Parallelization of Sudoku

Alton Chiu (996194871), Ehsan Nasiri (995935065), Rafat Rashid (996096111)
{alton.chiu, ehsan.nasiri, rafat.rashid } @utoronto.ca
University of Toronto

December 20, 2012

Abstract

Sudoku is a logic-based number-placement puzzle game
where the players goal is to complete a nxn table such that
each row, column and box contains every number in the
set {1, ..., n} exactly once. In this report, we attempted
to generate a highly parallelized Sudoku solver using the
pthreads library on the Linux kernel. Based on our run-
time evaluation, we achieved an average speedup of 4.6
times over the serial implementation by using locking and
vielding methods with four threads. We believe further
speedup can be gained by making better use of threads
in our message passing version or by taking advantage of
GPUs.

1 Introduction

In this report, we present our implementation of a highly
parallelized Sudoku Solver using the pthreads library on
the Linux kernel. We begin with a discussion of the mo-
tivation for our work and present our contributions. Sec-
tion 3 presents a detailed account of the work completed.
In Section 4, we discuss our evaluation methodology and
Section 5 presents our results. Section 6 presents related
work in existing Sudoku and other logic game solvers and
Section 7 provides a discussion of the future direction this
project could take. Finally Section 8 concludes the report.

1.1 Motivation

This project is motivated by the increase in popularity of
Sudoku and similar logic puzzles over the past decade [1].
Numerous serial Sudoku solver implementations exist and
are readily available [2][3][4]. However, due to its re-
cency, there is relatively little work on parallel implemen-
tations. Parallelizing a serial Sudoku solver can improve
its speed and increase the viability of solving larger size
Sudokus. The Sudoku solver algorithm also conveys some
of the basic tradeoffs of parallel software development
such as dependencies and work-sharing which are inter-
esting to inspect and study.

1.2 Our Contributions

Our first contribution is the implementation of a Sudoku
solver that explores the search space of the puzzle in par-
allel. This implementation allows each thread to work on
a smaller search space in parallel and minimizes the exe-
cution time, leading to a solution faster. We achieved an
average of up to 4.6 times speedup using 4 threads with
our best parallel algorithm which uses fine-grain locking
and yielding.

Our second contribution is the implementation and
analysis of two major synchronization methods to parallel
Sudoku solvers: locks and message passing. We provide
runtime measurements of these algorithms run with up to
eight threads.

Our third contribution is implementation and analysis
of different methods of waiting for idle threads. We im-
plemented three variants: spin-looping, yielding, and con-
dition variable signalling. We provide the runtime mea-
surements of these variants run with up to eight threads.

2 Overview of Sudoku

Sudoku is a logic-based number-placement puzzle game.
The standard Sudoku puzzle is a table made up of 9 rows,
9 columns and 9, 3x3 boxes, as shown in Figure 1. The
puzzle starts with given numbers in various positions and
the player’s goal is to complete the table such that each
row, column and box contains every number from 1 to 9
exactly once.

Although the 9x9 variation of Sudoku is most common,
larger variations exist to increase the puzzles difficulty.
An example is a 16x16 variation made up of 16 rows, 16
columns and 16 4x4 boxes. Cells with a single possibility
is called a singleton. By using specific rules and informa-
tion from each cells peers, we can iteratively find more
singletons to help complete the table. A cell’s peers is de-
fined by all other cells that belong to the same row, column
or box. We describe the two steps we employ to solve a
Sudoku puzzle below.

6|5 9 6|o|1|8|9 37|24
4 7 3 412(8|7|6|5(3|9(1
3 1 3|7T|19|12|4|1|8|5|8
3 6154 2|83 |1|7|6(5]|4/9

5 3 1146958237

7 6 5/ 9 |7|3|2|4|6|1]|8

4 765|438 (1]|8|2

2 7 g|1|12|9|8|7|4|6|3

1 7 8|3|4|6|1)2|9|T7|5

Figure 1: 9x9 Sudoku Puzzle with solution

2.1 Constraint Propagation

Constraint Propagation (CP) is the first step used in solv-
ing a Sudoku. It consists of two rules:

Rule 1: For any cell, if a number already exists in its
row, column or box (the cell’s peers), the possibility of
that number for that cell is removed.

