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Executive Summary

The purpose of our project was to write a fast OpenCL LU-Decomposition (LUD) solution for
the Intel/AMD CPU/GPU and Altera’s FPGA and record the amount of recoding required to
optimize the algorithm for these platforms. LUD is the mathematical operation which factors a
given matrix into the multiplication of a lower triangular and an upper triangular matrix. The
complexity of many problems in different fields like biology, circuit design and discrete graphics
boils down to this operation. Unfortunately the algorithm has a high computing complexity of
O(n®). Even with today’s high-end computing devices, a LUD operation could take hours to days
to finish for large matrices. Therefore a cross platform LUD solution will be useful, both for

ongoing research in this field and in the industry.

The deliverables are 1) Blocked and Non-Blocked C++ serial implementation of the algorithm
and 2) Blocked OpenCL implementations tailored for Multi-core CPU, GPU and FPGA (refer

to Appendix A for the bolded terms). The project modules are shown in the diagram below.

Matrix mxh

Bea- Blocked OpenCL OpenCL OpenCL
Blocked C++ Code CPU GPU FPGA
C++ Code
Block Size - _:“:I | Runtime
Test 1 CTest 7 Test
Test Module

Project Modules: Highlighted modules have been successfully completed

We successfully met our objective of beating the runtime of the Blocked C++ algorithm run on
CPU with our OpenCL CPU/GPU algorithms. We also developed the Test Framework that was
used to evaluate and improve our algorithms further. We used the GNU Scientific library (GSL)
to ensure our algorithms were producing the correct results. We were not able to optimize the
OpenCL algorithm for FPGA due to problems with the DE4 board. We were informed by Altera

that the board suffers from a large voltage drop when most of the device resources were utilized.
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1. Introduction

This report describes the Multi-platform LU-Decomposition Solution project carried out by our
team as a part of ECE496 design project course. The report will start by providing the motivation
behind the project, followed by discussion of the implementation of our design, testing, and
verification of our results. The report concludes by providing our useful findings about high-

performance code development, and suggestions for future work.

1.1. Background and Motivation (author E. Nasiri)

The project’s goal was to create a high performance LU-Decomposition solution using
OpenCL that can run on multi-core Intel/ AMD CPU, GPU and FPGA. LU-Decomposition
(LUD) is the mathematical operation which factors a matrix into the multiplication of a lower
and an upper triangular matrix (refer to the glossary in Appendix A for bolded terms). This
operation is the very basic method for finding the inverse of a matrix as well as solving a
system of n linear equations and n unknowns [1]. In fact, this operation is so fundamental that
the complexity of many problems in different fields boils down to the complexity of this
single operation. Consider the following examples from four different fields where LUD is
used: Electronic Circuits, Computer Networks, Chemical Engineering, and Economics.

In the software simulation field, programs such as SPICE (Simulation Program with
Integrated Circuit Emphasis [2]) create a system of equations using known currents and
voltages for every node of an analog circuit and solve for all unknown parameters to simulate
[3]. Similarly, in the Computer Networks field, knowing that the number of data packets
entering and exiting a node in a network is always equal, a system of equations is formed to
solve the Traffic Network Matrix [4]. When studying chemical reactions, a set of equations is
formed by balancing the reactant and resultant chemicals’ molarities and a Stoichiometric
Matrix is formed [5]. Solving results in finding the unknown weight/volume of the chemicals.
Lastly, we can see the use of solving a system of linear equations in Wassily Leontief’s input-
output model for which he won a Noble Prize in Economics. In Leontief’s closed model, an
economic system is considered closed if it satisfies its own needs. We can represent the
economy as n independent industries, each of which have a level of consumption from other
industries and have a total production output. Using this idea, an input-output matrix is
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formed and solving the system of equations using this matrix provides us with the production

level of each industry in order to satisfy the internal and external demands [6].

As we can observe, the applications of this basic algebraic operation is extensive. Further, the
complexity of these applications is the same as solving a LUD problem. Unfortunately, this
operation has a high cost (high computing complexity). In algorithmic terms, it has a
complexity of O(n®) which means the run-time increases in a cubic manner as the size of the
matrix increases [1]. Even with high-end computing devices, the operation could take hours or
days to finish for a matrix of considerable size (e.g. a 20,000 by 20,000 matrix).

The LUD problem has been around for decades and mathematicians and computer scientists
have been trying to optimize the algorithm for a lower runtime. Currently, there are existing
solutions that are used in both industrial and academic fields. Some are implemented in
C/C++ such as within the GNU Scientific Library (GSL) [7]. This library is open-source and
freely available. Other solutions are lower level like the Intel’s Math Kernel Library (MKL).
MKL contains LUD functionality but it is specifically optimized to be run on Intel CPUs and
it costs $399 for a single-user license [8]. Lastly, AMD has recently developed a LUD
algorithm within their latest Development Kit for AMD GPUs [9]. These existing solutions

are specifically designed to target a specific platform (such as a CPU or GPU).

In recent years, the Khronos group consisting of companies such as Intel, AMD, Nvidia,
Texas Instruments and Altera has been developing a cross-platform standard programming
language for parallel development known as OpenCL. In this project, we took advantage of

this language to develop a LUD solution that runs on multiple computing platforms.

1.2. Project Goal and Requirements (author R. Rashid)
The goal of our project is to create a high performance multi-platform LUD solution using
OpenCL that can run on the following platforms: Intel/AMD CPU, GPU and Altera’s FPGA.

The subsections below define the requirements used to evaluate the success of the project.
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1.2.1. Functional Requirements

The project required a working version of the components defined below. A component is

working if it 1) compiles and runs on the target platform(s) and 2) produces the correct L

and U output matrices. Refer to Appendix D for Validation and Acceptance Tests.

Component Target Platform(s)
1 | Serial Non-Blocked LU Decomp AlgorithminC | ¢ OS: Windows 7
2 | Serial Blocked LU Decomp Algorithm in C e Will run on Intel/AMD CPU
3 | Serial Blocked LU Decomp Algorithm in OpenCL | ¢ OS: Windows 7
4 Parallelize the Blocked LU Decomp Algorithm for | e Intel/AMD CPU
optimal performance
5 Modify and optimize the Blocked LU Decomp e OS: Windows 7
Algorithm to run on the GPU o Intel/AMD discrete GPU
6 | and FPGA e Altera DE4 Board - FPGA

1.2.2. Constraints

The list below defines the constraints imposed on the project:

e OpenCL SDK 1.1:

The OpenCL code will not be backward compatible with earlier versions of

the SDK. Compatibility with future SDK versions will not be guaranteed.

Altera’s OpenCL compiler for their FPGAS

1.2.3. Objectives
The list below defines desirable goals of the project:

Intel/AMD’s OpenCL compiler for their CPUs/GPUs

Single-precision floating point operation on dense input matrices

e Optimize the blocked OpenCL code to minimize runtime on the target platforms.

¢ Minimize the amount of recoding required to move from one platform to another.

