

Figure 3: The System Block Diagram

Multi-Platform LU-Decomposition Solution in OpenCL

Ehsan Nasiri, Rafat Rashid, Saurabh Verma

Supervisor: Vaughn Betz Administrator: Christiana Amza Section: 8 Project ID: 2011027

GFLOPS =
2/3 × (matrix size)

3

runtime

Table 1. Gigaflop calculation for CPU, GPU and FPGA

We successfully beat the runtime of the C++ Blocked
code with our OpenCL CPU and GPU implementations.

Iterative Algorithm Design Process

4. SYSTEM DESIGN

LU-Decomposition (LUD) is a basic algebraic operation
with a wide range of applications.

 (a) (b) (c)

Figure 1: (a) Electromagnetic solver simulation
(b) Structure stress simulation (c) Spice Voltage simulation

LU-Decomposition is the most expensive part of
solving a system of linear equations.

Figure 2. LU-Decomposition: A = L * U

Existing challenges:
• High computing complexity: O(n3)
• Long computation/simulation times
• Existing solutions provided by Intel (MKL) and AMD

(OpenCL SDK) are expensive and platform specific

1. MOTIVATION

• Functional Correctness: Produce the correct L and
U on each of the target platforms

• Runtime Efficiency: Beat runtime of serial C++ LUD
implementation

• Portability Across Devices: Cross-platform LUD
solution using OpenCL

3. GOALS AND OBJECTIVES

4.3 OPENCL LUD ALGORITHM DESIGN ON GPU

5. TESTING, VERIFICATION AND RESULTS

OpenCL

Development

Functional
Correctness

Check

Finding Optimal

Block Size

Runtime
Comparison to

Blocked C++

Functional and
Runtime
Feedback

7. FUTURE WORK

• Optimize algorithm for FPGA
• Utilize SIMD SSE instructions on GPU
• Extend algorithm to operate on matrices larger than

10k x 10k elements
• For a block size of m, launch m x m threads instead

of the current m to exploit more parallelism

ACKNOWLEDGEMENTS

• Vaughn Betz (Supervisor)
• Christiana Amza (Administrator)
• Deshanand Singh (Altera)
• Alex Rodionov (Altera)

4.1 BLOCKED ALGORITHM APPROACH

• Divide matrix into smaller blocks
• Dependencies: black block depends on top-most

and left-most gray blocks

Figure 4: a) Block dependency b) Blocked computation

Why use Blocking?
• Operates on at most 3 blocks at any given time
• Correct block size takes advantage of caches, thus

reducing the time required to fetch the data.

Our implementation on the CPU performs the computation as shown in Figure 4.b):
• Keep the CPU occupied by using parallelism within a block
• Optimal block size of 250 (with 250 concurrent threads) is used
• Utilizes CPU caches and SIMD instructions
• Dependencies between blocks impose a restriction on the level of parallelism we can achieve

 Figure 5: Parallelism in block processing Figure 6. Runtime improvements of OpenCL

LUD Algorithm GFLOPs

C++ Non-Blocked 1

C++ Blocked 3.02

OpenCL CPU 5.01

OpenCL GPU 7.5

The OpenCL framework makes it relatively easy to
write cross-platform code. However, code that is
optimized for one platform is most likely not going to
perform at optimum on another platform.

6. CONCLUDING REMARKS

CPU to GPU
Port

Single SM + Global
Memory

Aligned Coalesced
Data Access

Remove Bank
Conflicts

Multiple SMs Local Memory

Two levels of parallelism exploited:
• Perform computations within a block in parallel (like it

is done on the CPU)
• Compute multiple blocks in parallel (coloured blocks in

Figure 8) by taking advantage of the Streaming
Multiprocessors on a GPU

Figure 10. GPU algorithm beats target C++ Blocked algorithm

Figure 8: LUD Algorithm Execution on GPU

 Figure 7. OpenCL GPU Algorithm Design Process

2. OUR SOLUTION

Develop a high-performance code that can execute
across heterogeneous devices without recompilation.

Test Hardware:

OpenCL
• Free cross-platform parallel computing language
• Recently developed by the Khronos group

o Apple, Intel, AMD, Altera, TI, etc.

CPU: Intel Core i7-2600K @ 3.4 GHz

GPU: AMD Radeon HD 6900 Series (Cayman)

FPGA: Stratix IV GX

Figure 9: Provide each SM with a different block to compute

4.2 OPENCL LUD ALGORITHM DESIGN ON CPU

