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Executive Summary 

The purpose of our project was to write a fast OpenCL LU-Decomposition (LUD) solution for 

the Intel/AMD CPU/GPU and Altera’s FPGA and record the amount of recoding required to 

optimize the algorithm for these platforms. LUD is the mathematical operation which factors a 

given matrix into the multiplication of a lower triangular and an upper triangular matrix. The 

complexity of many problems in different fields like biology, circuit design and discrete graphics 

boils down to this operation. Unfortunately the algorithm has a high computing complexity of 

O(n
3
). Even with today’s high-end computing devices, a LUD operation could take hours to days 

to finish for large matrices. Therefore a cross platform LUD solution will be useful, both for 

ongoing research in this field and in the industry. 

 

The deliverables are 1) Blocked and Non-Blocked C++ serial implementation of the algorithm 

and 2) Blocked OpenCL implementations tailored for Multi-core CPU, GPU and FPGA (refer 

to Appendix A for the bolded terms). The project modules are shown in the diagram below. 

 
Project Modules: Highlighted modules have been successfully completed 

 

We successfully met our objective of beating the runtime of the Blocked C++ algorithm run on 

CPU with our OpenCL CPU/GPU algorithms. We also developed the Test Framework that was 

used to evaluate and improve our algorithms further. We used the GNU Scientific library (GSL) 

to ensure our algorithms were producing the correct results. We were not able to optimize the 

OpenCL algorithm for FPGA due to problems with the DE4 board. We were informed by Altera 

that the board suffers from a large voltage drop when most of the device resources were utilized.  
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1. Introduction 

This report describes the Multi-platform LU-Decomposition Solution project carried out by our 

team as a part of ECE496 design project course. The report will start by providing the motivation 

behind the project, followed by discussion of the implementation of our design, testing, and 

verification of our results. The report concludes by providing our useful findings about high-

performance code development, and suggestions for future work. 

 

1.1. Background and Motivation (author E. Nasiri) 

The project’s goal was to create a high performance LU-Decomposition solution using 

OpenCL that can run on multi-core Intel/AMD CPU, GPU and FPGA. LU-Decomposition 

(LUD) is the mathematical operation which factors a matrix into the multiplication of a lower 

and an upper triangular matrix (refer to the glossary in Appendix A for bolded terms). This 

operation is the very basic method for finding the inverse of a matrix as well as solving a 

system of n linear equations and n unknowns [1]. In fact, this operation is so fundamental that 

the complexity of many problems in different fields boils down to the complexity of this 

single operation. Consider the following examples from four different fields where LUD is 

used: Electronic Circuits, Computer Networks, Chemical Engineering, and Economics. 

 

In the software simulation field, programs such as SPICE (Simulation Program with 

Integrated Circuit Emphasis [2]) create a system of equations using known currents and 

voltages for every node of an analog circuit and solve for all unknown parameters to simulate 

[3]. Similarly, in the Computer Networks field, knowing that the number of data packets 

entering and exiting a node in a network is always equal, a system of equations is formed to 

solve the Traffic Network Matrix [4]. When studying chemical reactions, a set of equations is 

formed by balancing the reactant and resultant chemicals’ molarities and a Stoichiometric 

Matrix is formed [5]. Solving results in finding the unknown weight/volume of the chemicals. 

Lastly, we can see the use of solving a system of linear equations in Wassily Leontief’s input-

output model for which he won a Noble Prize in Economics. In Leontief’s closed model, an 

economic system is considered closed if it satisfies its own needs. We can represent the 

economy as n independent industries, each of which have a level of consumption from other 

industries and have a total production output. Using this idea, an input-output matrix is 
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formed and solving the system of equations using this matrix provides us with the production 

level of each industry in order to satisfy the internal and external demands [6]. 

 

As we can observe, the applications of this basic algebraic operation is extensive. Further, the 

complexity of these applications is the same as solving a LUD problem. Unfortunately, this 

operation has a high cost (high computing complexity). In algorithmic terms, it has a 

complexity of O(n
3
) which means the run-time increases in a cubic manner as the size of the 

matrix increases [1]. Even with high-end computing devices, the operation could take hours or 

days to finish for a matrix of considerable size (e.g. a 20,000 by 20,000 matrix). 

 

The LUD problem has been around for decades and mathematicians and computer scientists 

have been trying to optimize the algorithm for a lower runtime. Currently, there are existing 

solutions that are used in both industrial and academic fields. Some are implemented in 

C/C++ such as within the GNU Scientific Library (GSL) [7]. This library is open-source and 

freely available. Other solutions are lower level like the Intel’s Math Kernel Library (MKL). 

MKL contains LUD functionality but it is specifically optimized to be run on Intel CPUs and 

it costs $399 for a single-user license [8]. Lastly, AMD has recently developed a LUD 

algorithm within their latest Development Kit for AMD GPUs [9]. These existing solutions 

are specifically designed to target a specific platform (such as a CPU or GPU).  

 

In recent years, the Khronos group consisting of companies such as Intel, AMD, Nvidia, 

Texas Instruments and Altera has been developing a cross-platform standard programming 

language for parallel development known as OpenCL. In this project, we took advantage of 

this language to develop a LUD solution that runs on multiple computing platforms. 

 

1.2. Project Goal and Requirements (author R. Rashid) 

The goal of our project is to create a high performance multi-platform LUD solution using 

OpenCL that can run on the following platforms: Intel/AMD CPU, GPU and Altera’s FPGA. 

The subsections below define the requirements used to evaluate the success of the project. 
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1.2.1. Functional Requirements 

The project required a working version of the components defined below. A component is 

working if it 1) compiles and runs on the target platform(s) and 2) produces the correct L 

and U output matrices. Refer to Appendix D for Validation and Acceptance Tests. 

 

 Component Target Platform(s) 

1 Serial Non-Blocked LU Decomp Algorithm in C  OS: Windows 7 

 Will run on Intel/AMD CPU 2 Serial Blocked LU Decomp Algorithm in C 

3 Serial Blocked LU Decomp Algorithm in OpenCL  OS: Windows 7 

 Intel/AMD CPU 
4 

Parallelize the Blocked LU Decomp Algorithm for 

optimal performance 

5 
Modify and optimize the Blocked LU Decomp 

Algorithm to run on the GPU 

 OS: Windows 7 

 Intel/AMD discrete GPU 

 Altera DE4 Board - FPGA 6 and FPGA 

 

1.2.2. Constraints 

The list below defines the constraints imposed on the project: 

 OpenCL SDK 1.1: 

The OpenCL code will not be backward compatible with earlier versions of 

the SDK. Compatibility with future SDK versions will not be guaranteed. 