Rule 2: For any cell, if all of its peers has a specific
number removed, the cell itself must contain that number.

Figure 2 shows an example of Rule 1. The upper left
cell has two possibilities: {8, 9}. Once the 9 is placed in
one of the cells peers, it is removed from the possibilities
of the upper left cell. This reduces its possibilities to only
{8}, making it a singleton.

4|5 6|7 4|5 6|7

2 2| @
3

Wi | = joo
©

Figure 2: Example of Rule 1

Figure 3 shows an example of Rule 2. For the left Su-
doku’s top-left cell, all its peers (marked by blue) do not
have 3 as a possibility. This means 3 can only be placed
in the top-left cell, as shown in the puzzle on the right.

discovered. Once CP cannot reduce the amount of possi-
bilities any further, the Search method is used.

2.2 Search

Here a non-singleton cell is chosen to assume one of its
possible values. We then continue to perform Constraint
Propagation with this assumption. If the assumption is
correct, we will eventually arrive at the solution to the
puzzle. However if a contradiction is reached, the cho-
sen value is eliminated from the cell’s possibilities and
another possible value would be attempted for that cell.

3 Implementation Details

Figure 4 provides a high level overview of our work. The
arrows illustrate the dependencies between the different
components. The Parser is used to read and write Sudoku
puzzles from a file. As an example, a 16x16 puzzle would
contain numbers from 1 to 16, with Os denoting the un-
solved cells.

The Validator is used to verify both solved and un-
solved Sudokus produced by our solvers and our Sudoku
Generator. The Generator produces puzzles with unique
solutions. Its implementation is described in Section 3.1.
The Peers Generator produces the peers list given the size
of the puzzle as its input, as the peers list is different for
puzzles with different sizes. By generating the list of peers
for each cell, it removes the need to calculate the indexes
of each peer during the execution of the algorithm.

Finally, we have implemented a serial Sudoku solver
and several parallel Sudoku solvers. Their design is de-
scribed in Sections 3.2 and 3.3 respectively. All of our
code is implemented in C++. Our parallel algorithms uses
the pthreads library.

3

Figure 3: Example of Rule 2 - (blue cells are peers)

By repeatedly applying these two rules, the possibili-
ties are gradually minimized and more singletons can be

‘ Parser }—)‘ Se:ia]éo]ver I—)‘ ParallelSolvers

‘ Validator ‘ ‘Puzz]eGmeralor|

Figure 4: Implementation breakdown

3.1 Sudoku Generator

We created a Generator capable of creating new Sudoku
puzzles automatically. The Generator requires a correctly
solved puzzle as input where all the cells are already filled.
As the first step, the Generator performs transformations

on the solved puzzle to create another solved puzzle. We
utilize four such transformations described in [5] to swap
around the puzzle cells. These are documented below:

1. Swap cells (rows) horizontally: rotating the grid
around the middle row. The first row swaps with the
last, the second swaps with the second last and so on.
No change to the middle row in odd-sized puzzles.

2. Swap cells (columns) vertically: rotating the grid
around the middle column. The first column swaps
with the last, the second swaps with the second last
and so on. No change to the middle column in odd-
sized puzzles.

3. Swap cells around the main diagonal: rotating the
grid around the main diagonal.

4. Swap cells around the minor diagonal: rotating the
grid around the minor diagonal.

The second step is to remove as many of the filled-in
cells as possible. The goal is to generate new unsolved
puzzles with only a single solution. First, we randomly
select a cell in the puzzle to remove. We know that the
puzzle can be solved with that cell’s value. Then we at-
tempt to solve the puzzle with all other possible values.
For a 9x9 puzzle, if we remove a ”’1” from the cell, we
attempt to solve the puzzle with each value from 2 to 9. If
it is solvable with another value, this means there will be
multiple solutions if the value in the cell is removed. Oth-
erwise, it can be safely removed. This process of remov-
ing cells is repeated until no further cell can be removed.
At such point, the final unsolved Sudoku is generated.

