
 
 
 
 
 
 
 
 
 
 

Figure 3: The System Block Diagram 
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GFLOPS =  
2/3  × (matrix size)

3

runtime
 

 
Table 1. Gigaflop calculation for CPU, GPU and FPGA 

 
 
 
 
 
 

 
We successfully beat the runtime of the C++ Blocked 
code with our OpenCL CPU and GPU implementations. 
 

Iterative Algorithm Design Process 
 
 
 
 
 
 
 

 
 

 
 
 

4. SYSTEM DESIGN 

LU-Decomposition (LUD) is a basic algebraic operation 
with a wide range of applications. 
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Figure 1: (a) Electromagnetic solver simulation   
(b) Structure stress simulation  (c) Spice Voltage simulation  

 
LU-Decomposition is the most expensive part of 
solving a system of linear equations. 

 
 
 
 

 
Figure 2. LU-Decomposition: A = L * U 

 
Existing challenges: 
• High computing complexity: O(n3)  
• Long computation/simulation times 
• Existing solutions provided by Intel (MKL) and AMD 

(OpenCL SDK) are expensive and platform specific 

1. MOTIVATION 

• Functional Correctness: Produce the correct L and 
U on each of the target platforms 

• Runtime Efficiency: Beat runtime of serial C++ LUD 
implementation 

• Portability Across Devices: Cross-platform LUD 
solution using OpenCL 

3. GOALS AND OBJECTIVES 

4.3 OPENCL LUD ALGORITHM DESIGN ON GPU 

5. TESTING, VERIFICATION AND RESULTS 
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7. FUTURE WORK 

• Optimize algorithm for FPGA 
• Utilize SIMD SSE instructions on GPU 
• Extend algorithm to operate on matrices larger than 

10k x 10k elements 
• For a block size of m, launch m x m threads instead 

of the current m to exploit more parallelism 
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4.1 BLOCKED ALGORITHM APPROACH 

• Divide matrix into smaller blocks 
• Dependencies: black block depends on top-most 

and left-most gray blocks 
 
 
 
 

Figure 4: a) Block dependency b) Blocked computation 

 
Why use Blocking? 
• Operates  on at most 3 blocks at any given time 
• Correct block size takes advantage of caches, thus 

reducing the time required to fetch the data. 

Our implementation on the CPU performs the computation as shown in Figure 4.b): 
• Keep the CPU occupied by using parallelism within a block 
• Optimal block size of 250 (with 250 concurrent threads) is used 
• Utilizes CPU caches and SIMD instructions 
• Dependencies between blocks impose a restriction on the level of parallelism we can achieve  

 
 
 

 
 
 

       Figure 5: Parallelism in block processing                   Figure 6. Runtime improvements of OpenCL 

LUD  Algorithm GFLOPs 

C++ Non-Blocked 1 

C++ Blocked 3.02 

OpenCL CPU 5.01 

OpenCL GPU 7.5 

The OpenCL framework makes it relatively easy to 
write cross-platform code. However, code that is 
optimized for one platform is most likely not going to 
perform at optimum on another platform. 

6. CONCLUDING REMARKS 
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Two levels of parallelism exploited: 
• Perform computations within a block in parallel (like it 

is done on the CPU) 
• Compute multiple blocks in parallel (coloured blocks in 

Figure 8) by taking  advantage of the Streaming 
Multiprocessors on a GPU 

Figure 10. GPU algorithm beats target C++ Blocked algorithm 

Figure 8: LUD Algorithm Execution on GPU 

 Figure 7. OpenCL GPU Algorithm Design Process 

2. OUR SOLUTION 

Develop a high-performance code that can execute 
across heterogeneous devices without recompilation. 
 

Test Hardware: 
 
 
 

 
OpenCL 
• Free cross-platform parallel computing language 
• Recently developed by the Khronos group  

o Apple, Intel, AMD, Altera, TI, etc. 

CPU: Intel Core i7-2600K @ 3.4 GHz 

GPU: AMD Radeon HD 6900 Series (Cayman) 

FPGA: Stratix IV GX 

Figure 9: Provide each SM with a different block to compute 

4.2 OPENCL LUD ALGORITHM DESIGN ON CPU 