Ideally have only one working version of the algorithm that can compile and run

on all of the targeted platforms.

e Record how much recoding is required for multiple platform compatibility.

¢ Implementation should be parameterized in a way that it can be easily ported to

new generations of the target platforms.
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2. Final Technical Design
In this section we introduce the modules of the project and provide some explanation about
each component. In the following sections (Section 3, 4, and 5), we provide details of our
algorithm design in C++, OpenCL for CPU, and OpenCL for GPU, respectively.

2.1. System Level Overview (author: S. Verma, R. Rashid)

The project was separated into three modules (as shown in the system block diagram below):
1. C++ LU-Decomposition development
2. OpenCL code development for CPU, GPU and FPGA

3. Testing, Verification and Results

Matrix nxn

)

v

Non-
Blocked OpenCL
Blocked
FPGA
C-+ Code C++ Code
=
v \ 4 \ 7
\ 2
F Functional i
GSL BIO.(I:.I; ?Ize >| Correctness  f——>> lepglrtne
(Golden LUD S Test :
Matrix Result)
Testing, Verification and Results Module

Figure 1: The System Block Diagram

The first stage (shown in green in the above diagram) was to research the mathematical and
programming advancements in the field (literature review) and to use this knowledge to
implement high-performance LUD Blocked and Non-Blocked algorithms in C++. We used
the “Portable and Scalable FPGA-Based Acceleration of a Direct Linear System Solver”
academic paper [10] as one of our guides for designing these algorithms. In this paper, Wei
Zhang implements the LUD algorithm directly in hardware using an FPGA. This stage was

completed over the summer of 2011.
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The second stage (shown in orange) was the development of a multi-platform OpenCL
algorithm capable of running on CPU, GPU and FPGA. Here we took advantage of the
OpenCL library’s ability to execute tasks in parallel and the capabilities of the target platform.
Lastly, the third stage (shown in blue) was to develop an automated testing platform that was
utilized to regularly check the correctness of our algorithms and provide us with feedback on
their performance compared to the C++ code that was developed in Stage 1. This iterative

feedback (the red arrows) helped us improve the run-time over the course of the project.

As shown in Figure 1, the only input to our algorithm is a n x n matrix on which LUD
operation needs to be performed. The input matrix is fed into the modules that implement the
algorithm for the respective platforms in C++ and OpenCL. The computed result is then fed

into the Test Module for verification and runtime performance comparisons.

2.2. Module Level Descriptions and Design (author: S. Verma)

This section provides a more detailed description of the 3 modules described above.

2.2.1. C++ Development Module
This module involved the development of two versions of the LUD algorithm using the C++
programming language: Blocked and Non-Blocked. Both produce an in-place matrix that
consists of the Lower (L) and Upper (U) triangular matrices. We used Wei Zhang’s paper [10]
to design both algorithms. Developing this module first allowed us to:

1) Become familiar with the 2 variation of the algorithm in a familiar environment

2) Quantitatively justify why we chose to develop the Blocked version in OpenCL

3) Provide a benchmark for comparing runtime performance of our OpenCL algorithms

Non-Blocked LU-Decomposition Algorithm
Also called Simple LU Factorization, this algorithm brings the entire matrix into memory
prior to performing the LUD computation in-place. The pseudo-code and detailed description

of the algorithm can be found in Appendix E.
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Blocked LU-Decomposition Algorithm

There are three common variants of the block LU Decomposition [10]; and we implemented
the “right-looking” version. In this method, the matrix is divided into blocks of which there
are 4 types. As shown in Figure 2(a) below, the block operated on (black) depends on the top-
most and left-most blocks (gray). The computation proceeds as shown in Figure 2(b). The

pseudo-code for this algorithm can be found in Appendix F.

a) b) 1 3

.: 24| Ak

Figure 2: a) Block dependency b) Blocked Algorithm computation

2.2.2. OpenCL Code Development Module

This module comprised the bulk of our project. It consisted of 3 phases: OpenCL LUD
implementations for CPU, GPU and FPGA. We started with the CPU implementation in
October 2011. By December, we started concurrently working on the GPU by porting what
we had for the CPU at the time. Both efforts were successful. The work on FPGA was
abandoned due to problems with the FPGA DE4 board. We were informed by Altera that the

board suffers from a large voltage drop when most of the device resources were utilized.

2.3. Testing, Verification and Results Module (author: S. Verma)

The four components of the testing infrastructure are written in Python and described below:

2.3.1. Input/Golden Output Matrix Generator
The matrix generator module generates 2-D matrices that are used as an input for both C++
and OpenCL LU-Decomposition algorithms. The module generates two types of matrices:

Input Matrices: The algorithm generates matrices of sizes varying from 1,000 to 10,250.
The diagonal elements of these matrices are greater than the sum of all the other elements

in the same row. This ensures the LUD operation converges.
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Golden Matrices: We used GSL’s [7] gsl_linalg_LU_decomp function to generate

“golden” result matrices which were used to check the correctness of all our algorithms.

2.3.2. Functional Correctness Test
The algorithm verifies the correctness of the L&U matrix produced by our LUD algorithms
by comparing it with the golden matrix produced by GSL, against various input matrices. The

comparison (% error) is calculated using the following formula:

diff \[Z?i%”ixSize(alg_result[i]—golden_resuzt[i])Az
derror= g tri ‘tude — x 100
golden matrix magnitude \/Z?:éden matrix Slzengden_result[i]’\z

The numerator is an accumulator for the degree of error we observe between our algorithm’s
output and that of GSL. This error grows proportionally to the size of the matrix. Therefore,
we normalize this error by dividing it by the magnitude of the golden matrix. The threshold
for error is 0.001. If the error is greater, our algorithm is considered incorrect. A sample

output of the functional correctness check algorithm is shown in Figure 3.

Results:

Test Case: 100x100.txt: Error = %7.48328430447e-05
Test Case: 12x12.txt: Error = %7.5541057351e-05

Test Case: 3x3.txt: Error = %0.000445755111815

Test Case: 2000x2000.txt: Error = %9.67328412777e-03
Test Case: 60x60.txt: Error = %0.0000163423244508
Test Case: 6x6.txt: Error = %2.24132240428e-08

All Test Cases ..... Passed!

The algorithm is performing correctly.

Figure 3: Sample Output of the Functional Correctness Test

2.3.3. Optimal Block Size Test
The OpenCL Blocked algorithm’s performance is highly dependent on the block size used.
This test runs a 10k x 10k input matrix with different block sizes to determine the optimal

block size that results in the lowest runtime on the target CPU and GPU platforms.
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2.3.4. Runtime Measurement Test

The runtime comparison test plots the runtime of two or more LUD algorithms against matrix
size. The block size used is determined from the Block Size test discussed above. This test
was used to compare the runtime of the C++ Blocked algorithm with the OpenCL algorithms.

All OpenCL algorithms developed went through all stages of the testing infrastructure, as
illustrated in Figure 4. The feedback from this iterative process helped us in optimizing our
algorithms for different platforms and make sense of the results.