These two steps can be repeated to create multiple Su-
doku puzzles. Our implementation allows Sudokus of ar-
bitrary sizes to be generated. We have validated our Gen-
erator with 9x9, 16x16 and 25x25 puzzles using our Val-
idator. Our Generator provides us with three important
guarantees that are useful when evaluating our solvers:

1. Generated puzzles have unique solutions.

2. Generated puzzles are ’evil’, since we continue re-
moving cells until no further cell can be removed.

3. Generated puzzles have the same time complexity as
the solved input Sudoku due to the properties of the
transformations.

3.2 Serial Solver

We start with a serial implementation of Sudoku in C++
based on Peter Norvigs algorithm [3]. The algorithm uses
Constraint Propagation and Search discussed in Section 2.
We describe their implementation in our algorithm below.
After our algorithm finds the solution to the puzzle, we
ensure it is correct using our Validator.

3.2.1 Constraint Propagation

We cycle through each cell, performing checks on the two
rules presented in Section 2.1. For the first rule, for each
peer, if it is a singleton, we remove the peers value from
the possibilities list of the cell. When all the peers of a
cell have been checked, we check the cell itself to see if it
has become a singleton.

For the second rule, if a number is removed from all
of its peers, we can safely turn the cell into a singleton
with the value of that number. Any cell that becomes a
singleton triggers a new round of CP. This means the cell
will be removed from its peers possibility list — which may
in turn make one or more of its peers singletons.

3.2.2 Search

Once Constraint Propagation cannot reduce the possibil-
ities any further, we use Search. Here we try a possible
value for a cell and see if that value causes the puzzle to
reach a contradiction. So if a cell has three possible val-
ues, we create three copies of the current puzzle and force
one of the possibilities for each child puzzle. One of the
children will lead to the correct solution and the other two
will reach contradictions. To find out, we perform CP and
possibly Search on each child which can have their own
children, resulting in a tree of candidate puzzles. One of
leaves of the tree will contain the solution to the puzzle.
The execution of the algorithm is illustrated below:

CP() — Search() — CP() — Search() — ...

When the algorithm wants to start performing Search,
it can choose from any of the cells with multiple possi-
bilities. Choosing this search candidate cell can have an
important effect on performance. The best possible search
candidate would be the cell with the fewest possibilities.
This is because if a selected cell had four possibilities,
by realizing that one is impossible, we only remove one-
fourth of the search space (left tree in Figure 5).

Alternatively, if a selected cell had two possibilities, by
eliminating one, we remove one-half of the search space
(tree on the right in Figure 5) and guarantee us a correct
singleton! Thus, we select a non-singleton search candi-
date with the fewest possibilities. One special case is if
all possibilities list have one or fewer possibilities. This
means the puzzle has reached a contradiction and it is re-
moved from the tree.

3.3 Parallel Solvers

We have parallelized the Search portion of the serial algo-
rithm for the following reasons:

Firstly, for simpler puzzles that can be solved using
only CP, the runtime is very fast already.

Figure 5: Selecting a good search candidate. Left: a con-
tradiction leads to pruning a fourth of the tree. Right: a
contradiction leads to pruning a half of the tree.

Secondly, strongly connected dependencies make it ex-
tremely difficult to parallelize Constraint Propagation. If
a thread updates the possibility list of a cell during a step
in CP, that information has to be propagated to all other
threads before they can move forward to the next step in
CP. This causes the threads to execute in lockstep instead
of performing the computations in parallel.

Finally, search produces candidate puzzles that the se-
rial algorithm attempts to solve (or discard) one by one.
Since these puzzles can be solved independently, it makes
sense to have multiple threads attempt to solve different
candidates. When one of the threads finds the solution, it
can tell the other threads to stop.

