≤ 1.

Exercise 4.8. Find the phase flow for the system ẋ(t) =
(

t 1
1 t2

)
x(t), and char-

acterize its stability.

Definition 4.9. A transformation z(t) = L(t)x(t) is a Liapunov transformation if
(1) L has a continuous derivative on the interval (−∞,∞).
(2) L and L̇ are bounded on the interval (−∞,∞).
(3) there exists a constant m such that 0 < m ≤ | detL(t)|,∀t.

If time varying linear system can be transformed into time invariant systems by
means of Liapunov transformation, then it is called reducible.

Exercise 4.10. Show that ẋ(t) = eAtBeAtx(t) is reducible.

4.5. Periodic Homogeneous System. We will look at a special type of time-
varying system with periodicity. Consider ẋ(t) = A(t)x(t), A(t + T ) = A(t) and
let’s define matrix P (−1) = Φ(t, 0)e(−Rt), where R is a solution to Φ(T, 0) = eRT .

Theorem 4.11. (Floquet-Liapunov) If A(t + T ) = A(t), then the associated tran-
sition matrix can be written as Φ(t, t0) = P−1(t)eR(t−t0)P (t0).

Exercise 4.12. Show that P−1(t + T ) = P−1(t) where P is what defined above.

Theorem 4.13. A linear time varying periodic system is reducible in the sense of
Lyapunov.

In class, we have seen the application of a low pass filter by averaging the time-
varying matrix over the entire period. Please consult the reference: V.Solo, On the
stability of Slowly Time-Varying Linear Systems, Math. Control Signals Systems,
1994, page 331-350.
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5. Notes on Real and Function Analysis

5.1. Topological Spaces. A collection of all open subsets of X, denoted as T ,
has the following properties:

(1) ∅ ∈ T , X ∈ T .
(2) The union of any members of T is a member of T
(3) The intersection of finitely many members of T is a member of T .

With with, one can define a topological space (X, T ) to be a set X and a collection
T of subsets of X, satisfying the aforementioned axioms. The set T is a topology
for X.

Definition 5.1. (Metric Space) A set X whose elements we shall call points, is
said to be metric space if with any two points p and q of X there is associated a
real number d(p, q), called the distance from p to q, such that

(1) d(p, q) > 0 if p 6= q; d(p, p) = 0.
(2) d(p, q) = d(q, p).
(3) d(p, q) ≤ d(p, r) + d(r, q),∀r ∈ X

Exercise 5.2. Show that a metric space is a topological space.

Definition 5.3. (Function space C[a, b]) X is taken as the set of all real-valued
functions x, y, ... of an independent real variable t and are defined and continuous
on a given closed interval J = [a, b].

Definition 5.4. (Hilbert Space l2) with the metric defined by d(x, y) =
√∑∞

j=1 |ξj − ηj |2

(To be completed)

Definition 5.5. (Banach Space) Banach space is a complete vector space with a
norm defined on it.

5.2. Padé Appromixation. Padé approximant is the ’best’ approximation of a
function by a rational function of given order. It often gives better approximation
of the function than truncating its Taylor series, and it my still work where the
Taylor series does not converge. Given a function f(x) and two integers m ≥ 0 and
n ≥ 0, the Padé appromixmant of order (m,n) is the rational function:
R(x) = p0+p1x+p2x2+...+pmxm

1+q1x+q2x2+...+qnxn ,and we have the conditions that f(0) = R(0), f ′(0) =
R′(0), f ′′(0) = R′′(0), ...f (m+n)(0) = R(m+n)(0) to determine the coefficients.

Exercise 5.6. Find the Padé approximation of H(s) = e−τsof order (1,1). (Notes:
HPade(s) = −τs/2+1

τs/2+1 by solving a system of equations of (1) p1 − q1 = −τ ; (2)
2q2

1 − 2p1q1 = τ2).

6. Brockett’s Theorem

The following is taken from the reference of RW Brockett, ”Asymptotic stability
and feedback stabilization” Differential Geometric Control Theory, 1983

Theorem 6.1. (Brockett’s Theorem)ẋ = f(x, u) be given with f(xo, 0) = 0 and f
is continuously differentiable in a neighbourhood of x(xo, 0). A necessary condition
for the existence of a continuously differentiable control law which makes (xo, 0)
asymptotically stable is that:
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(1) The linearized system should have no uncontrollable modes associated with
eigenvalues whose real part is positive.

(2) There exists a neighbourhood N of (xo, 0) such that for each ξ ∈ N there
exists a control uξ defined in [0,∞) such that this control steers the solution
of ẋ = f(x, uξ) form x = ξ at t = 0 to x = xo at t = ∞.

(3) The mapping Y : (x, u) → f(x, u) should be onto an open set containing 0.

We can use the Brockett’s theorem and check at each equilibrium point to see
whether its linearization with the input can give the eigenvalue whose real part is
smaller than 0. An example will be brockett’s integrator.
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