OpenCL

Development

Runtime

Comparison to Finding Optimal

Blocked C++ Block Size
Algorithm

Figure 4: OpenCL Algorithm Design Process

2.4. Assessment of Final Design (author: S. Verma)

For the Non-Blocked LUD algorithm, all matrix elements must be accessible during the
computation. For a large matrix size such as 10,000, it requires at least 10,000x10,000 single-
precision numbers (roughly 0.4 GBytes) to be in memory. This is far too large to be stored in
the processor’s cache, and therefore must be stored in global memory. Fetching data back and
forth from the global memory is more time consuming than fetching it from processor’s
cache. The Blocked algorithm operates on at most three blocks at any given time. If the block
sizes were chosen correctly, they could fit into the L1, L2 or L3 caches of the processor, thus
reducing the time required to fetch the data. Since the project goal was to optimize runtime for
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very large matrices, the team decided to implement all OpenCL algorithms using the blocked

approach as it performs better due to more efficient utilization of caches.

2.5. CPU and GPU Architecture Considerations (author: S. Verma)
For our OpenCL development and benchmarking we used the machine named Glados

provided to us by our supervisor. Figure 5 shows the machine’s hardware specification:

L
_\] & /‘

OpenCL

Intel Core i7-2600K AMD Radeon Stratix IV GX Version 1.1
@ 3.4 GHz HD 6900 Series 531,200 Logic Elements
2 GB Memory 27,376 Kbits on-chip

880 MHz core clock memory

RAM: 16 GB
OS: Windows 7 (Professional Edition)
Microsoft Visual Studio 2010 (Ultimate Edition)

Figure 5: Target Machine “Glados” Hardware Specification

Understanding the architecture of both the CPU and GPU was important as it provided insight
into how much parallelism can be inherited within each device to achieve full performance.
Having knowledge of the size of caches and work groups helped us find the optimal block
size for each device. Appendix G provides the specification of Glados” CPU and GPU.
Specific considerations are discussed in Section 4 for CPU and Section 5 for GPU. More

information can also be found in Appendices H-J.
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3. C++ Module Development Details (author: S. Verma)
Initially, our C++ Non-Blocked algorithm was beating the runtime of our C++ Blocked

algorithm on a CPU as shown in Figure 6 below.

1000 Black line: C++ LUD Blocked Red line: C++ LUD Mon-Blocked

800

600 |-

400

Time (seconds)

200

0 2000 4000 6000 8000 10000
Matrix Size

Figure 6: Runtime performance of Blocked and Non-Blocked algorithms

This result was conflicting with our initial thinking that the Blocked approach should decrease
runtime for large matrices. After a lot of testing, our supervisor found that we are passing the
matrix and block size parameters by reference to many sub-functions even though we were
not modifying these parameters within them. He indicated that the Intel CPU would not store
these variables into registers or caches and would dereference it every time it wants to use the
value, thus making the algorithm run much slower. From this feedback, we modified the
blocked algorithm and improved runtime by a factor of three. The new algorithm performed

much better than the Non-Blocked algorithm as shown in Figure 7, as was expected.

Black line: C++ LUD Blocked Red line: C++ LUD Mon-Blocked
500

400 -

300

200 -

Time (seconds)

100

0 2000 4000 6000 8000 10000
Matrix Size

Figure 7: Runtime performance of updated Blocked and Non-Blocked algorithms
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4. OpenCL CPU Algorithm Development Details (author: E. Nasiri)

Due to architectural differences between a CPU and a GPU, such as memory hierarchy, one
should have the target platform in mind when developing an OpenCL algorithm. Therefore, our
final design includes an algorithm that is specifically optimized to run on CPUs. Our final
OpenCL algorithm for CPU has gone through several stages of optimization and is able to beat

the performance of our C++ Blocked LUD code. These optimizations are described below.

4.1. Performing few data transfers between the host and the compute device
Transferring data between the host and the compute device is an expensive operation. In
OpenCL, the user is able to copy data from the host to the device using c1CreateBuffer
and after the compute device has performed operations on the data, the host can read back the
results using c1EnqueueReadBuf fer. These two operations are expensive and therefore
we use each of them once. We create a buffer to hold the entire matrix, perform the entire LU-

Decomposition operations and then read back the buffer once in the end.

Device global
memory

Transfer small blocks back and forth to device global

Device global
memory

Transfer the entire matrix once to device global memory
Figure 8: Transferring Submatrix vs. Matrix to the compute device
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4.2. Pushing work from host to compute device

It is easy for a beginner in OpenCL to fall into the trap of keeping some of the algorithmic

logic on the host side. Consider the following part which is a sample from our algorithm:

Host.c

for (col=0;col<n; col++)

{
//launch kernel

clEnqueueNDRangeKernel (.., col, ..)

Host.c
//launch kernel

clEnqueueNDRangeKernel (.., n, ..)

Kernel.cl
__kernel void mykernel (const int col,
{ //get row using thread id

row = get global id(0) ;

//col was passed to kernel by host

//use row and col to do something

)

Kernel.cl

__kernel void mykernel (const int n,

{
//get row using thread id

row = get global id(0) ;

for (int col=0, col<n; col++)
{

//use row & col to do something

}

)

Figure 9: Pushing loops from the host to the kernels

The two algorithms shown will do the same work. However, the algorithm on the right runs

faster. The algorithm on the left ‘enqueues’ many kernels in a loop. There is an overhead with
launching kernels. For example, the host has to set the arguments for each kernel that it wants
to launch (using c1SetKernelArg). The command queue for the target device will also get

much larger, and the host has to keep track of when each launched work-group has finished its

job and can do something new. This causes the memory usage of the program to increase

dramatically. Furthermore, the algorithm on the right allows the OpenCL compiler to see our

whole algorithm and perhaps perform some optimization or vectorization.
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4.3. Using multiple threads (“work-items”) and utilizing the CPU cache

OpenCL provides an excellent infrastructure for the coder to explicitly declare parallelism.
Therefore it is important to verify what can be done in parallel in the algorithm. Since we are
implementing the blocked LU-Decomposition algorithm in OpenCL, we can have as many
threads as the block size (block size is the number of rows or columns in a block). This will
allow us to perform many independent arithmetic operations simultaneously. Consider the

following case which occurs for processing of blocks of type 1 and 2:

Thread 1 W
10

Thread 2 W
VaVA N ge =
Thread 3 1

Thread 4

Figure 10: Normalization of a column using multiple threads

In block type 1, we need to normalize every element in the column below the diagonal
element by the diagonal element. In the figure above, a block of size 5 is shown and 4
divisions are needed (divide 8,10,16,12 by 2). Using multiple threads we are able to perform
all of these independent operations simultaneously. Similarly, when calculating the changes to
a row in all block types, we can use as many threads as the block size. The following figure

shows how we can achieve this:

"l ez | e
Thread 1 W yéi%”% \ﬁo @0 Row 1
NN\ “~5 || 60 70 80 90 Row 2
s NN\ 8 Row 3

6 Row 4

Thread 4

Figure 11: Reducing rows with multiple threads
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We need to update the entries on all rows. Each entry will be subtracted by the multiplication
of the left-most element on its row (which has been already normalized) by the top-most row
by which we’re trying to reduce. So, for instance, 20 will become 20 — (4x3) = 8; and 30 will
become 30 — (4x4) = 14. As you see, these operations for different rows are independent. So,

Thread 1 can update all the entries on row 1, Thread 2 updates the entries on row 2, and so on.