By parallelizing Search, each thread tries different
branches in the search space. The immediate benefit is
shown in Figure 6. In the serial implementation (left),
the solver will have to search the entire left branch before
finding the solution in the right half of the search space.
By having a parallel implementation (right), the solution
can be immediately found by a second thread.

Mﬂﬂ(A

Figure 6: Benefit of parallelizing Search

However, the flipside may also be possible. If the so-
lution is located in the first branch, the parallel algorithm
may be slower due to the thread management overhead
and executing multiple branches in parallel. However, the
runtimes of these cases are very low in the first place,
so the overhead becomes a small penalty when amortized
over many puzzles.

Below, we describe the several variations of our parallel
Sudoku solver algorithm.

3.3.1 Message Passing

For this version, each thread is initialized with an initial
candidate puzzle inserted into its private puzzle list. Each
thread then independently executes the serial algorithm on
its candidate puzzle, with any child candidates resulting
from performing Search being appended to the end of its
own list.

This means that each thread will own a branch of the
tree and all of its children. Each thread walks down its
branch of the tree and explores all of its leafs in a depth-
first fashion. As soon as a thread hits a leaf that contains
the solution, it notifies all the others to stop.

Private Puzzle List

Thread #1 Thread #2

Thread #3

Thread #4

Figure 7: Our message passing implementation

Based on the algorithm described thus far, if one or
more of the threads exhausts their private list before the
solution is found, they would exit. Due to the dispropor-
tionate nature of the search space, this is not a very effi-
cient use of the threads.

Instead of exiting, it can help another thread by taking
over a subtree of another branch. A thread that runs out of
work will therefore ask another thread for additional work
by raising a boolean flag. Each such flag is shared be-
tween two adjacent threads (corresponding to their thread
IDs). For example, with n number of threads, Thread
0 asks Thread 1 for work. Thread 1 asks Thread 2 and
Thread n asks Thread 0.

When a thread sees that another thread has asked for
work, it would pass half of its puzzle list to the other
thread’s list and then lower the flag. Since the list is imple-
mented as a doubly linked list by the STL C++ library, the
entire operation takes O(n) time as each insert and dele-
tion from the head of a list takes O(1) time. This version
of the algorithm uses regular boolean variables to perform
the handshake needed to transfer work from one thread to
another and busy waits on a while loop when waiting to
be given work.

We have also tried using thread_yield() and condi-
tion variables to perform the transfer of puzzles between

thread lists. These are described next.

3.3.2 Yielding

This is a variant of the Message Passing algorithm with a
call to thread_yield() inside the wait loop instead of spin-
ning on the flag variable. A thread calling thread_yield()
ideally would relinquish the CPU and be placed in the
back of the same static priority queue.

Ideally, a longer running thread would yield when it
runs out of work because longer running threads in the
Linux kernel have lower priority, yielding for shorter
running threads with higher priority. Theoretically, this
should work because longer running threads would go
through more puzzles and be more likely to run out of
puzzles than shorter running threads. However, this may
not always be the case. A shorter running thread in the
highest active priority by itself may still run out of puz-
zles. In this case, there would be no benefits to yielding,
as it would yield and the scheduler would immediately re-
schedule the yielding thread.

3.3.3 Signalling

This is a variant of the Message Passing algorithm in
which instead of spinning on a variable, threads would
go to sleep after asking another thread for work. When
another thread finishes giving work to the sleeping thread,
it signals the thread to wake up. This is implemented with
pthread_cond_t.

