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MEMS: Micro-Electro-Mechanical Systems

MEMS RF Tunable Filter

Wide Applications:
• Signal Processing
• Biomimetic Sensors
• Mass Data Storage
• Integrated micro-optomechanical
components
• Embedded sensors
• Integrated RF Circuit, etc.

airborne surveillance dust 

Boeing Pressure  Belt using MEMS

Sensor/Actuator



Introduction

Analysis

Design

Modeling1. Classical Mechanics
2. Thermal Physics
3. Electromagnetism
4. Fluid Dynamics
5. Quantum Physics
etc.

Fabrication

Control

1. Analytical Approach
2. Semi-Analytical Approach
3. Numerical Analysis: 

Finite Element Method

1. Robust Control
2. Distributed Control
3. Hybrid Control
Etc.

• Design Software 
• Prototype Design



MEMS Fabrication

• Bulk micromachining
• Surface micromachining
• Go beyond microelectronics 

fabrication
Microfabrication lab, Berkeley

Fundamental 
Fabrication Procedures

J. Bardeen, W.H. Brattain, “The first transistor, 
a semiconductor triode”, Phys. Rev., 74, 230 (1948).



Fundamental Structures: Beam

Cantilever-based devices:
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• Versatile for a variety of applications
• Fabrication simplicity
• Better Sensitivity

Governing equation:
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2µN on the tip produces a 
displacement of 3.0 µm

Material: Polysilicon
E=165 GPa

•Electro-elastic problem
•Thermo-elastic problem
•Thermo-magnetic problem, etc

How about Coupling?



Simulation of a Linear Multiple Mode Resonator
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The response of vertical displacement of mass
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The response of induced current in lower comb



From MEMS to NEMS
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SWNT Cantilever Van der Waals Force per unit length:
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Simple Model of Electro-mechanical Coupling problem

1-D Governing equation
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Mechanical:

Electrical:

Coupled term

Coupled, Nonlinear, Second-order set of Equations: 
Potentially Unstable beyond a critical point: pull-in Voltage
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Some Nonlinear Control Scheme Might be Necessary!
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Simulation of Simplified Model
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Simulation results
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•Beam: Nominal Lb=100um, w=2um, h=2um. 
Measured : L=100um, w=1.74um, h=2.003um
(Error of 0.13%)
•Gap plate: Lg=100um, w=10um,  h=2.003um.

•Young’s Modulus: assume 165GPa.

•Fringing Effects Considered

•Pull-in Voltage Predicted at 8.56V

How to make this prediction more precise 
to include fringing effects, beam nonlinearity, and manufacturing error?



Finite Element Analysis

Strong Coupling procedure: 

Simultaneous analysis in one solver

Conventional Week coupling procedure:

Iterative Finite Element Analysis in separate 
solves for different physics domain



Finite Element Analysis (Cont’d)
Discretization of Element:

Monolithic Formulation:



MEMS Control Challenges
• Single Device Stability

– Nonlinearity from the device
– Ensure the device operate in stability
– Manage the manufacture uncertainty and chaotic behavior

• Increasing Complexity of Device

– Conventional model-based optimization process sensitive to 
modeling errors.

– Learning-based approaches, such as neural network: hard to 
know the model.

– Both model-based and learning-based

Multi-variable Robust Control
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MEMS Control Challenges (Cont’d)
• Multi-device System Stability

– Distributed nature of MEMS: many embedded 
sensors and actuators interaction

– Need robust coordination: may elements can 
exhibit failures, delays and limited modeling 
ability in stochastic environment

Distributed Market-based Control 
(Game Theoretically Based Control) http://ho.seas.ucla.edu.

(local) (hierarchy)



Multivariable Robust Control
• Present Control Design of the parallel-plate micro-actuator

– Simple feedback with a capacitor may stabilize the system

• Proposed Robust Control Design of the benchmark problem
– Provide more feedback control perspective for more sophisticated

control
– Directly deal with state-space of a control system 
– Deal with parametric uncertainty arising from manufacturing process

• Strong coupled finite element analysis for parameter identification

+V Device

Cf



Conclusion

• Study of MEMS involves the multidisciplinary study of multi-physics problems. 
Finite element analysis is a flexible tool for solving physical quantities.

• Different levels of control problem exist, both on device level and system-
network level. Intelligent schemes such as market-based control and neural 
networks are worthy of investigation

• We will establish a link between finite element analysis and control design, 
which will be used for parameter identification

• Some Prospective Future Work
– Other control scheme:

• Hybrid system optimal control
• Neural Network based control
• Game-theoretically based control

– Adaptive finite element scheme
– Nano-beam structure
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