One could also design the algorithm such that thread 1 updates the entries on column 1, and
so on. However, the best way to make sure we can utilize the CPU cache is to follow the
access pattern as shown in the figure above. Note that Thread 1 is updating adjacent row
entries (e.g. 20,30,40, and 50). Once this thread tries to access the first element of the row, the
CPU will not only get that element from the memory but also cache a big chunk of data next
to it. Since adjacent elements in a row are stored sequentially in memory, it works out best for

us to have the access pattern such that each thread accesses one row.

As you can observe, the number threads we launch is equal to the number of rows in a block
(“block size”). Here we can see an interesting tradeoff. As we increase the block size, we are
in effect increasing the number of threads and therefore introducing more parallelism. On the
other hand, as the block size gets bigger (say a block of size 1000), the entire block may not

fit in the cache and therefore reduce efficiency.

Block Size Test (Matrix Size: 10240): OpenCLCPU-Float16 Algorithm
400 T T T T T

350 : : : : :

= : : : : :

g : | : : ;
w 150k . . . : .

E : 5 : : 5
0

0 200 400 600 800 1000
Block Size

Figure 12: Run-time of OpenCL algorithm as a function of block size
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We have found a block size of 250 to be optimum for our given device. Ideally, we would like

to be able to fit 3 blocks in the cache (refer to Blocked algorithm description in Section 2.2.1).

Memory usage = 3 blocks x (250%250 elements) x (4 bytes/element) = 750,000 Bytes.
Since our CPU has 4x32KB of L2 data cache (refer to Appendix G), using a block size of 250

allows us to store three blocks in L2 cache and have faster memory accesses.

4.4. Using SIMD (Single Instruction, Multiple Data)

Today, computing devices that have multiple processing elements are able to perform the
same operation, say multiplication, on two sets of data simultaneously. In order to be able to
tell the processor to use SIMD, one must guide the compiler to generate such machine level
instructions (known as SSE instructions on Intel [12]). In OpenCL, one can use the built-in
type known as “float16”. As the name suggests, float16 stores 16 floating point numbers and
when addition, subtraction, or multiplication commands are issued between two float16
containers, the compiler will generate SSE instructions to do the operation on all 16 elements
in parallel. The processor may support up to 4-way (or 8-way SIMD) meaning that in order to
operate on 16, it will do 4 operations simultaneously, and go to the next 4 until all 16 are
calculated. In order to implement this within our algorithm, we add a restriction on the matrix
size to be a multiple of 16, and we choose a block size which is also a multiple of 16. Note
that this is not a problematic restriction, because for a given matrix of an arbitrary size, we
can pad the matrix rows and columns with zeros to increase its size to the closest multiple of
16. Since we now have a block size that is a multiple of 16, we think of each row as having

multiple float16 variables on it:

Threadl A\ VA28 VAN VZRN VN VZEN VAN FEEN FEN VARN

4L

AN O

Thread 2

Figure 13: Using multiple Float16 variables on each row
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Time (seconds)

The following graph shows the run-time of two of our OpenCL algorithms, compared to the
blocked C code run on CPU.

Green line: OpenCL Float16 on CPU Black line: C++ Blocked Red line: CPU-Optimized OpenCL on CPU

D00 b e

100

0 2000 4000 6000 8000 10000
Matrix Size

Figure 14: Comparison of 3 algorithm run times (Block size = 256)

The green curve at the bottom is our fastest implementation of the OpenCL algorithm for a
CPU which is able to solve a 10,240x10,240 matrix in 135 seconds. This is faster than the
blocked C code implementation (black curve). Also note that the effect of using float16 can
be seen by comparing the red and green curves. The red curve does not use float16 and it
appears that float16 has caused a 4X speedup. This makes sense assuming that the algorithm
has resulted in machine code that utilizes the 4-way SIMD processor registers.

Our final algorithm for the CPU uses all the above optimizations. It takes advantage of float16
type and uses parallelism when computing a block (multiple threads work on a block), but

different blocks are processed sequentially.

Refer to Section 6 (Project Summary) for Gigaflop calculation of our algorithms.
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5. OpenCL GPU Algorithm Development Details (author R. Rashid)

The GPU device is quite different from the CPU (refer to Appendix G for their specs). Recall

that on our CPU we can execute up to 1024 work items (threads) in parallel at any given time.

Also recall our LUD algorithm generates the same number of concurrent work-items as the block

size we use. In our OpenCL CPU implementation, we decided to 1) perform the computations

within a block in parallel and 2) the blocks in serial. This is illustrated in Figure 15, with the

numbers representing the block types and the blue arrows representing the serial execution of the

algorithm from one block to another. As previously explained, we attempted to use a large

enough block size to keep the CPU as busy as possible. However we were restricted by the

overhead of thread context switching, CPU L1 and L2 cache sizes and memory bandwidth.

11 A
2| |74)]
2Vf. 4|

Figure 15: OpenCL CPU Execution of the LUD Algorithm

5.1. GPU Architecture and Design Considerations

Our GPU is organized into 24 Streaming Multiprocessors (SMs), each with their own local

memory, pipelined processing units and floating point compute units. Each SM can execute

up to 256 work items (compared to 1024 on the CPU). This enforced a much lower limit on

our maximum block size. The Block Size test was used to determine the size that resulted in

the best runtime. The GPU algorithm design followed the iterative process used in designing

the CPU algorithm. The Testing and Verification module provided us with performance

feedback that we used to further optimize the algorithm. This is illustrated in Figure 2.

Single SM +

Only

CPU to GPU Port == Global Memory =

Local Memory

Aligned Coalsced
Data Access

float16 SIMD
(abandoned)

Multiple SMs

Mult_SMs_v1

Figure 16: OpenCL GPU Algorithm lterative Design Process
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Initially we ported the CPU code to execute on a single SM on the GPU. The execution of the
algorithm remained as illustrated in Figure 15. We observed poor runtime performance
compared to the CPU implementation, even with coalesced access and local memory. This
was attributed to the other 23 SMs of the GPU being idle. At the final stages of our project,

we rewrote the LUD GPU algorithm to utilize multiple SMs of which there are two variants:

1. Multiple workgroups computing different parts of a single block (Mult_SMs_v1)
2. Multiple workgroups computing different blocks (Mult_SMs_v?2)

The design considerations of each of the steps outlined in Figure 16 is discussed below.