 Intel/AMD’s OpenCL compiler for their CPUs/GPUs 

 Altera’s OpenCL compiler for their FPGAs 

 Single-precision floating point operation on dense input matrices 

 

1.2.3. Objectives 

The list below defines desirable goals of the project: 

 Optimize the blocked OpenCL code to minimize runtime on the target platforms. 

 Minimize the amount of recoding required to move from one platform to another. 

Ideally have only one working version of the algorithm that can compile and run 

on all of the targeted platforms. 

 Record how much recoding is required for multiple platform compatibility. 

 Implementation should be parameterized in a way that it can be easily ported to 

new generations of the target platforms. 
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2. Final Technical Design 

In this section we introduce the modules of the project and provide some explanation about 

each component. In the following sections (Section 3, 4, and 5), we provide details of our 

algorithm design in C++, OpenCL for CPU, and OpenCL for GPU, respectively. 

 

2.1. System Level Overview (author: S. Verma, R. Rashid) 

The project was separated into three modules (as shown in the system block diagram below): 

1. C++ LU-Decomposition development 

2. OpenCL code development for CPU, GPU and FPGA  

3. Testing, Verification and Results  

 

Figure 1: The System Block Diagram 

 

The first stage (shown in green in the above diagram) was to research the mathematical and 

programming advancements in the field (literature review) and to use this knowledge to 

implement high-performance LUD Blocked and Non-Blocked algorithms in C++. We used 

the “Portable and Scalable FPGA-Based Acceleration of a Direct Linear System Solver” 

academic paper [10] as one of our guides for designing these algorithms. In this paper, Wei 

Zhang implements the LUD algorithm directly in hardware using an FPGA. This stage was 

completed over the summer of 2011. 
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The second stage (shown in orange) was the development of a multi-platform OpenCL 

algorithm capable of running on CPU, GPU and FPGA. Here we took advantage of the 

OpenCL library’s ability to execute tasks in parallel and the capabilities of the target platform. 

Lastly, the third stage (shown in blue) was to develop an automated testing platform that was 

utilized to regularly check the correctness of our algorithms and provide us with feedback on 

their performance compared to the C++ code that was developed in Stage 1. This iterative 

feedback (the red arrows) helped us improve the run-time over the course of the project. 

 

As shown in Figure 1, the only input to our algorithm is a n x n matrix on which LUD 

operation needs to be performed. The input matrix is fed into the modules that implement the 

algorithm for the respective platforms in C++ and OpenCL. The computed result is then fed 

into the Test Module for verification and runtime performance comparisons. 

 

2.2. Module Level Descriptions and Design (author: S. Verma) 

This section provides a more detailed description of the 3 modules described above. 

 

2.2.1. C++ Development Module 

This module involved the development of two versions of the LUD algorithm using the C++ 

programming language: Blocked and Non-Blocked. Both produce an in-place matrix that 

consists of the Lower (L) and Upper (U) triangular matrices. We used Wei Zhang’s paper [10] 

to design both algorithms. Developing this module first allowed us to: 

1) Become familiar with the 2 variation of the algorithm in a familiar environment 

2) Quantitatively justify why we chose to develop the Blocked version in OpenCL 

3) Provide a benchmark for comparing runtime performance of our OpenCL algorithms 

 

Non-Blocked LU-Decomposition Algorithm 

Also called Simple LU Factorization, this algorithm brings the entire matrix into memory 

prior to performing the LUD computation in-place. The pseudo-code and detailed description 

of the algorithm can be found in Appendix E. 
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Blocked LU-Decomposition Algorithm 

There are three common variants of the block LU Decomposition [10]; and we implemented 

the “right-looking” version. In this method, the matrix is divided into blocks of which there 

are 4 types. As shown in Figure 2(a) below, the block operated on (black) depends on the top-

most and left-most blocks (gray). The computation proceeds as shown in Figure 2(b). The 

pseudo-code for this algorithm can be found in Appendix F. 

 

 

Figure 2: a) Block dependency b) Blocked Algorithm computation 

 

2.2.2. OpenCL Code Development Module 

This module comprised the bulk of our project. It consisted of 3 phases: OpenCL LUD 

implementations for CPU, GPU and FPGA. We started with the CPU implementation in 

October 2011. By December, we started concurrently working on the GPU by porting what 

we had for the CPU at the time. Both efforts were successful. The work on FPGA was 

abandoned due to problems with the FPGA DE4 board. We were informed by Altera that the 

board suffers from a large voltage drop when most of the device resources were utilized. 

 

2.3. Testing, Verification and Results Module (author: S. Verma) 

The four components of the testing infrastructure are written in Python and described below: 

 

2.3.1. Input/Golden Output Matrix Generator 

The matrix generator module generates 2-D matrices that are used as an input for both C++ 

and OpenCL LU-Decomposition algorithms. The module generates two types of matrices: 

 

Input Matrices: The algorithm generates matrices of sizes varying from 1,000 to 10,250. 

The diagonal elements of these matrices are greater than the sum of all the other elements 

in the same row. This ensures the LUD operation converges. 
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Golden Matrices: We used GSL’s [7] gsl_linalg_LU_decomp function to generate 

“golden” result matrices which were used to check the correctness of all our algorithms. 

 

2.3.2. Functional Correctness Test 

The algorithm verifies the correctness of the L&U matrix produced by our LUD algorithms 

by comparing it with the golden matrix produced by GSL, against various input matrices. The 

comparison (% error) is calculated using the following formula:  

% error = 
    

                       
 = 

√∑ (          [ ]              [ ])             
   

√∑              [ ]  
                  
   

 x 100 

 

The numerator is an accumulator for the degree of error we observe between our algorithm’s 

output and that of GSL. This error grows proportionally to the size of the matrix. Therefore, 

we normalize this error by dividing it by the magnitude of the golden matrix. The threshold 

for error is 0.001. If the error is greater, our algorithm is considered incorrect. A sample 

output of the functional correctness check algorithm is shown in Figure 3. 

 

 

2.3.3. Optimal Block Size Test 

The OpenCL Blocked algorithm’s performance is highly dependent on the block size used. 

This test runs a 10k x 10k input matrix with different block sizes to determine the optimal 

block size that results in the lowest runtime on the target CPU and GPU platforms. 

 

Results: 

Test Case: 100x100.txt: Error = %7.48328430447e-05 

Test Case: 12x12.txt: Error = %7.5541057351e-05 

Test Case: 3x3.txt: Error = %0.000445755111815 

Test Case: 2000x2000.txt: Error = %9.67328412777e-03 

Test Case: 60x60.txt: Error = %0.0000163423244508 

Test Case: 6x6.txt: Error = %2.24132240428e-08 

 

All Test Cases ..... Passed! 