3.3.4 Using Locks

In this algorithm, we have used a single global puzzle list.
This means the entire tree would be in the shared memory
for each thread to work on. Since the puzzle list is shared
among all threads, accesses are synchronized via a single
pthread_lock_t. After acquiring a lock on the global puzzle
list, each thread can:

e Take on a branch of the tree (pop an item out of list)

e Push back any child puzzles back into the global puz-
zle list (extend the tree)

e Take on other branches as soon as it reaches a con-
tradiction on its own branch

The introduction of this global list will allow threads
to work without interruption, without the need to ask for
work from another thread and without waiting for other
threads to respond. As long as the puzzle is not fully
solved, any thread can take on a new branch of the tree.
Two variants of this algorithm are fine-grained locking
and coarse-grained locking.

Global Puzzle List (shared memory)

J—

Global Puzzle List (shared memory)

POP() l l

Figure 8: Our locking implementation: no thread will be
idle at any time

00

.1

V Broadcast

&3

For fine-grain locking, we acquire the lock before push-
ing or popping a puzzle from the list and release it right
after. For the coarse grain locking, the critical section in-
stead becomes the entire loop that performs the Search
algorithm and pushes the children to the list.

4 Evaluation Methodology

We performed our evaluation on the Intel Core 2 Quad
q9450 @ 2.66 GHz machines with 4 GB of RAM run-
ning the Debian Linux kernel 2.6.32. Due to the non-
deterministic nature of multithreaded executions, run-
times can vary even when solving the same puzzle. We
therefore averaged the results of a 100 16x16 evil puzzles,
running them 10 times for each variant of our algorithms.
We measure elapsed time using the gettimeofday() method
which gives us accuracy to the microseconds. Our mea-
surements are automated, requiring no human input. A
Python script was used to run each variant and output the
timing results to files.

Evil puzzles are created using our Sudoku Generator
described in Section 3.1. These puzzles are dubbed evil
because the Generator removes as many cells as possible
with the guarantee that the solution to the puzzle is unique.

The 16x16 size puzzles proved to be the optimal size
of Sudoku for measurement and analysis. The 9x9 Su-
dokus had very fast runtimes in the order of milliseconds.
For these puzzles, the runtime variance was high, creat-
ing less meaningful results. The 25x25 evil puzzles re-

quired a large amount of puzzles to be added to the puzzle
lists as Search dominated early on during the execution
of the algorithm when the number of singletons was low.
With these puzzles, we frequently observed failed mal-
loc() calls due to the process running out of memory.

5 Evaluation Results

In this section, we compare the runtime results of our se-
rial and parallel Sudoku solvers.

5.1 Runtime Performance

Figure 9 compares the average time it takes to solve a sin-
gle 16x16 evil puzzle for our message passing (with spin
looping) and locking algorithms with respect to the num-
ber of threads used. The runtime of our serial algorithm
(17.5s) is on the graph for reference.

20

18

A

——Parallel_MsgPassing

H
IS
-

= =
) Iy

—m-Serial
Parallel_Locking (fine)

—<Parallel_Locking(coarse)

—

|

Average Runtime (Seconds)

IS
|

~

Number of Threads

Figure 9: Average execution time for solving a single
16x16 evil puzzle, amortized across 100 different puzzles

An immediate speedup is observed for fine-grain lock-
ing and message passing algorithms as we add the second
thread to perform work. For two threads, the message
passing and fine-grain locking runtimes were an average
of 8.9s (1.97x speedup) and 6.7s (2.61x speedup) respec-
tively. This speedup is a direct result of the earlier access
to other root branches of the decision tree where the solu-
tion may be.

Regardless of the number of threads used, our coarse
grain locking algorithm performs worse than our serial
implementation. The coarse grain locking took an aver-
age of 18.5s for two threads (a 5.7% slowdown) up to an
average of 19s for eight threads (an 8.6% slowdown).

Since our coarse grain locking implementation locks
the entire loop body, the Search algorithm becomes es-
sentially serialized with one thread at a time accessing
the puzzle list and performing work. By minimizing the

area the lock covers, we can increase the code that can be
accessed by multiple threads in parallel and increase the
speedup. This shows that by choosing a locking method
that is easier on the programming, the resulting runtime
can be worse than the serial implementation. Creating
more threads results in the same serial-like execution with
more overhead from thread creation and locking calls, re-
sulting in a larger runtime.

