
Application Level Undo & Recovery:
Applied to the Pencil Application on Linux

Rafat Rashid (996096111), Bozhidar Lenchov (995959431), Kush Dua (996081957)

December 12, 2012

Abstract

Pencil is an open source, multi-platform QT-based draw-
ing and animation solution. Software bugs in the program
can cause the application to exhibit anomalous behaviour
or degrade in performance. This can cause the program to
hang or crash which can ultimately lead to the loss of user
data. We introduce undo and recovery functionality into
Pencil that will help the user recover their work by replay-
ing logged operations onto periodically recorded snap-
shots of the canvas. Evaluation of the operation logging
solution concluded acceptable real-time costs in the range
of 20-30 ms for performing per mouse movement in an
operation, 7-10 kB storage requirement per draw event per
second and 4-6 ms of recovery per draw action on appli-
cation startup following a crash. Similar snapshot collec-
tion overheads of 2-3 kB storage and 8-10 ms processing
for each draw event were already present in the system.
Although some of these numbers may seem prohibitively
high, we feel the positive aspect of accurately and com-
pletely recovering user work presents a much greater ben-
efit for the use of this recovery feature.

1 Introduction

Pencil is an open-source 2D animation and drawing appli-
cation software for Mac OS X, Windows and Linux [17].
The UI is developed using QT and the engine is writ-
ten in C++. The app supports external plugins, bitmap
and vector graphics, and is able to export Flash anima-
tion sequences. In this report, we present the addition of
undo and recovery functionality into Pencil in the face of
crashes due to software bugs or other unforeseen events.

We begin with a discussion of the motivation for our
work and present the objectives, constraints imposed to
make our task feasible and our contributions. In Sec-
tion 2, we provide an overview of the Pencil application
and its modules. We also briefly describe which compo-
nents were modified and what functionalities were added.
Section 3 presents a detailed account of the work com-
pleted. In Section 4, we discuss our evaluation methodol-

ogy and Section 5 presents our results. Section 6 presents
related work in application snapshot and undo and recov-
ery mechanisms. Section 7 provides a discussion of future
work in improving the dependability of Pencil, including
how to extend the work presented here. Finally Section 8
concludes the report.

1.1 Motivation

In practice, it is very difficult to achieve bug free code
[14]. Software bugs can result from memory leaks, out of
bounds memory access and integer overflows to name a
few. These can cause corruption of Pencil’s documents or
performance degradation. However, software bugs are not
the only sources of software failures. Jim Gray’s analysis
in 1985 found that 42% of failures were due to configura-
tion and operator errors, 25% were due to software bugs,
18% from hardware failures and 14% were attributed to
power failures and the environment [9]. This remains an
open problem in software systems to this day. Eliminating
operator and configuration errors for example is extremely
difficult if not impossible [1][2].

Heisenbugs such as race conditions, resource leaks and
environment dependent bugs are extremely difficult to
find, patch and recover from [4]. Further, according to
Alan Wood’s report, up to 80% of the bugs in production
systems have no fix available at the time of the failure
[26]. This is exacerbated with the existence of external
factors such as viruses, worms and trojans that can take
the form of an imported plugin or image with the sole in-
tent of exploiting a system or an application.

Crash inducing buffer overflows and out of bounds
memory accesses are common forms of vulnerabilities in
user applications [5]. They can result from poor input val-
idation and programmatic errors, accounting for 13% of
vulnerabilities according to Veracode in 2011 [27]. Pencil
provides plugin support and importing of images, sounds
and configurations files. This can be exploited in many
different ways and accounts for a very large portion of
possible vulnerabilities [27].

We can strengthen software against buffer overflow and
out of bounds memory access with detection [20][21]

1



and recovery [22]. Exterminator [15] uses address space
randomization to detect out of bounds writes into the
heap and accesses via dangling references. Software
error detectors and recovery mechanisms for numerous
forms of other software bugs are discussed in ClearView
[18]. ClearView automatically finds and patches er-
rors in applications without requiring checkpoints and
restart/rollback. This is useful for systems that require
high availability but can also result in real-time perfor-
mance degradation for long running applications.

For user applications like Pencil, we argue perfor-
mance, protecting against data corruption and running in
a clean state is more crucial than reducing interruptions in
a user’s workflow. A more suitable option is therefore a
checkpoint and recovery mechanism similar to the work
done in Undo for Operators [3].

1.2 Our Contributions
From our discussion of bugs, failures, their origins and of
Pencil’s vulnerability against them, one can deduce the
benefits of a recovery solution that can be oblivious to
them. We improve the dependability of Pencil by:

1. Taking snapshots of Pencil state (e.g. canvas con-
tents) at regular intervals between user save events.

2. Logging operations (such as paint strokes by the pen,
pencil and eraser tools) necessary for replaying user
actions between snapshots to recover user progress
on application restart following a crash.

Our undo and replay mechanism is only possible if the
state of Pencil does not change outside of the logged op-
erations and snapshots. This is typical of existing log-
based rollback and recovery systems [7][11]. On applica-
tion restart, if the recovery process fails due to the faulty
operation being executed again, the user can simply try
again (e.g. specify less operations to replay) until it is
successful (refer to Section 7.1). This is possible because
we do not make any modifications to the snapshots or the
logged files during recovery. Our solution does not protect
against application crashes or detect and repair software
bugs automatically.