 

The algorithm is performing correctly. 

Figure 3: Sample Output of the Functional Correctness Test 
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2.3.4. Runtime Measurement Test 

The runtime comparison test plots the runtime of two or more LUD algorithms against matrix 

size. The block size used is determined from the Block Size test discussed above. This test  

was used to compare the runtime of the C++ Blocked algorithm with the OpenCL algorithms. 

 

All OpenCL algorithms developed went through all stages of the testing infrastructure, as 

illustrated in Figure 4. The feedback from this iterative process helped us in optimizing our 

algorithms for different platforms and make sense of the results. 

 

 

Figure 4: OpenCL Algorithm Design Process 

 

2.4. Assessment of Final Design (author: S. Verma) 

For the Non-Blocked LUD algorithm, all matrix elements must be accessible during the 

computation. For a large matrix size such as 10,000, it requires at least 10,000x10,000 single-

precision numbers (roughly 0.4 GBytes) to be in memory. This is far too large to be stored in 

the processor’s cache, and therefore must be stored in global memory. Fetching data back and 

forth from the global memory is more time consuming than fetching it from processor’s 

cache. The Blocked algorithm operates on at most three blocks at any given time. If the block 

sizes were chosen correctly, they could fit into the L1, L2 or L3 caches of the processor, thus 

reducing the time required to fetch the data. Since the project goal was to optimize runtime for 

OpenCL 

Development 

Functional 
Correctness Check 

Finding Optimal 

Block Size 

Runtime 
Comparison to 

Blocked C++ 
Algorithm 

Functional and 
Runtime Feedback 



Page 9 

 

very large matrices, the team decided to implement all OpenCL algorithms using the blocked 

approach as it performs better due to more efficient utilization of caches. 

 

2.5. CPU and GPU Architecture Considerations (author: S. Verma) 

For our OpenCL development and benchmarking we used the machine named Glados 

provided to us by our supervisor. Figure 5 shows the machine’s hardware specification: 

 

 

Figure 5: Target Machine “Glados” Hardware Specification 

 

Understanding the architecture of both the CPU and GPU was important as it provided insight 

into how much parallelism can be inherited within each device to achieve full performance. 

Having knowledge of the size of caches and work groups helped us find the optimal block 

size for each device. Appendix G provides the specification of Glados’ CPU and GPU. 

Specific considerations are discussed in Section 4 for CPU and Section 5 for GPU. More 

information can also be found in Appendices H-J. 

  



Page 10 

 

3. C++ Module Development Details (author: S. Verma) 

Initially, our C++ Non-Blocked algorithm was beating the runtime of our C++ Blocked 

algorithm on a CPU as shown in Figure 6 below. 

 

Figure 6: Runtime performance of Blocked and Non-Blocked algorithms 

 

This result was conflicting with our initial thinking that the Blocked approach should decrease 

runtime for large matrices. After a lot of testing, our supervisor found that we are passing the 

matrix and block size parameters by reference to many sub-functions even though we were 

not modifying these parameters within them. He indicated that the Intel CPU would not store 

these variables into registers or caches and would dereference it every time it wants to use the 

value, thus making the algorithm run much slower. From this feedback, we modified the 

blocked algorithm and improved runtime by a factor of three. The new algorithm performed 

much better than the Non-Blocked algorithm as shown in Figure 7, as was expected. 

 

Figure 7: Runtime performance of updated Blocked and Non-Blocked algorithms 
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4. OpenCL CPU Algorithm Development Details (author: E. Nasiri) 

Due to architectural differences between a CPU and a GPU, such as memory hierarchy, one 

should have the target platform in mind when developing an OpenCL algorithm. Therefore, our 

final design includes an algorithm that is specifically optimized to run on CPUs. Our final 

OpenCL algorithm for CPU has gone through several stages of optimization and is able to beat 

the performance of our C++ Blocked LUD code. These optimizations are described below.  

 

4.1. Performing few data transfers between the host and the compute device 

Transferring data between the host and the compute device is an expensive operation. In 

OpenCL, the user is able to copy data from the host to the device using clCreateBuffer 

and after the compute device has performed operations on the data, the host can read back the 

results using clEnqueueReadBuffer. These two operations are expensive and therefore 

we use each of them once. We create a buffer to hold the entire matrix, perform the entire LU-

Decomposition operations and then read back the buffer once in the end. 

 

  

Host 
Device global 

memory 

 

 

  

 

  

 

Host 

 

 

Device global 

memory 

   

  

Transfer small blocks back and forth to device global 

memory 

Transfer the entire matrix once to device global memory 

 
Figure 8: Transferring Submatrix vs. Matrix to the compute device 
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4.2. Pushing work from host to compute device 

It is easy for a beginner in OpenCL to fall into the trap of keeping some of the algorithmic 

logic on the host side. Consider the following part which is a sample from our algorithm: 

 

Host.c 

 

for(col=0;col<n; col++) 

{ 

    //launch kernel 

   clEnqueueNDRangeKernel(…, col, …) 

} 

 

Host.c 

 

//launch kernel 

 

clEnqueueNDRangeKernel(…, n, …) 

Kernel.cl 

 

__kernel void mykernel(const int col, …) 

{ 

    //get row using thread id 

    row = get_global_id(0); 

  

    //col was passed to kernel by host 

 

    //use row and col to do something 

} 

 

Kernel.cl 

 

__kernel void mykernel(const int n, …) 

{ 

    //get row using thread id 

    row = get_global_id(0); 

  

    for(int col=0, col<n; col++) 

   { 

     //use row & col to do something 

   } 

} 

 

 

 

 

The two algorithms shown will do the same work. However, the algorithm on the right runs 

faster. The algorithm on the left ‘enqueues’ many kernels in a loop. There is an overhead with 

launching kernels. For example, the host has to set the arguments for each kernel that it wants 

to launch (using clSetKernelArg). The command queue for the target device will also get 

much larger, and the host has to keep track of when each launched work-group has finished its 

job and can do something new. This causes the memory usage of the program to increase 

dramatically. Furthermore, the algorithm on the right allows the OpenCL compiler to see our 

whole algorithm and perhaps perform some optimization or vectorization. 

  

Figure 9: Pushing loops from the host to the kernels 
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4.3. Using multiple threads (“work-items”) and utilizing the CPU cache 

OpenCL provides an excellent infrastructure for the coder to explicitly declare parallelism. 