For message passing, after four threads, the runtime in-
creased. To avoid possible race cases, a thread only passes
puzzles to subsequent threads. This implementation can
cause cascading effects. Consider if both Thread 2 and 3
run out of puzzles. Thread 3 requests work from Thread
2, who has no work to give. Thread 2 requests work from
Thread 1. Thread 1 gives half of its work to Thread 2,
who subsequently gives half of its work to Thread 3.

This increases the time it takes for Thread 3 to receive
work, and also decreases the amount of work that Thread
3 receives. This also increases the idling time of threads
as they wait to be given work. This could be problematic
with a larger number of threads where it is possible that a
large amount of contiguous threads can run out of work.
This results in an increase in the runtime for a larger num-
ber of threads for message passing.

For finer-grain locking, the algorithm strives to keep all
threads busy and have no idle threads and therefore there
was a great benefit as the number of threads was increased
up to four threads. Beyond four, the benefits stopped as
the locking becomes a bottleneck. The figure ultimately
shows that the fine graph locking performed best, as the
number of threads idling was minimized.

5.2 Yielding Performance

Figure 10 compares two of our message passing algo-
rithms: yielding and busy-wait looping. For lower num-
ber of threads, yielding provides no benefit. This is be-
cause with a low thread count, there is a greater chance
that the thread that yields is the one with the highest prior-
ity. Hence, it will be rescheduled after a yield. We observe
a benefit for a larger number of threads because there is a
greater chance that the thread who yields is not at a high
priority and that there is another thread in the same prior-
ity to take its place if needed.

5.3 Condition Variable Performance

Figure 11 shows our condition variable runtime compared
to our yielding implementation. Our condition variable
implementation actually performs worse than our yield-
ing implementation. This is because using condition vari-
able signalling is very expensive [6]. This proved to be
very costly for our Sudoku solver. However, some appli-
cations cannot avoid the use of signalling. Our application

—4—MsgPassing_pthread_yield()
\ —l—-MsgPassing_Spinning

Average Runtime (Seconds)

1 2 3 4 5 !; ; 8
Number of Threads

Figure 10: Yielding Results

was simple enough to get away with using a few simple
boolean variables.

18\
T

\ —4—MsgPassing_pthread_yield

=
=

~—MsgPassing_pthread_cond_signal()

-
o

Average Runtime (Second
© 5

1 2 3 4 5 6 7 8

Number of Threads

Figure 11: Condition Signaling Results

6 Related Work

6.1 Existing Sudoku Solvers

There are existing methods that solve a Sudoku using dif-
ferent strategies from the one we employ. Dan Taylor em-
ploys a DFS strategy similar to our Search phase by trying
different possible values [2]. However, his solution does
not employ Constraint Propagation and uses recursion to
backtrack when his algorithm reaches a contradiction.
Bill DuPree employs an iterative strategy starting with
Constraint Propagation like our solution [4]. With
no more changes, two more advanced rules called
naked/hidden subset and chute alignment are employed to
eliminate more possibilities. After this, a recursive, trial
and error with backtracking is used to randomly try re-
maining possible values like Dan Taylor. Differently from
our solution, Bill DuPree does not go back to Constraint
Propagation after assuming a possible value for a cell.
This means the search space can become exponentially

larger if the previous steps does not eliminate most of the
possibilities.

In theory, we could have alternated between Constraint
Propagation with the two advanced rules and Search.
However, the advanced rules are also difficult to paral-
lelize and would make the serial component of our paral-
lel algorithm larger. Exploring this could be the subject of
future work.

Finally, Russ Klein implemented a parallel solver us-
ing pthreads [7]. His implementation created a thread
representing each possible candidate value and a copy of
the same puzzle for each thread. Each thread only looks
through the puzzle to contribute with its possible value.
At the end of each iteration, a master thread combines all
the new information from each thread and redistributes the
new partially-filled puzzle before the next iteration. This
implementation requires each thread to work on the same
puzzle and coordinate between iterations whereas our im-
plementation allows each thread to work on a slightly dif-
ferent puzzle on its own.