5.2. Porting the LUD Algorithm from the CPU to GPU

This step was completed in two iterations. First the OpenCL setup code was modified to
target our AMD GPU. The second iteration involved combining the two platform’s setup code
and adding the ability to dynamically switch between the two devices. This was done to meet
our objective of reducing the amount of recoding required to move from one device to
another. Prior iterations of the algorithm were also updated to use this “CPU/GPU Switching”
code. Having the same setup code across all versions enabled us to make accurate
performance comparisons between them. Our first GPU algorithm executed as shown in
Figure 15 on a single SM.

5.3. Aligned Coalesced Data Access

The OpenCL CPU algorithm accesses data in a sequential fashion, with each thread accessing
a row. We found a coalesced access pattern resulted in better performance on the GPU (but
worse performance for CPU), as shown in Figure 17.

Table 1: Data points for Figure 17

Matrix Size | C++ Blocked | Coalesced Kernels on GPU | CPU Kernels on GPU
1000 1 1 1
2000 2 10 14
3000 6 37 45
4000 14 71 112
5000 27 143 219
7500 88 474 744
10000 211 1123 1797
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Black line: C++ Blocked Green line: Coalesced-kernels on GPU Red line: CPU-kernels on GPU
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Matrix Size

Figure 17: Coalesced access pattern performs better than having each thread access a row of a block

Coalesced read/write corresponds to each thread accessing shared data column wise instead of
sequentially (or row wise). Refer to Appendix H to see how this works. This also removed

bank conflicts which would otherwise serialize the memory accesses of adjacent threads on
the GPU (refer to Appendix J).

We used our Functional Test to verify that the algorithm produced the correct results and the
Block Size Test to find the appropriate block size that gave us the best runtime performance.
From Figure 18, we observe that block size to be 250. This made sense as the block fits within

the 512 kB L2 cache and the data being accessed resided in the global memory of the device.
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Figure 18: Block Size Test run on GPU algorithm with coalesced read and global memory

5.4. Utilizing Local Memory

Unlike global memory, local memory is private to each workgroup of threads, much smaller

in size and faster to perform computations on. The OpenCL algorithm for the GPU was

modified to take advantage of this. Prior to computing a block, the block and any dependent

blocks (up to 3) were brought into local memory from global memory where the entire matrix

was stored. This added the overhead of copying data needed from and to global and local

memory. Refer to Appendix | for details on GPU memory layout. With 32kb of local
memory, we were able to use a block size of 50 as the storage requirement was:
30kb = (3 blocks) x (50x50) x (4 bytes/element).

Black line: Global Memory Only Red line: with Local Memory

1200}
1000
8OO |
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Time (seconds)

400

200

a 2000 4000 Ba00 8000
Matrix Size

Figure 19: The Coalesced GPU LUD algorithm performs worse with local memory
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In Figure 19, the black line was run with a block size of 250 and the red line with a size of 50.
By lowering the block size, we reduced the number of concurrent threads used to compute a
block from 250 to 50. At the same time, we increased the total number of blocks to be

computed by a factor of 5. Note that we are still only utilizing a single SM at any given time.

5.5. Utilizing Multiple Streaming Multiprocessors — Two Variants

The previous versions of the GPU algorithm performed poorly due to the underutilization of
GPU resources. The next logical step was to modify the algorithm such that all 24 SMs could
be utilized in parallel to perform the LUD computation. We generated two versions. The first
uses multiple workgroups to compute different parts of a single block (Mult_SMs_v1) in
parallel, with the matrix being computed serially as shown in Figure 15. The second version
(Mult_SMs _v2) performs the computation as shown in Figure 20. Each workgroup (which
can be routed to a different SM by the GPU) computes a different block in parallel. For each
iteration, block type 1 is computed first, then the 2s and 3s in parallel and finally all of the 4s

in parallel as indicated by the coloured blocks in Figure 20.

Iteration 1 Iteration 2 Iteration 3

Figure 20: OpenCL GPU Execution of the LUD Algorithm (Mult_SMs_v2)

Mult_SMs_v2 (each OpenCL workgroup computing a different block) was more promising
performance wise. It also made more sense to have the block to be computed residing in local
memory of a single SM than to be segmented across multiple SMs. But using workgroups in

this manner, we are finally able to beat the C++ Blocked LUD algorithm’s runtime.
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Black line: C++ Blocked Red line: Mult_sMs_v2
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Figure 21: C++ Blocked vs Mult_SMs_v2 — optimal Block Size of 250 was used

Figure 22 shows the Block Size test for Mult_SMs_v2. The results indicate we are able to

fully utilize the limit of 256 work items imposed on a single SM on our GPU.

Table 2: Data points of Figure 21

Matrix Size | C++ Blocked Mult_SMs_v2

1000 1 1

2000 2 3

3000 6 7

4000 14 13

5000 27 21

7500 88 51
10000 211 102
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Figure 22: Best block size for Mult_SMs_v2 is 250 for a matrix of 10,000 and 256 for a matrix of 10,240

5.6. Adding Local Memory to Mult_SMs_v2

We used local memory for Mult_SMs_v2 and gained a slight performance improvement
(Figure 24). Unfortunately, we were restricted to a block size of 50x50 due to the limited
32kb of local memory. This reduced the amount of parallelism that we were able to exploit
within the SM (50 concurrent threads versus the previous 250). The block to be computed and
the required (unlike before) portion of the dependent top block and/or left block was copied
into local memory, as shown in Figure 24.

top klock left block

|
Figure 23: Required portion of a dependent block (in blue) was copied to local memory
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Black line: C++ Blocked Red line: Mult SMs v2 with Local Memory
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Figure 24: C++ Blocked vs Mult_SMs_v2 with Local Memory —Block Size of 50 was used

Table 3: Data points of Figure 24

Matrix Size | C++ Blocked | Mult_SMs_v2 with Local Memory
1000 1 0
2000 1 2
3000 6 4
4000 15 8
5000 29 15
7500 95 38
10000 226 89

This time for Mult_SMs_v2, using local memory showed a consistent improvement in

performance.
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6. Project Summary
We end the report by summarizing our results and how well we have met the project

requirements and objectives. We also discuss lessons learned and future work that can be done.

6.1. Meeting Our Functional Requirements (author R. Rashid, E. Nasiri)

The table below provides a summary of all of our project deliverables. The numbers 1 to 6
correspond to the deliverables defined in Section 1.2.1: Functional Requirements. The
requirements as they appear in Table 4 were defined in our Project Proposal’s Validation and

Acceptance Tests which is included in Appendix D.