Therefore it is important to verify what can be done in parallel in the algorithm. Since we are 

implementing the blocked LU-Decomposition algorithm in OpenCL, we can have as many 

threads as the block size (block size is the number of rows or columns in a block). This will 

allow us to perform many independent arithmetic operations simultaneously. Consider the 

following case which occurs for processing of blocks of type 1 and 2: 

  

 

In block type 1, we need to normalize every element in the column below the diagonal 

element by the diagonal element. In the figure above, a block of size 5 is shown and 4 

divisions are needed (divide 8,10,16,12 by 2). Using multiple threads we are able to perform 

all of these independent operations simultaneously. Similarly, when calculating the changes to 

a row in all block types, we can use as many threads as the block size. The following figure 

shows how we can achieve this: 

 

 

2 … … … … 

8 … … … … 

10 … … … … 

16 … … … … 

12 … … … … 

  

 

  

Thread 2 

Thread 3 

Thread 4 

Thread 1 

Figure 10: Normalization of a column using multiple threads 

2 3 4 5 6 

4 20 30 40 50 

5 60 70 80 90 

8 … … … … 
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Thread 2 

Thread 3 

Thread 4 

Thread 1 

Row 0  
 
Row 1 
 
Row 2 
 
Row 3 
 
Row 4 

Figure 11: Reducing rows with multiple threads 
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We need to update the entries on all rows. Each entry will be subtracted by the multiplication 

of the left-most element on its row (which has been already normalized) by the top-most row 

by which we’re trying to reduce. So, for instance, 20 will become 20 – (4×3) = 8; and 30 will 

become 30 – (4×4) = 14. As you see, these operations for different rows are independent. So, 

Thread 1 can update all the entries on row 1, Thread 2 updates the entries on row 2, and so on. 

 

One could also design the algorithm such that thread 1 updates the entries on column 1, and 

so on. However, the best way to make sure we can utilize the CPU cache is to follow the 

access pattern as shown in the figure above. Note that Thread 1 is updating adjacent row 

entries (e.g. 20,30,40, and 50). Once this thread tries to access the first element of the row, the 

CPU will not only get that element from the memory but also cache a big chunk of data next 

to it. Since adjacent elements in a row are stored sequentially in memory, it works out best for 

us to have the access pattern such that each thread accesses one row. 

 

As you can observe, the number threads we launch is equal to the number of rows in a block 

(“block size”). Here we can see an interesting tradeoff. As we increase the block size, we are 

in effect increasing the number of threads and therefore introducing more parallelism. On the 

other hand, as the block size gets bigger (say a block of size 1000), the entire block may not 

fit in the cache and therefore reduce efficiency.  

  

 

 

  

Figure 12: Run-time of OpenCL algorithm as a function of block size 

Block Size Test (Matrix Size: 10240): OpenCLCPU-Float16 Algorithm 
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We have found a block size of 250 to be optimum for our given device. Ideally, we would like 

to be able to fit 3 blocks in the cache (refer to Blocked algorithm description in Section 2.2.1). 

 

Memory usage = 3 blocks × (250×250 elements) × (4 bytes/element) = 750,000 Bytes. 

Since our CPU has 4×32KB of L2 data cache (refer to Appendix G), using a block size of 250 

allows us to store three blocks in L2 cache and have faster memory accesses. 

 

4.4. Using SIMD (Single Instruction, Multiple Data) 

Today, computing devices that have multiple processing elements are able to perform the 

same operation, say multiplication, on two sets of data simultaneously. In order to be able to 

tell the processor to use SIMD, one must guide the compiler to generate such machine level 

instructions (known as SSE instructions on Intel [12]). In OpenCL, one can use the built-in 

type known as “float16”. As the name suggests, float16 stores 16 floating point numbers and 

when addition, subtraction, or multiplication commands are issued between two float16 

containers, the compiler will generate SSE instructions to do the operation on all 16 elements 

in parallel. The processor may support up to 4-way (or 8-way SIMD) meaning that in order to 

operate on 16, it will do 4 operations simultaneously, and go to the next 4 until all 16 are 

calculated. In order to implement this within our algorithm, we add a restriction on the matrix 

size to be a multiple of 16, and we choose a block size which is also a multiple of 16. Note 

that this is not a problematic restriction, because for a given matrix of an arbitrary size, we 

can pad the matrix rows and columns with zeros to increase its size to the closest multiple of 

16. Since we now have a block size that is a multiple of 16, we think of each row as having 

multiple float16 variables on it: 

 

2                 
 

                
 

… 

4                 
 

                
 

… 

5 … … … 

 

 

  

Thread 2 

Thread 1 

Figure 13: Using multiple Float16 variables on each row 
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The following graph shows the run-time of two of our OpenCL algorithms, compared to the 

blocked C code run on CPU. 

 

 

The green curve at the bottom is our fastest implementation of the OpenCL algorithm for a 

CPU which is able to solve a 10,240×10,240 matrix in 135 seconds. This is faster than the 

blocked C code implementation (black curve). Also note that the effect of using float16 can 

be seen by comparing the red and green curves. The red curve does not use float16 and it 

appears that float16 has caused a 4X speedup. This makes sense assuming that the algorithm 

has resulted in machine code that utilizes the 4-way SIMD processor registers. 

 

Our final algorithm for the CPU uses all the above optimizations. It takes advantage of float16 

type and uses parallelism when computing a block (multiple threads work on a block), but 

different blocks are processed sequentially. 

 

Refer to Section 6 (Project Summary) for Gigaflop calculation of our algorithms.  

Figure 14: Comparison of 3 algorithm run times (Block size = 256) 

Green line: OpenCL Float16 on CPU   Black line: C++ Blocked   Red line: CPU-Optimized OpenCL on CPU 
:: 
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5. OpenCL GPU Algorithm Development Details (author R. Rashid) 

The GPU device is quite different from the CPU (refer to Appendix G for their specs). Recall 

that on our CPU we can execute up to 1024 work items (threads) in parallel at any given time. 

Also recall our LUD algorithm generates the same number of concurrent work-items as the block 

size we use. In our OpenCL CPU implementation, we decided to 1) perform the computations 

within a block in parallel and 2) the blocks in serial. This is illustrated in Figure 15, with the 

numbers representing the block types and the blue arrows representing the serial execution of the 

algorithm from one block to another. As previously explained, we attempted to use a large 

enough block size to keep the CPU as busy as possible. However we were restricted by the 

overhead of thread context switching, CPU L1 and L2 cache sizes and memory bandwidth. 

 

1 3 3         

2 4 4   1 3     

2 4 4   2 4    1 

Figure 15: OpenCL CPU Execution of the LUD Algorithm 

 

5.1. GPU Architecture and Design Considerations 

Our GPU is organized into 24 Streaming Multiprocessors (SMs), each with their own local 

memory, pipelined processing units and floating point compute units. Each SM can execute 

up to 256 work items (compared to 1024 on the CPU). This enforced a much lower limit on 

our maximum block size. The Block Size test was used to determine the size that resulted in 

the best runtime. The GPU algorithm design followed the iterative process used in designing 

the CPU algorithm. The Testing and Verification module provided us with performance 

feedback that we used to further optimize the algorithm. This is illustrated in Figure 2.  