6.2 Work on Parallelizing Logic Games

Sudoku has given rise to other logic games and brain-
teasers in the past decade [1]. Like solving Sudoku, the
logic and strategy in each of these games can be translated
into rules and converted into automated solving programs.
A popular puzzle in recent years is Kakuro, a number-
logic puzzle where each row and column in a grid must
sum up to an indicated value. Kakuro can be reduced to a
constraint problem [8] or be solved in a manner similar to
solving crossword puzzles [9]. Work has been proposed
to compare a sequential Kakuro solver with a parallel im-
plementation [10].

Other solvers for puzzles such as Str8ts, a similar logic-
number puzzle where each number in a row or column
must be in sequential order [11] and Hidato [12] also ex-
ist. Solving these are NP-complete and take an exponen-
tial time to solve with respect to the puzzle size. The rela-
tive recency of these puzzles has resulted in little work in
parallelizing these solvers and is an interesting challenge
worth exploring.

Beyond number logic puzzles, there has been work on
parallelizing other logic games and applications. Con-
ways game of life is an application with rules that allow
for the growth of a species of pixels [13]. by letting the
program run, the visual output can fade away, become sta-
ble, or oscillate between patterns. Conways game of life
has been a standard example of the speedup of paralleliza-
tion. Since many of the rules can be run in parallel, large
scale implementations can even be passed to the GPU for
more massive parallelization.

Work in parallelizing Chess work began as early as
1985 [14] where chess was attempted to be solved by

using a search space to determine the long term con-
sequences of each move in parallel and choosing the
move with the lowest risk. StarTech expands on parallel
chess algorithms by running the program on 512 proces-
sors [15], successfully finishing third at the 1993 ACM
International Computer Chess Championship. The most
famous chess playing computer may be Deep Blue, de-
veloped by IBM [16]. Deep Blue successfully defeated
World Chess Champion Garry Kasparov in 1997 with its
massively parallel code system containing multiple levels
of parallelism.

7 Future Work

Here we provide a few possible directions in which the
work presented in this report can be extended. One task
we could attempt is to possibly improve our message pass-
ing algorithm so that any working thread can transfer
work to any thread asking for work to prevent the cascad-
ing effects observed in our current implementation. We
believe this would work better in minimizing the time a
thread waits for work, with the trade off of a possible bot-
tleneck when multiple threads attempt to give work and
fight for a lock.

Another possibility would be to see the impact of using
a larger number of threads. For this to be beneficial, we
may need to test on a machine that can take better advan-
tage of a larger number of threads. We were limited to
quad core machines in our evaluation. A higher number
of cores would allow for more threads and possibly better
parallel execution.

Problems encountered with memory allocation for
larger sized puzzles could possibly be fixed with a differ-
ent implementation that would be more conservative with
puzzle creation. For example, instead of duplicating the
puzzle for each search candidate, we could save only the
difference between two puzzles. Using this method, upon
a contradiction on one branch of the tree, we can traverse
back up the tree and re-generate the puzzle using the diffs
saved.

We limited our implementation to solve puzzles se-
quentially, with subsequent puzzles being solved after tak-
ing measurements. We can improve the performance by
attempting to solve multiple puzzles in parallel at the same
time. This would reduce thread downtime, as unused
threads could begin attempting to solve subsequent puz-
zles, amortizing the overall runtime.

Beyond our implementations, we did not attempt to use
GPUs, OpenCL and FPGAs to accelerate our solvers. We
could attempt to try solving many puzzles at the same time
with GPUs in the future. We believe this may be very
difficult, as the overhead of GPUs is only paid for when
we are working on hundreds of threads at the same time

and GPUs excel when many of the tasks are similar in
nature. From our experience, it may be difficult to predict
when Sudoku solvers would need Constraint Propagation
or Search methods, and Sudoku solver runtime can vary
depending on the puzzle.