Table 4: Summary of our Project Deliverables — ¢ = Successful; x = Not Started

Requirements 1 2 3 4 5 6
Functionally Correct? vV |V |V |V | Vv | X
Beats C++ Blocked runtime? | v | v | vV | V | v | X

Our C++ Blocked code beats our Non-Blocked code (Figure 7). The float16 OpenCL LUD
code optimized for the CPU beats the runtime of the C++ Blocked code (Figure 14). Finally,
the latest version of our GPU optimized LUD algorithm has the best runtime of all algorithms
(89 seconds for a 10,000 x 10,000 matrix). Table 5 summarizes the performance of our
algorithms and compares them to Intel’s MKL LUD routine and dedicated hardware designed

by Wei Zhang [10]. The Gigaflop calculation was done using the following formula:

% x n3
GFLOPS = - : where n = matrix size
run—time

Table 5: Performance Comparisons of Various LUD Algorithms

Platform Clock Algorithm GFLOPS
Frequency

CPU: Intel Core i7-2600K 3.4 GHz C++ Blocked Code 3.02

CPU: Intel Core i7-2600K 3.4 GHz OpenCL CPU-Optimized 1.0

CPU: Intel Core i7-2600K 3.4 GHz OpenCL float16-Optimized 5.01
GPU: AMD Radeon 6900 880 MHz OpenCL Multiple SM v.2 6.54
GPU: AMD Radeon 6900 880 MHz OpenCL Multiple SM v.2 7.5

with Local Memory

CPU: MKL on Xeon 5160 3 GHz MKL LUD Routine 42
FPGA: Stratix Il 200 MHz Dedicated Verilog Design by | 47
3SL340F1760C3 Wei Zhang [10]
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6.2. Meeting Our Objectives (author: R. Rashid)
Asides from optimizing the runtime of our OpenCL algorithms, two of our objectives were to:
1. Minimize the amount of recoding required to move from one platform to another.

2. Record how much recoding is required for multi-platform compatibility.

Our OpenCL setup code (the CPU/GPU switching code discussed in Section 5.2) works with
both AMD and Intel OpenCL 1.1 SDKs without the need for any code changes. Switching
from CPU to GPU is as simple as changing the value of a single macro in a header file. We

also provide the option of allowing the user select the compute device during runtime.

The OpenCL framework makes it relatively easy to write cross-platform code. However, code
that is optimized for one platform is most likely not going to perform at optimum on another

platform. Refer to Section 6.3 for a discussion of this.

6.3. Lessons Learned (author: E. Nasiri)

1) OpenCL Language

OpenCL is a very good platform for writing code where compute units need to work in
parallel. There is a steep learning curve initially but the available documentation is thorough.
It is important to understand that it is easy to develop an OpenCL code that has the same
performance or worse performance than a similar C code that was optimized by the compiler
to run on a CPU. This means that a beginner in OpenCL should not presume she can develop

a much faster code just because she is using OpenCL.

2) User’s Knowledge of Hardware

OpenCL tries to hide some of the complexities of hardware and parallel execution from the
user and does so very well. However that does not imply that the developer doesn’t need to
know the target hardware for which she is coding. Knowing the architecture of processing
units, memory hierarchy and data transfer bandwidth are crucial things to know in order to

develop an optimal code.
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3) Architecture Dependent Code

As mentioned above, the user needs to be aware of the hardware and since devices such as the
CPU and GPU have fundamental architectural differences, if the user intends to produce a fast
code, she must have the target platform in mind when developing the code. OpenCL promises
platform-independence, meaning the same OpenCL code (with some minor tweaking) can be
compiled to run on different devices (such as CPU, GPU, and FPGA). However, even though
the code that was developed with CPU in mind as the target device can be compiled and run
on the GPU, it will have a performance far from optimal on the GPU (and vice versa). The
graph below shows the run-time of one of our CPU optimized OpenCL algorithms run on
CPU and GPU. Compare the red curve (GPU run) and the green curve (our best OpenCL
implementation for GPU). The difference in performance is very large.

e CP U -Optim ized Code run on CPU s CPU-Optimized Code run an GPU Optimal OpenCL code targeting GPU
2000

1800
1600

1400 /
1200 /

1000

80O /

500 / —
400 /

200 //':‘//
0 +— . ! . ; ; . . : . .

1000 2000 3000 4000 5000 5000 F000 8000 S000 10000 11000

Runtime (s]

Matrix Size (nxn)

Figure 25: Optimal code for 1 platform is likely not going to perform optimally on another
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6.4. Future Work (author: E. Nasiri, R. Rashid)

FPGA: The major item that can be considered for future work is taking measurements of our
GPU-optimized OpenCL code on a FPGA. As part of our project we had access to a DE4
board with Altera’s StratixIV FPGA on it. However, as confirmed by Altera’s staff, the board
had a voltage drop issue when large amount of resources were instantiated on the FPGA.
Since our algorithm would try to exploit most of the resources of the FPGA, we were not able

to perform runtime measurements on the FPGA.

OpenCL Memory Allocation Constraint: OpenCL restricts the amount of memory one can
allocate for a target device. Due to this restriction, we were only able to run our algorithm for
matrices up to the allowed size (close to 11,000x11,000). As a future work, it is possible to
extend the algorithm to work for matrices larger than that by breaking the matrix down to sub-
matrices (of maximum 11,000%11,000 size) and perform LU-Decomposition on each and

perform extra computations required to obtain the final result (similar to blocking).

Using float16 Data Type on GPU Device: We store the matrix in a 1D array of float data type.
On the CPU, we are able to treat a row of a block as float16 data type and perform operations
on it. Due to stricter OpenCL syntax requirements on the GPU, we were unable to write the
same code for the GPU. To use float16 and take advantage of SIMD SSE instructions, it was
required to store the matrix in a float16 array instead. This effort was initiated but never
realized due to time constraints. The entire algorithm (host file as well as the OpenCL

kernels) would have required a major rewrite.

More Parallelism on a GPU when Using Local Memory: As explained in the Section 5.6, we
are restricted to a block size of 50 due to the 32kb of local memory. This limits the number of
work-items to 50 (limit is 256) and workgroups to 1 on a SM because we coded the algorithm
to have 1 thread operate on a single column. Recoding the algorithm such that we have 256
threads, with block size 16 will also allow multiple workgroups to exist within a single SM
(around 10 = 32kb / (=3 blocks)*(16*16)*(4 bytes/float). Workgroups are computed
independently so if one workgroup is stalled to meet a synchronization point, the SM can

quickly switch to another workgroup.
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Appendix A: Glossary (author: E. Nasiri)

Blocked Algorithm

Blocked algorithm involves breaking down a large matrix into smaller chunks (called “blocks”)
and performing computations on each block separately. In the context of matrix manipulation,
since the blocks are not independent, in order for the blocked algorithm to produce the correct
output, some extra work must be done (overhead). If the algorithm can be implemented in a way
where the speed-up from executing blocks in parallel is higher than the overhead, then the

blocked algorithm will be faster than the non-blocked equivalent.

Dense Matrix

A dense matrix is a matrix which has very few 0 entries. In contrast, sparse matrices contain
mostly 0 entries and very few non-zero entries. There are certain tricks that can be employed to
speed up the LU-Decomposition algorithm for sparse matrices. For our project, we will not

worry about this scenario.

float16

float16 is a built-in data type in defined in OpenCL. It allows the programmer to define 16
floating point numbers as a group and operate on them utilizing the Single Instruction Multiple
Data (for example, add two sets of 16 floats at the same time in parallel).