 
Figure 16: OpenCL GPU Algorithm Iterative Design Process 

 

CPU to GPU Port 
Single SM + 

Global Memory 
Only 

Aligned Coalsced 
Data Access 

Local Memory 

float16 SIMD 
(abandoned) 

Multiple SMs 

Mult_SMs_v1 

Mult_SMs_v2 Local Memory 
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Initially we ported the CPU code to execute on a single SM on the GPU. The execution of the 

algorithm remained as illustrated in Figure 15. We observed poor runtime performance 

compared to the CPU implementation, even with coalesced access and local memory. This 

was attributed to the other 23 SMs of the GPU being idle. At the final stages of our project, 

we rewrote the LUD GPU algorithm to utilize multiple SMs of which there are two variants: 

1. Multiple workgroups computing different parts of a single block (Mult_SMs_v1) 

2. Multiple workgroups computing different blocks (Mult_SMs_v2) 

 

The design considerations of each of the steps outlined in Figure 16 is discussed below. 

 

5.2. Porting the LUD Algorithm from the CPU to GPU 

This step was completed in two iterations. First the OpenCL setup code was modified to 

target our AMD GPU. The second iteration involved combining the two platform’s setup code 

and adding the ability to dynamically switch between the two devices. This was done to meet 

our objective of reducing the amount of recoding required to move from one device to 

another. Prior iterations of the algorithm were also updated to use this “CPU/GPU Switching” 

code. Having the same setup code across all versions enabled us to make accurate 

performance comparisons between them. Our first GPU algorithm executed as shown in 

Figure 15 on a single SM. 

 

5.3. Aligned Coalesced Data Access 

The OpenCL CPU algorithm accesses data in a sequential fashion, with each thread accessing 

a row. We found a coalesced access pattern resulted in better performance on the GPU (but 

worse performance for CPU), as shown in Figure 17. 

 
Table 1: Data points for Figure 17 

Matrix Size C++ Blocked Coalesced Kernels on GPU CPU Kernels on GPU 

1000 1 1 1 

2000 2 10 14 

3000 6 37 45 

4000 14 71 112 

5000 27 143 219 

7500 88 474 744 

10000 211 1123 1797 
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Figure 17: Coalesced access pattern performs better than having each thread access a row of a block 

 

Coalesced read/write corresponds to each thread accessing shared data column wise instead of 

sequentially (or row wise). Refer to Appendix H to see how this works. This also removed 

bank conflicts which would otherwise serialize the memory accesses of adjacent threads on 

the GPU (refer to Appendix J). 

 

We used our Functional Test to verify that the algorithm produced the correct results and the 

Block Size Test to find the appropriate block size that gave us the best runtime performance. 

From Figure 18, we observe that block size to be 250. This made sense as the block fits within 

the 512 kB L2 cache and the data being accessed resided in the global memory of the device. 
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Figure 18: Block Size Test run on GPU algorithm with coalesced read and global memory 

 

5.4. Utilizing Local Memory 

Unlike global memory, local memory is private to each workgroup of threads, much smaller 

in size and faster to perform computations on. The OpenCL algorithm for the GPU was 

modified to take advantage of this. Prior to computing a block, the block and any dependent 

blocks (up to 3) were brought into local memory from global memory where the entire matrix 

was stored. This added the overhead of copying data needed from and to global and local 

memory. Refer to Appendix I for details on GPU memory layout. With 32kb of local 

memory, we were able to use a block size of 50 as the storage requirement was: 

30kb ≈ (3 blocks) × (50×50) × (4 bytes/element). 

 

 

Figure 19: The Coalesced GPU LUD algorithm performs worse with local memory 
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In Figure 19, the black line was run with a block size of 250 and the red line with a size of 50. 

By lowering the block size, we reduced the number of concurrent threads used to compute a 

block from 250 to 50. At the same time, we increased the total number of blocks to be 

computed by a factor of 5. Note that we are still only utilizing a single SM at any given time. 

 

5.5. Utilizing Multiple Streaming Multiprocessors – Two Variants 

The previous versions of the GPU algorithm performed poorly due to the underutilization of 

GPU resources. The next logical step was to modify the algorithm such that all 24 SMs could 

be utilized in parallel to perform the LUD computation. We generated two versions. The first 

uses multiple workgroups to compute different parts of a single block (Mult_SMs_v1) in 

parallel, with the matrix being computed serially as shown in Figure 15. The second version 

(Mult_SMs _v2) performs the computation as shown in Figure 20. Each workgroup (which 

can be routed to a different SM by the GPU) computes a different block in parallel. For each 

iteration, block type 1 is computed first, then the 2s and 3s in parallel and finally all of the 4s 

in parallel as indicated by the coloured blocks in Figure 20.  

 
                                              Iteration 1                    Iteration 2                   Iteration 3 

1 3 3         

2 4 4   1 3     

2 4 4   2 4    1 

Figure 20: OpenCL GPU Execution of the LUD Algorithm (Mult_SMs_v2) 

 

Mult_SMs_v2 (each OpenCL workgroup computing a different block) was more promising 

performance wise. It also made more sense to have the block to be computed residing in local 

memory of a single SM than to be segmented across multiple SMs. But using workgroups in 

this manner, we are finally able to beat the C++ Blocked LUD algorithm’s runtime. 
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Figure 21: C++ Blocked vs Mult_SMs_v2 – optimal Block Size of 250 was used 

 

Table 2: Data points of Figure 21 

Matrix Size C++ Blocked Mult_SMs_v2 

1000 1 1 

2000 2 3 

3000 6 7 

4000 14 13 

5000 27 21 

7500 88 51 

10000 211 102 

 

Figure 22 shows the Block Size test for Mult_SMs_v2. The results indicate we are able to 

fully utilize the limit of 256 work items imposed on a single SM on our GPU. 
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Figure 22: Best block size for Mult_SMs_v2 is 250 for a matrix of 10,000 and 256 for a matrix of 10,240 

 

5.6. Adding Local Memory to Mult_SMs_v2 

We used local memory for Mult_SMs_v2 and gained a slight performance improvement 

(Figure 24). Unfortunately, we were restricted to a block size of 50x50 due to the limited 

32kb of local memory. This reduced the amount of parallelism that we were able to exploit 

within the SM (50 concurrent threads versus the previous 250). The block to be computed and 

the required (unlike before) portion of the dependent top block and/or left block was copied 

into local memory, as shown in Figure 24. 

