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Abstract
We evaluate the scatter-gather and inter-neighbour com-
munication traffic for torus and tree topologies under
FPGA constraints. To do this, we created a cycle ac-
curate Simulator, Traffic Generator and implemented the
Blocked LU Decomposition and Sudoku Constraint Prop-
agation traffic algorithms. We have found the torus to be a
better candidate for inter-neighbour traffic. Provided we
connect the memCntrl intelligently to minimize the dis-
tance to it, scatter-gather traffic between compute nodes
and memCntrl does not favour either topologies.

1 Introduction
In this report, we evaluate the scatter-gather and inter-
neighbour communication patterns for the torus and tree
topologies under FPGA constraints. The objective is to
spend most of the time computing rather than on trans-
ferring data. To perform this evaluation, we have created
a cycle accurate Simulator, Traffic Generator and imple-
ment two computationally intensive algorithms. We also
propose future extensions to our work and things learnt.

1.1 Motivation
This project is motivated by Eric LaForest and Greg
Steffan’s work on Octavo which is a customizable ten-
pipeline-stage, eight-threaded processor built on the
Stratix IV FPGA [1]. A research direction currently being
considered is the connection of multiple Octavos together
to build a larger system. An interesting question then is
how would data transfer between these Octavos.

Octavo currently does not have the infrastructure for us
to build a multi-Octavo system and evaluate this question.
In this report, we will not build this system but instead
attempt to answer the following questions:

1. What kind of traffic patterns should we expect to see
on Octavo and the FPGA?

2. What performance metrics should we consider for
Octavo and the FPGA?

3. What are the constraints imposed on Octavo due to it
being built on the FPGA?

4. What kind of topologies is best suited for the FPGA
based on answers to questions 1-3?

We answer questions 1 to 4 in Section 2. Choosing
a topology based on a given traffic is the subject of this
report’s simulation and evaluation component.

1.2 Our Contributions
We describe our contributions below. All components are
implemented in C++.

Cycle Accurate Simulator Our Simulator executes
custom traffic patterns on user parameterizable topolo-
gies. It accepts parameters to limit a node’s Block RAM,
I/O ports and the amount of data it can send or receive. As
output, it records number of send, compute and idle cycles
of each node as well as packets the node requests, sends
and receives. These are recorded at every stepSize cycles
to show the temporal variability of the traffic. Although
we use the Simulator to study traffic under a simplified
FPGA environment, we have built it to be easily extensi-
ble. New parameters, topologies and hardware constraints
can be added without breaking existing functionality.

Simulated Applications We have used the Blocked LU
Decomposition [2] for evaluating the scatter/gather traf-
fic conditions and Sudoku Constraint Propagation [3] for
analyzing inter-communication behaviour between nodes.

Graph Partitioning Algorithm We have implemented
an algorithm to partition the work performed by our ap-
plications to the topology nodes.

2 Background
In 2003, Brebner and Levi proposed choosing a topol-
ogy that best matched the application and the fixed pro-
grammable logic of the FPGA [4]. In 2006, Manuel
Saldana evaluated five topologies (ring, star, mesh, hyper-
cube, fully connected) with three network sizes (8, 16, 32)
to examine how well they map to Xilinx FPGAs [5]. In
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2007, the study was extended to the 2D torus and 64 nodes
[6]. He focused on routing resources (wires), logic area
utilization, maximizing operating clock frequency and the
number of FPGA nets needed to place and route.

From his study, Saldana found that the underlying 2D
mesh layout architecture of the FPGA does not benefit
a particular topology. In fact, even fully connected net-
works is feasible when the number of nodes is kept small
(below 16 nodes). The goal is to maximize the utiliza-
tion of the existing FPGA resources. This is different
from ASICs where the goal is to minimize the area and
wires. Based on Figure 4 and 5 in [6], the logic (LUTs)
and routing (nets) resource utilization exhibits a scalable
linear trend for all topologies except for fully connected,
which has a square trend. Most importantly, the utiliza-
tion for the torus (although higher) is very close to that of
the mesh and even the simplest ring network.