FPGA

Field Programmable Gate Arrays (FPGAS) are integrated logic circuits that can be dynamically
programmed to implement any kind of hardware logic the user desires. Hardware Description
Languages (HDLs) such as Verilog are used to program FPGAs. Altera’s OpenCL complier

takes a piece of OpenCL code and implements it in hardware on the FPGA.

LU-Decomposition
LU-Decomposition is the algebraic operation of factorizing a matrix into a lower triangular (L)
and an upper triangular matrix (U). LUD is one of the fundamental methods for solving a system

of n linear equations and n unknowns.
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Matrix A = Lower Triangular x Upper Triangular

1 2 3 1 0 O (1 2 3
2 -4 6 |=|2 -8 0O |0 1 O
3 -9 -3 3 =15 =120 0 1

Non-Blocked Algorithm
Non-blocked algorithm refers to an algorithm that takes an entire matrix and performs an
operation on the matrix. These algorithms usually run into run-time inefficiency once the size of

the matrix become considerably large. See Blocked algorithm for contrast.

OpenCL (Open Computing Language)
OpenCL is a language that has been recently developed by Khronos group which consists of a
group of companies that includes Apple, Intel, AMD, Altera and Texas Instruments. This

language is the first open and free standard language for cross-platform parallel programming.

SIMD (Single Instruction operating on Multiple Data simultaneously)
On Intel architectures, Streaming SIMD Extensions (SSE) instructions are used to realize SIMD

operations on single precision floating point data (floats).

Single Precision Floating Point Format
Single precision floating point format is a standard IEEE format in which a floating point
number is stored in 4 bytes (32 bits) of memory. For our purposes, it is less precise, takes up less

storage and has better performance than the Double Precision Floating Point format.

Streaming Multiprocessors (SMs)
SMs are discrete execution units on a GPU with their own private memory, pipeline and
functional units including ones that can perform SIMD floating point operations. Several

streaming processors with their own register files the execute instructions.

Workgroups and Work-Items
In OpenCL, work-items are threads (with private memory) and workgroups are a group of

threads (with a larger shared local memory and get allocated to the same execution unit).
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Appendix B: Final Work Breakdown Structure (author S. Verma)

1 Implement LUD algorithm in C++

2 Literature research on LUD algorithms A R

3 Implement non-blocked LUD algorithm in C++ R

4 Implement LUD algorithm using GNU Scientific Library in C++ (GSL) R

5 Implement blocked LUD algorithm in C++ A R

6 Implement Vector Addition algorithm in OpenCL

7 Study basic OpenCL concepts A R A

8 Setup OpenCL SDK

9 e Research on OpenCL SDK’s for CPU and GPU R

10 e Setup OpenCL SDK’s on CPU (Intel) and GPU (AMD) R

11 | Write Vector Addition algorithm using single thread on AMD SDK R

12 | Write OpenCL algorithm that works on both AMD and Intel SDK R

13 | Modify Vector Addition to use multiple threads R A

14 | Implement and Optimize LUD algorithm in OpenCL for CPU

15 | Version 1: Single-threaded code in OpenCL A R

16 | Optimize: Version 2: Multi-threaded code in OpenCL R A

17 | Optimize: Version 3: Reduce data transfer between host and device R A

18 | Optimize: Version 4: Push loops to kernels and use parallelism R A

19 | Optimize: Version 5: Optimize for CPU (each work-item access one row) R

20 | Optimize: Version 6: Use SIMD (float16 built-in type) R

21 | Implement and Optimize LUD algorithm in OpenCL for GPU

22 | Modify CPU algorithm to run on GPU R

23 | Optimize: Version 7: Use coalesced read/write A R

24 | Optimize: Version 8: Use GPU local memory of each work-group R

25 | Optimize: Version 9: Use multiple streaming processors R

26 | Optimize: Version 10: Try using float16 on GPUs R A

27 | Implement and Optimize LUD algorithm in OpenCL for FPGA

28 | Research and get Altera’s OpenCL working (use samples and demo) A R

29 | Modify GPU/CPU algorithm to run on FPGA R A

30 | Optimize: Consider the architecture of FPGA and equivalent circuit R A A
produced by Quartus (this could take multiple paths)

31 | Develop Testing Infrastructure

32 | Develop an “Input Matrix Generator” R

33 | Generate correct LUD output matrix for input matrices using GSL R
algorithm

34 | Develop Functional Correctness Test R

35 | Develop Run-time Measurement Test R

36 | Take functional correctness and runtime measurements of each new R

OpenCL vs C++ algorithm (on going task)
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tory (author: S. Verma)

IS

Gantt Chart H
Our final gantt chart as of March 22, 2012 — everything complete except the FPGA milestone
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Gantt chart submitted with the Group Progress document (as of January 17, 2012):
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Gantt chart submitted with the Final Project Proposal (as of October 18, 2011)
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Appendix D: Validation and Acceptance Tests

As outlined in our Project Proposal, we have developed automated tests to verify and evaluate

our final design against the project requirements and metrics. The test specification provided

below remains unchanged since the submission of our Final Project Proposal.

Functional Correctness Test

Test To validate the mathematical results of the LU-Decomposition algorithm on
Objective each of the target platforms.
Verification | Compare the generated L and U matrices with the corresponding correct L
Procedure | and U set.
Acceptable | The solution is considered valid if the L and U matrices produced by the LU-
Outcome Decomposition algorithm are correct. A variance of +/-5% in the normalized
Euclidian distance between produced LU and correct LU matrices will be
accepted to account for the target platform’s inherent limitation in performing
floating-point arithmetic operations.
Resources | A large set of correct L and U matrices of varying sizes will need to be
Needed generated with the aid of a known working version of a program that performs

LU-Decomposition. We will use the GNU Scientific Library (GSL) to
produce the correct L and U matrices.

Run-time Efficiency Test

Test To measure the run-time efficiency of the OpenCL LU-Decomposition
Objective algorithm.
Verification | Compare the run time of the OpenCL LU-Decomposition algorithm with that
Procedure | of the serial C/C++ version of the algorithm which will execute on the
system’s CPU.
Acceptable | The algorithm will be accepted if it runs faster than the serial C/C++ version
Outcome of the algorithm.
Resources Working version of the serial C/C++ LU-Decomposition algorithm.
Needed
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Appendix E: Non-Blocked LUD Algorithm (author S. Verma)
This algorithm performs two operations on the matrix elements:
1. Division of all the elements below the diagonal in the column, ak+1 k to ank, by the
diagonal element, ay .
2. Multiplication of column elements, ax+1x t0 anx by row element, ayj, and the subsequent
subtraction of the result from the column elements below the row element, ay+1 to an;.
The multiplication and subtraction is repeated for j from k+1 to N. All the operations are

repeated for the next diagonal element until the last diagonal element is reached.