 
Figure 23: Required portion of a dependent block (in blue) was copied to local memory 
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Figure 24: C++ Blocked vs Mult_SMs_v2 with Local Memory –Block Size of 50 was used 

 

 

Table 3: Data points of Figure 24 

 

Matrix Size C++ Blocked Mult_SMs_v2 with Local Memory 

1000 1 0 

2000 1 2 

3000 6 4 

4000 15 8 

5000 29 15 

7500 95 38 

10000 226 89 

 

This time for Mult_SMs_v2, using local memory showed a consistent improvement in 

performance. 
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6. Project Summary 

We end the report by summarizing our results and how well we have met the project 

requirements and objectives. We also discuss lessons learned and future work that can be done. 

 

6.1. Meeting Our Functional Requirements (author R. Rashid, E. Nasiri) 

The table below provides a summary of all of our project deliverables. The numbers 1 to 6 

correspond to the deliverables defined in Section 1.2.1: Functional Requirements. The 

requirements as they appear in Table 4 were defined in our Project Proposal’s Validation and 

Acceptance Tests which is included in Appendix D. 

 

Table 4: Summary of our Project Deliverables – ✔= Successful; × = Not Started 

Requirements 1 2 3 4 5 6 
Functionally Correct? ✔ ✔ ✔ ✔ ✔ × 

Beats C++ Blocked runtime? ✔ ✔ ✔ ✔ ✔ × 

                       

Our C++ Blocked code beats our Non-Blocked code (Figure 7). The float16 OpenCL LUD 

code optimized for the CPU beats the runtime of the C++ Blocked code (Figure 14). Finally, 

the latest version of our GPU optimized LUD algorithm has the best runtime of all algorithms 

(89 seconds for a 10,000 x 10,000 matrix). Table 5 summarizes the performance of our 

algorithms and compares them to Intel’s MKL LUD routine and dedicated hardware designed 

by Wei Zhang [10]. The Gigaflop calculation was done using the following formula: 

GFLOPS =  

 

 
      

        
 ; where n = matrix size 

          Table 5: Performance Comparisons of Various LUD Algorithms 

 

Platform Clock 

Frequency 

Algorithm GFLOPS 

CPU: Intel Core i7-2600K 3.4 GHz C++ Blocked Code 3.02 

CPU: Intel Core i7-2600K 3.4 GHz OpenCL CPU-Optimized  1.0 

CPU: Intel Core i7-2600K 3.4 GHz OpenCL float16-Optimized  5.01 

GPU: AMD Radeon 6900 880 MHz OpenCL Multiple SM v.2 6.54 

GPU: AMD Radeon 6900 880 MHz OpenCL Multiple SM v.2 

with Local Memory 

7.5 

CPU: MKL on Xeon 5160  3 GHz MKL LUD Routine 42 

FPGA: Stratix III 

3SL340F1760C3 

200 MHz Dedicated Verilog Design by 

Wei Zhang [10] 

47 
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6.2. Meeting Our Objectives (author: R. Rashid) 

Asides from optimizing the runtime of our OpenCL algorithms, two of our objectives were to: 

1. Minimize the amount of recoding required to move from one platform to another. 

2. Record how much recoding is required for multi-platform compatibility. 

 

Our OpenCL setup code (the CPU/GPU switching code discussed in Section 5.2) works with 

both AMD and Intel OpenCL 1.1 SDKs without the need for any code changes. Switching 

from CPU to GPU is as simple as changing the value of a single macro in a header file. We 

also provide the option of allowing the user select the compute device during runtime. 

 

The OpenCL framework makes it relatively easy to write cross-platform code. However, code 

that is optimized for one platform is most likely not going to perform at optimum on another 

platform. Refer to Section 6.3 for a discussion of this. 

 

6.3. Lessons Learned (author: E. Nasiri) 

 

1) OpenCL Language 

OpenCL is a very good platform for writing code where compute units need to work in 

parallel. There is a steep learning curve initially but the available documentation is thorough. 

It is important to understand that it is easy to develop an OpenCL code that has the same 

performance or worse performance than a similar C code that was optimized by the compiler 

to run on a CPU. This means that a beginner in OpenCL should not presume she can develop 

a much faster code just because she is using OpenCL. 

 

2) User’s Knowledge of Hardware 

OpenCL tries to hide some of the complexities of hardware and parallel execution from the 

user and does so very well. However that does not imply that the developer doesn’t need to 

know the target hardware for which she is coding. Knowing the architecture of processing 

units, memory hierarchy and data transfer bandwidth are crucial things to know in order to 

develop an optimal code. 

 



Page 27 

 

3) Architecture Dependent Code 

As mentioned above, the user needs to be aware of the hardware and since devices such as the 

CPU and GPU have fundamental architectural differences, if the user intends to produce a fast 

code, she must have the target platform in mind when developing the code. OpenCL promises 

platform-independence, meaning the same OpenCL code (with some minor tweaking) can be 

compiled to run on different devices (such as CPU, GPU, and FPGA). However, even though 

the code that was developed with CPU in mind as the target device can be compiled and run 

on the GPU, it will have a performance far from optimal on the GPU (and vice versa). The 

graph below shows the run-time of one of our CPU optimized OpenCL algorithms run on 

CPU and GPU. Compare the red curve (GPU run) and the green curve (our best OpenCL 

implementation for GPU). The difference in performance is very large. 

 

 

Figure 25: Optimal code for 1 platform is likely not going to perform optimally on another  
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6.4. Future Work (author: E. Nasiri, R. Rashid) 

FPGA: The major item that can be considered for future work is taking measurements of our 

GPU-optimized OpenCL code on a FPGA. As part of our project we had access to a DE4 

board with Altera’s StratixIV FPGA on it. However, as confirmed by Altera’s staff, the board 

had a voltage drop issue when large amount of resources were instantiated on the FPGA. 

Since our algorithm would try to exploit most of the resources of the FPGA, we were not able 

to perform runtime measurements on the FPGA. 

 

OpenCL Memory Allocation Constraint: OpenCL restricts the amount of memory one can 

allocate for a target device. Due to this restriction, we were only able to run our algorithm for 

matrices up to the allowed size (close to 11,000×11,000). As a future work, it is possible to 

extend the algorithm to work for matrices larger than that by breaking the matrix down to sub-

matrices (of maximum 11,000×11,000 size) and perform LU-Decomposition on each and 

perform extra computations required to obtain the final result (similar to blocking). 

 

Using float16 Data Type on GPU Device: We store the matrix in a 1D array of float data type. 

