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1. MOTIVATION 4. SYSTEM DESIGN 4.1 BLOCKED ALGORITHM APPROACH 5. TESTING, VERIFICATION AND RESULTS
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LU-Decomposition is the most expensive part of Correct block size takes advantage of caches, thus We successfully beat the runtime of the C++ Blocked

solving a system of linear equations. reducing the time required to fetch the data. code with our OpenCL CPU and GPU implementations.
4.2 OPENCL LUD ALGORITHM DESIGN ON CPU
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Develop a high-performance code that can execute

across heterogeneous devices without recompilation. 4 3 OPENCL LUD ALGORITHM DESIGN ON GPU

6. CONCLUDING REMARKS

The OpenCL framework makes it relatively easy to

Test Hardware: CPU to GPU Single SM + Global Aligned Coalesced Remove Bank : write cross-platform code. However, code that is
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CPU: Intel Core i7-2600K @ 3.4 GHz Port Memory Data Access Conflicts optimized for one platform is most likely not going to
GPU: AMD Radeon HD 6900 Series (Cayman) Figure 7. OpenCL GPU Algorithm Design Process perform at optimum on another platform.
FPGA: Stratix [V GX Two levels of parallelism exploited:
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 Compute multiple blocks in parallel (coloured blocks in
Figure 8) by taking advantage of the Streaming
Multiprocessors on a GPU

OpenCL
* Free cross-platform parallel computing language
 Recently developed by the Khronos group

* Optimize algorithm for FPGA
e Utilize SIMD SSE instructions on GPU
 Extend algorithm to operate on matrices larger than
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