According to [6], fully connected topologies are un-
routable beyond 22 nodes and the fmax degrades signifi-
cantly compared to other topologies beyond 10. The ring
topology meets the timing constraint of 150 MHz up to 63
nodes. Topologies beyond 63 nodes does not place and
route due to insufficient resources. The torus and mesh
meet timing up to 63 nodes and their fmax are extremely
close (150.5 and 150.1), similar to the simple ring.

In 2010, Lee and Shannon have devised an accurate
model that describes how topology parameters impact the
performance of NoCs of up to 128 nodes (latency, band-
width, operating frequency) on Xilinx Virtex 5 FPGAs
[7]. They make a number of important observations: 1)
topology choice has a greater impact on latency and band-
width than resource usage, 2) resource usage does not im-
pact performance below 80% when routability also fails,
3) link widths have a greater impact on performance than
higher node degrees, 4) number of nodes has a bigger im-
pact than node heterogeneity or their sizes [8] and 5) in-
creasing node degree linearly reduces performance. Their
next step is to bring this work to Altera FPGAs.

2.1 FPGA Constraints

From the above discussion, we draw the following con-
clusions. First, the choice of topology on the FPGA is
limited by its performance and the application. For small
networks, complex topologies like star, hypercube or fully
connected can become favourable as they have better net-
work latency and bandwidth characteristics than mesh or
torus under certain conditions [7]. Moreover, we can take
advantage of the FPGA’s programmability to dynamically
reconfigure the topology based on the particular commu-
nication patterns and needs of the application [9].

The BRAMs on a FPGA have only two ports for read
and write [10]. If data routing shares the same memory
with the processing elements, then the node will interfere

with computation. This is because the processing element
will need the ports for reading in operands for computa-
tion. FPGAs also have a fixed set of resources that exist
whether they are used or not [5]. Therefore, ideally we
should not limit the topology connectivity if there are re-
sources available.

2.2 Related Works
Besides the works listed above, Bertozzi et al presents
an ad hoc NoC synthesis tool called NetChip for MP-
SoCs that maps an application to a highly-parameterizable
topology which can then be simulated [11]. Our work, al-
though similar, is significantly more constrained.

3 Implementation
We describe the implementation of the Simulator and the
Graph Partitioning algorithm below.

3.1 Simulator Design
Figure 1 shows a high level structural diagram of our cy-
cle accurate simulator. The Config object parses a set-
tings file to populate the params HashMap. Then an ar-
ray of SimpleNode objects and the MemoryCntrl node is
initialized. The method SetupTopology() initializes each
node’s routing table based on the provided topology pa-
rameters. Dijkstra [12] is used to find the shortest deter-
ministic route. The table can be setup automatically for
any topology once we manually define the directed graph
(using each node’s neighbours array). We are interested
in the number of cycles needed to distribute the raw data,
do the computation and write back to main memory.

Figure 1: Simulator Structural Diagram

After reading in a Traffic file, the RunSimulation()
method will be called. This method will iterate over
each Node and call Step() until all nodes have nothing to
do. Step() does one cycle worth of either computation or
transferring data to neighbouring nodes using Send() and
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Recv(). The MemoryCntrl scatters and gathers traffic to
other “regular” SimpleNodes.

3.1.1 Step Function

The step function processes requests going into a node
in the following order: incoming packets, outgoing pack-
ets and finally instructions. As the node does so, it uses
up input and output resources defined in the config file.
The config can define the number of reads (Read tokens)
per cycle, write (Write tokens) per cycle and input/output
ports (I/O ports) in the node. I/O ports act as buffers where
data is queued, waiting to be saved into the BRAM. They
are also a component of Octavo.

The node will attempt to retrieve data from the I/O ports
first before reading from the BRAM. If it cannot, the node
would then try to find the data in BRAM. If the data is
found, a Read token is consumed. Similarly for writes, a
Write token is consumed when the node does a computa-
tion or stores information on the I/O ports into BRAM.

Normally, each BRAM only has two ports to perform
read and write operations. However, one can apply tech-
niques such as multi-pumping, banking or other similar
techniques to create RAM with more ports [10] [13].

3.1.2 Assumptions and Constraints

Asides from the FPGA constraints, we made several other
assumptions to simplify our Simulator. First, BRAM, link
and compute buffers are unlimited. This is for program-
ming simplicity as we do not have to implement a way to
evict cold cache lines. Also, we assumed the nodes to be
smart. This means a node knows when the receiver has
enough resources to handle the packet, thus eliminating
the need for flow control.

