3 Multi-Platform LU-Decomposition Solution in OpenCL o=

&>
UNIVERSITY OF Ehsan Nasiri, Rafat Rashid, Saurabh Verma

TORONTO Supervisor: Vaughn Betz Administrator: Christiana Amza Section: 8 Project ID: 2011027 Open CL
1. MOTIVATION 4. SYSTEM DESIGN 4.1 BLOCKED ALGORITHM APPROACH 5. TESTING, VERIFICATION AND RESULTS
LU-Decomposition (LUD) is a basic algebraic operation - e Divide matrix into smaller blocks 2/3 x (matrix size)3
with a wide range of applications. f | e , | » Dependencies: black block depends on top-most GFLOPS = runtime

! ! ) ! ! and left-most gray blocks
Non. Table 1. Gigaflop calculation for CPU, GPU and FPGA
Blocked CEI:_)C(lj(eg O%?,lg ke Oléei?g & OP%)C?}(‘;L a) 3 1 3 !
Crr Code = | | LUD Algorithm GFLOPs
{ ) $ | $ ‘ i C++ Non-Blocked 1
I m e
. 'F ! '1 | Figure 4: a) Block dependency b) Blocked computation C++ Blocked 3.02
GSI Block Size Cgﬁiégﬁss Runtime
Figure 1: (a) Electromagnetic solver simulation ‘{ ! i = TeSt ‘ e N Wh - OpenCL CPU >-01
: . : : : SRR y use Blocking:
(b) Structure stress simulation (c) Spice Voltage simulation Test Module . . OpenCL GPU /.5
 QOperates on at most 3 blocks at any given time
Figure 3: The System Block Diagram . i :

LU-Decomposition is the most expensive part of Correct block size takes advantage of caches, thus We successfully beat the runtime of the C++ Blocked

solving a system of linear equations. reducing the time required to fetch the data. code with our OpenCL CPU and GPU implementations.
4.2 OPENCL LUD ALGORITHM DESIGN ON CPU

a1 a;p a3 Ay Ly, 0 0 O Ui U Usys Uy Iterative Algorithm DESign Process
8y Ay Ay Ay Ly Le O 0| [0 Up Upy Uy Our implementation on the CPU performs the computation as shown in Figure 4.b):
o an aw aw| | Lu Ly La O 0 0 Uy Us * Keep the CPU occupied by using parallelism within a block OpenCL
ce B s A L Lo Lo L 0o 0 0 U, * Optimal block size of 250 (with 250 concurrent threads) is used Development
— e Utilizes CPU caches and SIMD instructions 4
Figure 2. LU-Decomposition: A=L1" U * Dependencies between blocks impose a restriction on the level of parallelism we can achieve 4 ) 4 N
. ——C++ Blocked LUD ——0OpenCL CPU-Optimized LUD
Existing challenges: A L2’ 2" | Rowo
H. h . I v O 3 1 / ""flo 0 200 ~ & 4 < 4
ig computmg comp EXItY. (p ) AN\ /é g P b - . /
* Long computation/simulation times AN\~ /Af/"\l/ 60 || 70 20 90 o 2 .
 Existing solutions provided by Intel (MKL) and AMD Thread 2 v " 2 AT E Finding Optimal
(OpenCL SDK) . d olatf " teeds NN 8 Row 3 50 Comparison to Block Si
pen are expensive and platform specific : — ﬂ . . . . . . . . . Blocked C++ ock Size

Th read 4 1000 2000 3000 4000 2000 6000 J0O00 8000 9000 10000
Figure 5: Parallelism in block processing Figure 6. Runtime improvements of OpenCL

Develop a high-performance code that can execute

across heterogeneous devices without recompilation. 4 3 OPENCL LUD ALGORITHM DESIGN ON GPU

6. CONCLUDING REMARKS

The OpenCL framework makes it relatively easy to

Test Hardware: CPU to GPU Single SM + Global Aligned Coalesced Remove Bank : write cross-platform code. However, code that is
. : —— Multiple SMs —— Local Memory ’
CPU: Intel Core i7-2600K @ 3.4 GHz Port Memory Data Access Conflicts optimized for one platform is most likely not going to
GPU: AMD Radeon HD 6900 Series (Cayman) Figure 7. OpenCL GPU Algorithm Design Process perform at optimum on another platform.
FPGA: Stratix [V GX Two levels of parallelism exploited:

Iterationl Iteration2 Iteration 3  Perform computations within a block in paraIIeI (I|ke It /. FUTURE WORK

is done on the CPU)

 Compute multiple blocks in parallel (coloured blocks in
Figure 8) by taking advantage of the Streaming
Multiprocessors on a GPU

OpenCL
* Free cross-platform parallel computing language
 Recently developed by the Khronos group

* Optimize algorithm for FPGA
e Utilize SIMD SSE instructions on GPU
 Extend algorithm to operate on matrices larger than

o Apple, Intel, AMD, Altera, Tl, etc. Figure 8: LUD Algorithm Execution on GPU N 10k x 10k elgments |
3 GOALS AND OBJECTIVES . —C++Blocked LUD  —OpenCL GPU-Optimized LUD * For a block size of m, launch m x m threads instead
: Private Private Private Private Private Private Private Private | 200 / Of the Current m tO eXpIOIt MOre para”ellsm
° FunCtionaI CorrECtnESS: PrOduce the CorreCt L and Threadl Thread M | Threadl Thread M Threadl Thread M | Threadl Thread M | 31543
U On each Of the ta rget platforms Streaming Procgssoro l Strearf\ing Processor 7 M Streaming Procgssoro | Streaming Processor 7 E ACKNOWLE DGEMENTS
 Runtime Efficiency: Beat runtime of serial C++ LUD o Memory B20) ' Locs) Memeory (52 1) | / _— * Vaughn Betz (Supervisor)
. . Streaming Multiprocessor 0 Jl Streaming Multiprocessor 23 >0 / — . L. . .
implementation * Christiana Amza (Administrator)
0 — . . . . . . .
Portabilitv A Devi C latf LUD 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 e Deshanand Slngh (Altera)
ortability Across Devices: Cross-platform —_ Matrix Size * Alex Rodionov (Altera)

solution using OpenCL gr :rie each SM with a different block to compte Figure 10. GPU algorithm beats target C++ Blocked algorithm