Pseudo-code Non-Blocked LU Decomposition Algorithm

for k =1 to N —1 do /#for each diagonal element®/
for i = k+ 1 to N do /*for each element below it*/
a; .+ a; 1 /ay ;. (*normalize®/
end for ' '
for j = k+1to N —1 do /*for each column right of current diagonal

element*/
fori =k+ 1 to N do /*for each element below it*/

Aj j S Qi § — Q4 | X QL5
end for
end for

end for

Source: Wei Zhang’s PhD thesis [10]
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Appendix F: Blocked LUD Algorithm (author: S. Verma)
This algorithm divides the matrix into four block types. With this blocking method, there are
four kinds of computations performed on the blocks:

Case 1: All three blocks (current, left-most, and top-most) are the same physical block
Case 2: The current block is the same as the left-most block
Case 3: the current block is the same as the top-most block

Case 4: all three blocks are different

Pseudo-code Blocked LU Decomposition Algorithm

Case 1:
same as simple LU factorization with Vg instead of N /#See Algorithm
1%/

Case 2:
for £ = 1 to Ny do /*for each diagonal element in top-most block {(u)*
for i = 1 to N do /*for each element below it in current block (a)*/
Ay fo 4 Qg ke /U g [*normalize®/
end for
for j = &+ 1 to Ny do /*for each column right of current diagonal
element®/
for i = 1 to N do #for each element below it in current block
(a)*/
Qi3 +— Qg5 — Qg g X U ;
end for
end for
end for

Case 3:
for £k =1 to Ny, do #for each column n left-most block (1)*/
for 7 = 1 to Ny, do /*for each column in current block (a)*/
for i = k 4+ 1 to Ny do /*for each element below it*/
Qi3 ¥ Qg5 — I:.k g g
end for
end for
end for

Case 4
for k=1 to Ny do #for each column n left-most block (1)*/
for 7 = 1 to Ny, do /*for each column in top-most block (u)®/

for i = 1 to N, do #for each element below it in current block
(a)*/
g g +— 3,53 — Lk x Uk, 5
end for
end for
end for
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Appendix G: Glados’ CPU and GPU Specifications (author: S. Verma)

CPU

GPU

Intel (R) Core(TM) i7-2600K @ 3.4GHz
Global Memory (MB): 2047

Max Work Group Size: 1024

Number of Cores: 4

Number of Parallel Compute Cores (threads): 8

L1 Cache size: 4x32 KB instruction caches
4x32 KB data caches

L2 Cache size: 4x256 KB

L3 Cache size: 8 MB shared cache

AMD Radeon HD 6900 - Cayman
Global Memory (MB): 2048

Global Memory Cache (MB): 0

Max Clock (Mhz): 880

Local Memory (KB): 32

Max Work Group Size: 256

Number of parallel compute cores: 24
L1 Cache size: 8 KB

L2 Cache size: 512 KB shared cache

Cayman

0.88 GHz

Cayman
SIMD 23

GDDRS5 Memory] [
Controllers

b

8x4B @ 5.5GT/s

2x2B @ 5.0GT/s
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Appendix H: Aligned Coalesced Accesses (author: R. Rashid)

Coalesced read/write corresponds to each kernel (thread) accessing shared data column wise
instead of sequentially (or row wise). In the diagrams below, each arrow corresponds to a
memory access by a different thread. Each element is a float and 4 bytes wide. Assume the
matrix block size is 16x16. Assume the half-warp (group of consecutive threads that are
executed together on the device) is 16. Then a memory access at address 128 is aligned (128 /

(4*16) = whole number) but 132 is not.

Diagram 4 is an example of an aligned coalesced read. The GPU hardware recognizes this and
will grab the 64 byte block starting at address 128 at once instead of in 16 separate instances
which most likely will be the case with Diagrams 1-3. This is the reason a coalesced read is
much faster than each thread sequentially accessing multiples of 16 bytes on a GPU. Refer to
http://www.macresearch.org/opencl_episode4 [11] which provides a 1 hour video tutorial on

OpenCL and shared memory access and layout architecture of GPUs.

t0 tl5
E 910 I 12 13 14 1516 17 18 19 .20 21 22123, 24| 25 27281 29 30| 31
128 — 188...
Misaligned loads = Bad
t0 tl5
1O 112 13 1 15 46 171 18| 19 20 20 22 23 24 25
128 188...
Permuted loads = Bad
t0 tl5

10 11121314 15 16 17( 18 19 20 21|22 23: 24 25

19 1201121 (22 {23 124 |25 291130 |31

..128 188...

Aligned loads = Good
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Appendix I: Memory Layout of OpenCL and GPUs (author: R. Rashid)
OpenCL assumes a memory hierarchy as shown
on the right. In brief, there are two components, i | Moy | Memory
1) the host and 2) the kernels (threads/work- Work-ltem | {Work-ltem Work-ltem | {Work-item

items) that are managed by the host.

Local Memory Local Memory

Workgroup Workgroup

A typical GPU is composed of many streaming Global/Constant Memory

Computer Device

multiprocessors (24 on our target machine,
Glados). Each SM in turn is composed of several Host Memory

streaming processors (SP) and for our purposes, 1
or more floating point functional units capable of performing computation. The 32kb of Local
Memory (which is much faster and smaller than Global Memory) is shared between these
streaming processors. The memory layout for a

Private  Private Private | Private SMis illustrated in the diagram on the left.

Threadl Thread M Threadl Thread M

Streaming Processor 0 Streaming Processor 23

Currently, for each matrix block, our algorithm

Loca' Memory (32KB) 1) copies required data from the matrix buffer

stored in the Global Memory to the Local

Streaming Multiprocessor

Memory of a single SM 2) performs the
computation in parallel on a single SM and 3)
Global Memory | applies the changes to the Global Memory after

the computation is done.
Our GPU Memory Layout
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Appendix J: Taking Bank Conflicts into Consideration (author: R. Rashid)
GPU memory is organized into memory banks. If two threads access elements from the same

bank, these accesses will be serialized. The diagram below provides a visual representation.

Bank | 1 | 2 | E] | ...
Address | ® 1 2 3| 4 5 6 7| &8 918 11 |...
Address | 64 65 66 67 | 68 69 78 71 | 72 73 74 75 |...

In the diagram, the bytes 0-3, 64-67, ... fall within the same bank. On our AMD GPU, we have
32 banks which are interleaved with a granularity of 32-bits. So if each thread in a half-warp (see

Appendix H) accesses successive 32-bits, there will be no bank conflicts. Fortunately, a float

(used to represent a single matrix element) is 4 bytes.

As an example, this snippet from the CPU-optimized LUD algorithm has many bank conflicts:
const int i = get_global_id(0); //thread-id

for (uint j=k+1; j<blksize; j++)

if (iz=k+1 && i<blksize
block[i*blksize+j] -= (block[+i*blksize+k] * block[k*blksize+j]);

As explained in Appendix H, we modified the memory access pattern to be coalesced as shown

in the diagram below. This also removes bank conflicts:
const int j = get_global_id{0);
for (uint i=k+1; i<blksize; i++)

if (j==k+1 && ?{b1k5ize}
block[i*blksize+j] -= (block[i*blk5size+k] * block[k*blksize+j]l);
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