On the CPU, we are able to treat a row of a block as float16 data type and perform operations 

on it. Due to stricter OpenCL syntax requirements on the GPU, we were unable to write the 

same code for the GPU. To use float16 and take advantage of SIMD SSE instructions, it was 

required to store the matrix in a float16 array instead. This effort was initiated but never 

realized due to time constraints. The entire algorithm (host file as well as the OpenCL 

kernels) would have required a major rewrite. 

 

More Parallelism on a GPU when Using Local Memory: As explained in the Section 5.6 , we 

are restricted to a block size of 50 due to the 32kb of local memory. This limits the number of 

work-items to 50 (limit is 256) and workgroups to 1 on a SM because we coded the algorithm 

to have 1 thread operate on a single column. Recoding the algorithm such that we have 256 

threads, with block size 16 will also allow multiple workgroups to exist within a single SM 

(around 10 ≈ 32kb / (≈3 blocks)*(16*16)*(4 bytes/float). Workgroups are computed 

independently so if one workgroup is stalled to meet a synchronization point, the SM can 

quickly switch to another workgroup.  
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Appendix A: Glossary (author: E. Nasiri) 

 

Blocked Algorithm 

Blocked algorithm involves breaking down a large matrix into smaller chunks (called “blocks”) 

and performing computations on each block separately. In the context of matrix manipulation, 

since the blocks are not independent, in order for the blocked algorithm to produce the correct 

output, some extra work must be done (overhead). If the algorithm can be implemented in a way 

where the speed-up from executing blocks in parallel is higher than the overhead, then the 

blocked algorithm will be faster than the non-blocked equivalent. 

 

Dense Matrix 

A dense matrix is a matrix which has very few 0 entries. In contrast, sparse matrices contain 

mostly 0 entries and very few non-zero entries. There are certain tricks that can be employed to 

speed up the LU-Decomposition algorithm for sparse matrices. For our project, we will not 

worry about this scenario. 

 

float16 

float16 is a built-in data type in defined in OpenCL. It allows the programmer to define 16 

floating point numbers as a group and operate on them utilizing the Single Instruction Multiple 

Data (for example, add two sets of 16 floats at the same time in parallel). 

 

FPGA 

Field Programmable Gate Arrays (FPGAs) are integrated logic circuits that can be dynamically 

programmed to implement any kind of hardware logic the user desires. Hardware Description 

Languages (HDLs) such as Verilog are used to program FPGAs. Altera’s OpenCL complier 

takes a piece of OpenCL code and implements it in hardware on the FPGA. 

 

LU-Decomposition 

LU-Decomposition is the algebraic operation of factorizing a matrix into a lower triangular (L) 

and an upper triangular matrix (U). LUD is one of the fundamental methods for solving a system 

of n linear equations and n unknowns. 
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Matrix A = Lower Triangular x Upper Triangular 

 

 

Non-Blocked Algorithm 

Non-blocked algorithm refers to an algorithm that takes an entire matrix and performs an 

operation on the matrix. These algorithms usually run into run-time inefficiency once the size of 

the matrix become considerably large. See Blocked algorithm for contrast. 

 

OpenCL (Open Computing Language) 

OpenCL is a language that has been recently developed by Khronos group which consists of a 

group of companies that includes Apple, Intel, AMD, Altera and Texas Instruments. This 

language is the first open and free standard language for cross-platform parallel programming. 

 

SIMD (Single Instruction operating on Multiple Data simultaneously) 

On Intel architectures, Streaming SIMD Extensions (SSE) instructions are used to realize SIMD 

operations on single precision floating point data (floats). 

 

Single Precision Floating Point Format 

Single precision floating point format is a standard IEEE format in which a floating point 

number is stored in 4 bytes (32 bits) of memory. For our purposes, it is less precise, takes up less 

storage and has better performance than the Double Precision Floating Point format. 

 

Streaming Multiprocessors (SMs) 

SMs are discrete execution units on a GPU with their own private memory, pipeline and 

functional units including ones that can perform SIMD floating point operations. Several 

streaming processors with their own register files the execute instructions. 

 

Workgroups and Work-Items 

In OpenCL, work-items are threads (with private memory) and workgroups are a group of 

threads (with a larger shared local memory and get allocated to the same execution unit).  
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Appendix B: Final Work Breakdown Structure (author S. Verma) 

  

# Task Ehsan Rafat Saurabh 

1 Implement LUD algorithm in C++    

2 Literature research on LUD algorithms A  R 

3 Implement non-blocked LUD algorithm in C++ R   

4 Implement LUD algorithm using GNU Scientific Library in C++ (GSL) R   

5 Implement blocked LUD algorithm in C++ A R  

6 Implement Vector Addition algorithm in OpenCL    

7 Study basic OpenCL concepts A R A 

8 Setup OpenCL SDK    

9  Research on OpenCL SDK’s for CPU and GPU R   

10  Setup OpenCL SDK’s on CPU (Intel) and GPU (AMD)   R 

11 Write Vector Addition algorithm using single thread on AMD SDK  R  

12 Write OpenCL algorithm that works on both AMD and Intel SDK   R 

13 Modify Vector Addition to use multiple threads R A  

14 Implement and Optimize LUD algorithm in OpenCL for CPU    

15 Version 1: Single-threaded code in OpenCL  A R 

16 Optimize: Version 2: Multi-threaded code in OpenCL R A  

17 Optimize: Version 3: Reduce data transfer between host and device  R A 

18 Optimize: Version 4: Push loops to kernels and use parallelism R A  

19 Optimize: Version 5: Optimize for CPU (each work-item access one row) R   

20 Optimize: Version 6: Use SIMD (float16 built-in type) R   

21 Implement and Optimize LUD algorithm in OpenCL for GPU    

22 Modify CPU algorithm to run on GPU  R  

23 Optimize: Version 7: Use coalesced read/write  A R  

24 Optimize: Version 8: Use GPU local memory of each work-group  R  

25 Optimize: Version 9: Use multiple streaming processors  R  

26 Optimize: Version 10: Try using float16 on GPUs R A  

27 Implement and Optimize LUD algorithm in OpenCL for FPGA    

28 Research and get Altera’s OpenCL working (use samples and demo)  A R 

29 Modify GPU/CPU algorithm to run on FPGA R  A 

30 Optimize: Consider the architecture of FPGA and equivalent circuit 

produced by Quartus (this could take multiple paths) 
R A A 

31 Develop Testing Infrastructure     

32 Develop an “Input Matrix Generator”   R 

33 Generate correct LUD output matrix for input matrices using GSL 

algorithm 
A  R 

34 Develop Functional Correctness Test A  R 

35 Develop Run-time Measurement Test   R 

36 Take functional correctness and runtime measurements of each new 

OpenCL vs C++ algorithm (on going task) 
  R 
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Appendix C: Gantt Chart History (author: S. Verma) 

Our final gantt chart as of March 22, 2012 – everything complete except the FPGA milestone: 
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Gantt chart submitted with the Group Progress document (as of January 17, 2012): 
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Gantt chart submitted with the Final Project Proposal (as of October 18, 2011): 
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Appendix D: Validation and Acceptance Tests 

As outlined in our Project Proposal, we have developed automated tests to verify and evaluate 

our final design against the project requirements and metrics. The test specification provided 

below remains unchanged since the submission of our Final Project Proposal. 