8 Conclusion

This report introduces several parallel implementations
of a Sudoku solver based on Constraint Propagation and
Search methods. Strongly connected dependencies made
it extremely difficult to parallelize CP. Traversing the so-
lution space tree during a Search in parallel is the best way
to reach a solution faster. We implemented three message
passing methods with the major difference in how a thread
handles waiting for work: spin-looping, yielding, or wait-
ing on a condition variable. We also implemented two
lock-based methods: one with a coarse-grain lock over the
entire loop body, and one with a finer-grain lock around
the accesses to a global puzzle list.

For most puzzles, we observed an immediate speedup
with most methods by increasing the number of threads to
two. We achieved an average of up to 4.6 times speedup
with our best parallel algorithm which uses fine-grain
locking with yielding and four threads. Using coarse-
grain locking, expensive condition variable calls, or spin
looping algorithms increased the execution time. Over-
heads caused by increasing the number of threads beyond
four did not allow the runtime to decrease any further.

References

[1] M. Fackler, “Inside japans puzzle palace.”
[Online]. Available: http://www.nytimes.com/2007/
03/21/business/worldbusiness/21sudoku.html?
pagewanted=all& r=0

[2] D. Taylor, “Solving every sudoku puzzle,” Logical
Genetics. [Online]. Available: http://logicalgenetics.
com/showarticle.php?topic_id=1624

[3] P. Norvig, “Solving every sudoku puzzle.” [Online].
Available: http://www.norvig.com/sudoku.html

[4] B. DuPree, “A sudoku solver in c¢.” [On-
line]. Available: http://www.techfinesse.com/game/
sudoku _solver.php

[5] Drylcons, “A simple algorithm for gen-
erating sudoku puzzles.”” [Online]. Avail-
able: http://dryicons.com/blog/2009/08/14/a-

simple-algorithm-for-generating-sudoku-puzzles/

[6] C. Honess, “Techniques for improving the scala-
bility of applications using posix thread condition

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

variables,” p. 5, February 2007. [Online]. Available:
http://h21007.www2.hp.com/portal/download/files/
unprot/hpux/MakingCondition VariablesPerform.
pdf

R. Klein, “Dude, wheres my multi-
core performance?”’ [Online]. Avail-
able: http://blogs.mentor.com/russ_klein/blog/2011/
01/10/dude-wheres-my-multi-core-performance/

H. Simonis, “Kakuro as a constraint problem,” Proc.
seventh Int. Works. on Constraint Modelling and Re-
Sformulation, 2008.

K. Hiddemann, “A simple kakuro solver.” [Online].
Available: http://meilof home.fmf.nl/2008/11/30/a-
simple-kakuro-solver/

T. G. Eamon Doran, Michael Wezalis, “Comparison
of sequential and parallel kakuro solver to highlight
speedup.” [Online]. Available: http://www.cs.rit.
edu/~ark/53 1/team/u9/proposal.pdf

A. Stuart, “Str8ts solver.” [Online]. Available:
http://www.str8ts.com/str8ts.htm

R. C. editors, “Solve a hidato puzzle.”
[Online]. Available: http://rosettacode.org/wiki/
Solve_a_Hidato_puzzle

J. Conway, “The game of life,” Scientific American,
vol. 223, no. 4, p. 4, 1970.

M. Newborn, “A parallel search chess program,” in
Proceedings of the 1985 ACM annual conference on
The range of computing: mid-80’s perspective: mid-
80’s perspective. ACM, 1985, pp. 272-277.

B. Kuszmaul, “The startech massively parallel chess
program,” Journal of the International Computer
Chess Association, vol. 18, no. 1, pp. 3—19, 1995.

M. Campbell, A. Hoane, and F. Hsu, “Deep blue,”
Artificial intelligence, vol. 134, no. 1, pp. 57-83,
2002.

