UNIVERSITY OF TORONTO

1. MOTIVATION

LU-Decomposition (LUD) is a basic algebraic operation with a wide range of applications.

Figure 1: (a) Electromagnetic solver simulation (b) Structure stress simulation (c) Spice Voltage simulation

LU-Decomposition is the most expensive part of solving a system of linear equations.

a ₁₁	a ₁₂	a ₁₃	a ₁₄		L ₁₁	0	0	0		U ₁₁	U ₁₂	U ₁₃	U ₁₄
a ₂₁	a ₂₂	a ₂₃	a ₂₄	=	L ₂₁	L ₂₂	0	0	*	0	U ₂₂	U ₂₃	U ₂₄
a ₃₁	a ₃₂	a ₃₃	a ₃₄		L ₃₁	L ₃₂	L ₃₃	0		0	0	U ₃₃	U ₃₄
a ₄₁	a ₄₂	a ₄₃	a ₄₄		L ₄₁	L ₄₂	L_{43}	L ₄₄		0	0	0	U ₄₄

Figure 2. LU-Decomposition: A = L * U

Existing challenges:

- High computing complexity: O(n³)
- Long computation/simulation times
- Existing solutions provided by Intel (MKL) and AMD (OpenCL SDK) are expensive and platform specific

2. OUR SOLUTION

Develop a high-performance code that can execute across heterogeneous devices without recompilation.

Test Hardware:

CPU: Intel Core i7-2600K @ 3.4 GHz **GPU:** AMD Radeon HD 6900 Series (Cayman) **FPGA:** Stratix IV GX

OpenCL

- Free cross-platform parallel computing language
- Recently developed by the Khronos group • Apple, Intel, AMD, Altera, TI, etc.

3. GOALS AND OBJECTIVES

- Functional Correctness: Produce the correct L and U on each of the target platforms
- **Runtime Efficiency:** Beat runtime of serial C++ LUD implementation
- **Portability Across Devices:** Cross-platform LUD \bullet solution using OpenCL

Multi-Platform LU-Decomposition Solution in OpenCL

Ehsan Nasiri, Rafat Rashid, Saurabh Verma

Figure 9: Provide each SM with a different block to compute

Vaughn Betz (Supervisor) Christiana Amza (*Administrator*) Deshanand Singh (*Altera*) Alex Rodionov (*Altera*)

Figure 10. GPU algorithm beats target C++ Blocked algorithm

JD Algorithm	GFLOPs
++ Non-Blocked	1
++ Blocked	3.02
penCL CPU	5.01
penCL GPU	7.5

ACKNOWLEDGEMENTS