Further, a node will respond to requests destined for an-
other node if it has the requested data instead of propagat-
ing the request. This reduces the number of packets being
sent and simulates the behaviour of what ideally should
happen. All computations and wire delay take one cycle.
The number of input/output BRAM ports is limited and
can be changed via the config file. Finally, a node can
send one packet to each of its neighbours per cycle.

3.2 Graph Partitioning

Any algorithm can be represented by a graph where the
vertices represent computations and edges represent data
dependencies. By partitioning the graph, one can dis-
tribute the workload across processors [14] and perform
computations in parallel. Graph partitioning is also a pop-
ular technique used in the layout of digital circuits and
components in VLSI [15]. We use this approach to gener-
ate traffic patterns for the simulation.

3.2.1 Algorithm Description

Graph partitioning is a well known NP-complete problem.
There are no known efficient algorithms to partition the
graph evenly while minimizing the number and weight of
edges between partitions. Solving this problem is outside
of the scope of this report. We use a simplified version of
the Kernighan-Lin algorithm [16] instead.

We start with all the nodes in one large partition. Then
we do a depth-first graph traversal and assign nodes along
the path to a new partition. If the ancestors of a vertex is
not assigned to the new partition, we assign them to the
new partition. This process continues until the new parti-
tion has the same size as the one being partitioned. One
can bipartition the graph further to create more partitions.
Using this approach, vertices (computations) that depend
on each other will likely be mapped to the same partition.
After we have split the graph into the desired number of
partitions, we add instructions to request for data if a par-
ent of a node belongs to another partition.

4 Traffic Algorithms
The implementation of the Blocked LU Decomposition
(LUD) and Sudoku Constraint Propagation (CP) is de-
scribed below. We have verified their correctness using
GSL’s gsl linalg LU decomp() function [17] and our Su-
doku validation tool. Finally, we describe how the traffic
file is generated from these algorithms.

4.1 Blocked LU Decomposition
LUD is the decomposition of a square matrix into a
(L)ower and (U)pper triangular matrix. We use the
blocked variant of the algorithm to simulate the scat-
ter/gather traffic pattern. The algorithm is computed in-
place, resulting in a matrix that consists of the L and U
with the diagonal values of the L matrix normalized to 1.

As described in Wei Zhang’s paper [2], there are three
common versions of the blocked algorithm. We have im-
plemented the “right-looking” version. The matrix is di-
vided into blocks of which there are four types (Figure
2a). As shown in Figure 2b, the block operated on (black)
depends on the top-most and left-most blocks (grey).

Figure 2: LU Block Types

The computation proceeds as shown in Figure 3. Note
that as soon as the Type 1 block is computed, all the Type

3



2 and 3 blocks can be computed in parallel. Type 4 blocks
can be computed as soon their dependent left-most and
top-most blocks are computed.

We observe scatter/gather characteristics inherent in
moving the dependent and compute blocks to and from
off-chip memory and the cores to perform the computa-
tion. It would make sense for each block to be computed
by a separate core to take advantage of the caching be-
haviour. Preferably, the block size should be small enough
for three such blocks to fit into a core’s cache.

Figure 3: LU Blocked Algorithm

4.2 Constraint Propagation
Sudoku is a number-placement puzzle game. The stan-
dard puzzle is a table made up of 9 rows, 9 columns and
9, 3x3 boxes. The puzzle starts with given numbers in
various positions and the player’s goal is to complete the
table such that each row, column and box contains every
number from 1 to 9 exactly once. CP is the first step used
in solving a Sudoku. It consists of two rules:

Rule 1: For any cell, if a number already exists in its
row, column or box (the cell’s peers), the possibility of
that number for that cell is removed.

Rule 2: For any cell, if all of its peers has a specific
number removed, the cell itself must contain that number.

By repeatedly applying these two rules, the possible
values a cell can take is gradually minimized and more
singletons are discovered. CP does not guarantee that the
puzzle will be solved. More elaborate methods are used
to augment CP to solve difficult puzzles. These rules are
described by Peter Norvig [3]. For the puzzles we use, CP
is sufficient to solve them.