 

Functional Correctness Test 

Test 

Objective 

To validate the mathematical results of the LU-Decomposition algorithm on 

each of the target platforms. 

Verification 

Procedure 

Compare the generated L and U matrices with the corresponding correct L 

and U set. 

Acceptable 

Outcome 

The solution is considered valid if the L and U matrices produced by the LU-

Decomposition algorithm are correct. A variance of +/-5% in the normalized 

Euclidian distance between produced LU and correct LU matrices will be 

accepted to account for the target platform’s inherent limitation in performing 

floating-point arithmetic operations. 

Resources 

Needed 

A large set of correct L and U matrices of varying sizes will need to be 

generated with the aid of a known working version of a program that performs 

LU-Decomposition. We will use the GNU Scientific Library (GSL) to 

produce the correct L and U matrices. 

 

Run-time Efficiency Test 

Test 

Objective 

To measure the run-time efficiency of the OpenCL LU-Decomposition 

algorithm. 

Verification 

Procedure 

Compare the run time of the OpenCL LU-Decomposition algorithm with that 

of the serial C/C++ version of the algorithm which will execute on the 

system’s CPU. 

Acceptable 

Outcome 

The algorithm will be accepted if it runs faster than the serial C/C++ version 

of the algorithm. 

Resources 

Needed 

Working version of the serial C/C++ LU-Decomposition algorithm. 
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Appendix E: Non-Blocked LUD Algorithm (author S. Verma) 

This algorithm performs two operations on the matrix elements: 

1. Division of all the elements below the diagonal in the column, ak+1,k to aN,k, by the 

diagonal element, ak,k. 

2. Multiplication of column elements, ak+1,k to aN,k by row element, ak,j, and the subsequent 

subtraction of the result from the column elements below the row element, ak+1,j to aN,j. 

The multiplication and subtraction is repeated for j from k+1 to N. All the operations are 

repeated for the next diagonal element until the last diagonal element is reached. 

 

Pseudo-code Non-Blocked LU Decomposition Algorithm 

 

Source: Wei Zhang’s PhD thesis [10] 
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Appendix F: Blocked LUD Algorithm (author: S. Verma) 

This algorithm divides the matrix into four block types. With this blocking method, there are 

four kinds of computations performed on the blocks: 

 

Case 1: All three blocks (current, left-most, and top-most) are the same physical block 

Case 2: The current block is the same as the left-most block 

Case 3: the current block is the same as the top-most block 

Case 4: all three blocks are different 

 

Pseudo-code Blocked LU Decomposition Algorithm 
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Appendix G: Glados’ CPU and GPU Specifications (author: S. Verma) 

CPU GPU 

Intel (R) Core(TM) i7-2600K @ 3.4GHz 

Global Memory (MB): 2047 

Max Work Group Size: 1024 

Number of Cores: 4 

Number of Parallel Compute Cores (threads): 8 

L1 Cache size: 4x32 KB instruction caches 

                          4x32 KB data caches 

L2 Cache size: 4x256 KB 

L3 Cache size: 8 MB shared cache     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

AMD Radeon HD 6900 - Cayman 

Global Memory (MB): 2048 

Global Memory Cache (MB): 0 

Max Clock (Mhz): 880 

Local Memory (KB): 32 

Max Work Group Size: 256 

Number of parallel compute cores: 24 

L1 Cache size: 8 KB 

L2 Cache size: 512 KB shared cache 
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Appendix H: Aligned Coalesced Accesses (author: R. Rashid) 

Coalesced read/write corresponds to each kernel (thread) accessing shared data column wise 

instead of sequentially (or row wise). In the diagrams below, each arrow corresponds to a 

memory access by a different thread. Each element is a float and 4 bytes wide. Assume the 

matrix block size is 16x16. Assume the half-warp (group of consecutive threads that are 

executed together on the device) is 16. Then a memory access at address 128 is aligned (128 / 

(4*16) = whole number) but 132 is not. 

 

Diagram 4 is an example of an aligned coalesced read. The GPU hardware recognizes this and 

will grab the 64 byte block starting at address 128 at once instead of in 16 separate instances 

which most likely will be the case with Diagrams 1-3. This is the reason a coalesced read is 

much faster than each thread sequentially accessing multiples of 16 bytes on a GPU. Refer to 

http://www.macresearch.org/opencl_episode4 [11] which provides a 1 hour video tutorial on 

OpenCL and shared memory access and layout architecture of GPUs. 
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Appendix I: Memory Layout of OpenCL and GPUs (author: R. Rashid) 

OpenCL assumes a memory hierarchy as shown 

on the right. In brief, there are two components, 

1) the host and 2) the kernels (threads/work-

items) that are managed by the host. 

 

A typical GPU is composed of many streaming 

multiprocessors (24 on our target machine, 

Glados). Each SM in turn is composed of several 

streaming processors (SP) and for our purposes, 1 

or more floating point functional units capable of performing computation. The 32kb of Local 

Memory (which is much faster and smaller than Global Memory) is shared between these 

streaming processors. The memory layout for a 

SM is illustrated in the diagram on the left. 

 

Currently, for each matrix block, our algorithm 

1) copies required data from the matrix buffer 

stored in the Global Memory to the Local 

Memory of a single SM 2) performs the 

computation in parallel on a single SM and 3) 

applies the changes to the Global Memory after 

the computation is done. 

  
Our GPU Memory Layout 
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Appendix J: Taking Bank Conflicts into Consideration (author: R. Rashid) 

GPU memory is organized into memory banks. If two threads access elements from the same 

bank, these accesses will be serialized. The diagram below provides a visual representation. 

 

 

 

In the diagram, the bytes 0-3, 64-67, … fall within the same bank. On our AMD GPU, we have 

32 banks which are interleaved with a granularity of 32-bits. So if each thread in a half-warp (see 

Appendix H) accesses successive 32-bits, there will be no bank conflicts. Fortunately, a float 

(used to represent a single matrix element) is 4 bytes. 

 

As an example, this snippet from the CPU-optimized LUD algorithm has many bank conflicts: 

 

 

As explained in Appendix H, we modified the memory access pattern to be coalesced as shown 

in the diagram below. This also removes bank conflicts: 
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