4.3 Traffic File Generation
The Simulator requires a traffic file that we generate us-
ing our traffic and graph partitioning algorithms. This is
accomplished in two steps. First, we generate a Compute
file by adding output statements for all computations in
the traffic algorithm. We use a HashMap to map mem-
ory addresses of variables to their version number. The
first time we encounter a variable, its version number is
initialized to 1. Every time this variable is written to, its
version number is incremented. Figure 4 illustrates this
for a traffic that finds the sum of three variables.

Figure 4: Compute file generation from C++ code

Figure 5: Traffic generation from Compute file

By doing this, we can visualize a data flow graph which
is used by our graph partitioning algorithm to distribute
the traffic between topology nodes and perform compu-
tations in parallel. Figure 5 illustrates this partitioning
of work for finding the sum of two variables. The ‘requ’
command is used to request data from a node. The con-
catenation of the instructions shown in Figure 5 results in
the traffic file that is read by our Simulator.

We initially planned to use LLVM [18], a research-
oriented compiler, to compile programs into a Data Flow
Graph (DFG) and then apply a partitioning algorithm to
generate a traffic flow. There are several benefits for do-
ing this. First, it would allow us to simulate programs that
are complex in nature. Also, it provides an automatic way
to generate traffic patterns for any topologies.

Ilian Tili, a masters student under Professor Greg Stef-
fan has written a tool that generates a DFG from a C++
program using the LLVM compiler. We have successfully
used his tool for simple programs. However, it has some
limitations. The tool can only handle floating point op-
erations and does not support complex array indexing or
C++ loop constructs. As a result, we instrument the C++
file to generate the Compute file instead.

5 Evaluation
In Section 2, we noted that given there is sufficient re-
sources on the FPGA, the choice of topology should be
based on the expected traffic. Here we present the results
for a 4x4 torus and 16 node tree and analyze their effec-
tiveness against our two proposed traffic patterns.

5.1 Experimental Setup
For all graphs, the x-axis represents number of cycles nor-
malized by stepSize. At every stepSize cycles, we record
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Figure 6: Node 2 - Left: 15x15 Matrix, blkSize 5, Middle: 16x16, blkSize 2, Right: 16x16, blkSize 2; stepSize 20

what occurred during that period. The memCntrl is con-
nected as shown in Figure 7. For all nodes, InsnsPerCycle
is set to 1, IOPorts to 4, BRAMWritePerCycle to 1 and
BRAMReadPerCycle to 2 to respect FPGA constraints.
For the memCntrl node, PacketsSendPerCycle and Pack-
etsReceivePerCycle are set to 4.

Figure 7: Simulated Topologies

5.2 Evaluation Results
For LUD, lots of data is initially sent from the memCn-
trl to populate compute nodes (Figure 8). After a block
is computed, it is returned to the memCntrl. Recall in-
termediate nodes can send data on behalf of the memCn-
trl if they have a copy of it (Section 3.1.2). This signifi-
cantly reduces the memCntrl’s need to keep sending latest
data. Also, with a smaller block size, sending/receiving is
much more frequent. Computed data is sent to the mem-
Cntrl earlier. For the torus, the 15x15 and 16x16 (with
a smaller block) matrices took 1323 and 1317 cycles re-
spectively. We observed a similar behaviour for the tree
topology, taking 1309 and 1345 cycles.

The left and middle graphs in Figure 6 compare using a
block size of 5x5 and 2x2 on the torus. Generally, a node
spends more time being idle when a larger block is used.
For the 15x15 matrix, this makes sense as 16 compute
nodes have only 9 blocks to work with in the first LUD
iteration and most are dependent on others being com-
puted first. The network traffic of moving around blocks
to and from the memCntrl is also more significant. With
a smaller block, more can be computed in parallel. How-
ever, the amount of required computation also increases.
This pattern is also true for the tree topology (15x15 graph
for tree is omitted for space constraints).

In LUD, blocks are returned to the memCntrl every time

Figure 8: LUD: MemCntrl - stepSize 20 cycles

Figure 9: CP 16x16 Sudoku: MemCntrl - stepSize 20

they are computed. Differently, in CP (Figure 9), only the
unknown cells are sent back when they are solved. This
explains the much lower DataReceive events. However, to
compute these cells, the entire puzzle must be sent to the
compute nodes. If the memCntrl is attached to only the
tree’s root, a very large spike in send events is observed
initially. This dissipates sharply after the first 7-10 step-
Sizes as closer nodes start to forward the puzzle. This is
also observed for the torus. Since in Figure 9, the memCn-
trl is attached to four nodes in the middle of the tree, more
packets are sent from the memCntrl as it is often closest.

Figure 10 shows representative results for Node 4 in the
torus. Figure 11 does the same for the tree. Unlike LUD,
compute nodes spend a lot of time sending/receiving data
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between them, as expected. This is because every time
CP reduces the possible values that any cell can take, this
information has to be propagated to other compute nodes
before they can proceed to the next step in CP.

Figure 10: 16x16 Sudoku, 4x4 Torus: Node4, stepSize 20

Figure 11: 16x16 Sudoku, 16 Tree: Node4, stepSize 20

Figure 12: 16x16 Sudoku, 16 Tree: Node16, stepSize 20

Node 4 is connected to the memCntrl directly in both
topologies. Interestingly, all nodes in the torus exhibit
similar compute and traffic behaviour to Node 4. This can
be attributed to the regularity of the torus. This is not true
for the tree where the behaviour is much more dispropor-
tionate. The tree’s root node spends much fewer cycles
sending data and more time being idle. This behaviour is
similar for Node 16 (Figure 12). Like the root, it is fur-
thest away from the memCntrl and has fewest ways to get
to the node. This is reflected in the much larger number of
cycles that it takes to simulate the 16x16 Sudoku for the
tree, 54 stepSizes, compared to 35 for the torus.

The behaviour described is similar for 9x9 Sudoku. It
takes 40 stepSizes on the torus and 49 on the tree. Sur-
prisingly, for LUD, stepSizes taken for torus and tree dif-
fer by at most two for both 15x15 and 16x16 matrices.
We believe this is because in LUD, once a node receives
a block, it can compute it independently of other nodes.
Conversely in CP, inter-neighbour communication is fre-
quent and can bottleneck due to the frequency of data that
needs to be sent or received from nodes like the root and
Node 16 that are farthest away and have no path diversity.

From these observations, the torus seems to be a much
better candidate for traffic patterns that exhibit a lot of
inter-neighbour traffic. Conversely, for algorithms that
have communication between only the memCntrl and a
compute node, both torus and tree can be used so long as
the memCntrl is connected intelligently to the tree.

6 Future Work
We require a better method for partitioning traffic. Our
current approach does not do a good job of spreading out
the workload evenly. It is also not conscious of spatial and
temporal locality of data. Since we already instrument a
C++ program, we could add more directives to generate
a more realistic traffic. For example, forcing the LU al-
gorithm to compute a block on only one core. However,
this approach is not very scalable as the user would need
to add annotations to a program and understand the data
movement behaviour in order to use the Simulator.

The BRAM, link and compute buffers should also be
finite and parameterizable via the config file. A cache
eviction protocol should be implemented to increase the
accuracy of the simulation. This will allow us to investi-
gate the impact of varying the nodes’ buffer sizes on per-
formance. Further, routing policies, including adaptive
variants should be considered for future work.

We want to add support for variable link latency and
prioritize nodes closer to the memCntrl when scheduling
computations to reduce latency and network communica-
tion. Finally, we would like to extend Ilian’s work to au-
tomate traffic generation and eliminate C++ annotations.

We have successfully simulated a 128x128 matrix with
32 block size on the 4x4 torus and 16 tree. The results
has been omitted from this report to simplify the analy-
sis. After applying the improvements proposed above, we
would like to scale up our evaluation to larger and more
diverse sets of topologies and traffic patterns. We want to
maximize the resource usage of a modern FPGA.

7 Conclusion
We have created a cycle accurate Simulator, Traffic Gen-
erator and implemented two traffic algorithms to evalu-
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ate the scatter-gather and inter-neighbour communication
patterns for the torus and tree topologies under FPGA con-
straints. We have found the torus to be a much better
candidate for inter-neighbour traffic. Provided we con-
nect the memCntrl intelligently (such as multiple center
nodes instead of only to the root of the tree), scatter-gather
communication between compute nodes and the memCn-
trl does not favour either topologies.
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