We focus on undo and recovery for the canvas contents
in the bitmap and vector layer animation sequences and
tool state. To limit the scope of our work, software bugs
that cause propagation failures were not considered. For
instance, a crash after user save and associated deletion
of snapshots and log data event due to a bug at an ear-
lier point of Pencil’s execution is not supported. These
failures can also result in logical operations being logged
after the bug manifests, which can be hard to detect and
resolve. One possible solution for this is delaying opera-
tion logging or snapshot removal. For example, deleting

snapshot contents after another five or more draw events
have completed can be done to ensure no delayed crash
occurs before backup replay data is removed.

2 Overview of Pencil
Pencil is composed of three main modules: 1) Interface 2)
Structure and 3) Graphics. The Interface module contains
all the classes related to the user interface. This includes
the windows, menus, panels and the scribble area (or can-
vas). The Structure module contains all the classes that
represent a Pencil document. This includes maintaining
the bitmap and vector layers of the document object and
saving/loading the document to/from disk. The Graphics
module contains all the classes needed to process bitmap
and vector graphics. Figure 1 illustrates a high-level
schematic of the Pencil application and how the different
modules interact with each other.

Figure 1: Structural Diagram of Pencil

The Timeline allows the user to navigate and manipu-
late animation (or vector) frames. The ScribbleArea al-
lows the user to draw on the canvas using QT UI events.
The ToolSet and Palette manages the drawing tools and
colour palette respectively. The Preferences is a separate
window that the user opens to manipulate application set-
tings (including canvas snapshot frequency). The Editor
manages all these components and orchestrates the flow
of events and data between them. All of our code changes
are limited to these components in the Interface module.
The specific changes are discussed in Section 2.1 and 3 of
this report.

2.1 Overview of Our Changes
For logging user operations, we focus on monitoring
changes in the ToolSet, Palette and the ScribbleArea.
The methods mousePressEvent(), mouseMoveEvent()
and mouseReleaseEvent() serve as entry points. To update
which tool is selected in the ToolSet, the method associ-
ated with the tool clicked (such as pencilOn(), penOn()
and eraserOn()) is called. When the user clicks and drags
the mouse to draw on the canvas with the pencil, pen,
eraser and colouring tools, the drawLineTo() method is
called. If the polyLine tool is selected, drawPolyline()
method is called instead.

2



From the above description, we make the observation
that Pencil has well defined semantics for user operations
and that such operations are serializable. This is noted by
the Undo for Operators paper as an important facility for
logging and replay. The paper describes a Rewind, Re-
pair and Replay mechanism which was implemented for
an email store to recover from operator (user) errors [3].
These errors can result from bad inputs to the program, in-
cluding unexpected configuration settings, data and plug-
ins. Pencil is also perceptible to all three of these external
inputs. Based on Jim Gray’s analysis, 42% of failures are
due to configuration and operator errors [9].

Tackling operator and configuration errors has been
limited by performance and explosion in causality track-
ing of thousands of outside parameters [1][2]. One ap-
proach to dealing with problems resulting from external
inputs is to detect and filter them. An example is VSEF
which filters out attacks on a specific vulnerability based
on the vulnerable program’s execution trace [13]. These
techniques would benefit Pencil as it supports external
plugins that can add any functionality and reads/alter the
settings of a configuration file during runtime.

Similar to Undo for Operators, we intercept and log
user operations via the methods listed above. As a user
drags the mouse, the mouseMoveEvent will be generated
numerous times. Unlike the paper which logs the inter-
actions at the boundary before they enter the system, we
log each sub-operation after it is applied to the canvas,
since we want to ensure the user saw the successful oper-
ation being applied. Unlike a Transaction based recovery
system [12], if there is a crash after an operation is ap-
plied to the canvas but prior to committing the log, we will
lose this information needed for the replay phase. Further
discussion of the disk commit granularity is presented in
Section 3.3.

Like Undo for Operators, we physically Rewind by
loading a snapshot of the Pencil document and Replay us-
ing the logged logical user operations. As the paper ex-
plains, a physical rewind avoids the risk of rolling back
from non-deterministic or corrupted state. Similarly, a
physical replay would only cause the bug to manifest
again. We instead replay user intentions such as tool
strokes on the canvas.

Unlike Undo for Operators, we have not implemented a
repair phase to prevent the problem from recurring during
replay. This means if Pencil crashes due to a determinis-
tic software bug, such as dereferencing a null pointer, re-
playing the user operation will make the application crash
again because the same code path will be exercised during
recovery. Virtual machines such as VMware [10] provide
the ability to log system operations, rewind and replay but
not repair. These systems, including the ones presented in
[7][11] would not operate if the underlying environment
is modified.

Changing the execution environment to prevent a bug
from recurring is not trivial. We propose a workaround
which is discussed in Section 7.1. Rx is another example
of a solution that dynamically changes the execution en-
vironment (inputs, scheduling of threads, padding of allo-
cated memory, etc) based on the type of fault that occurred
after a rollback to a previous checkpoint [19]. It then re-
plays the application in the repaired environment to avoid
running into the problem again. For proper logging and
recovery functionality of Pencil, in this report we assume
our code and the Pencil methods discussed above have no
crash inducing or data corruption bugs. Instead, we as-
sume the bugs are a result of external inputs. The repair
step is left for future work.

3 Implementation Details
The undo and recovery development has been broken into
several milestones: Snapshot facilities, Log User Opera-
tions, Replay and Recovery and Evaluation. These fea-
tures were implemented and evaluated on the Linux ker-
nel using Qt4 libraries. The code modifications (including
evaluation code) was not environment specific. We fore-
see cross-platform support with minimal programming ef-
fort. However, validating this is out of scope for this re-
port. Each of the recovery milestones and the associated
code changes are discussed in more detail next.

3.1 Snapshot Feature

Pencil allows the user to save the canvas drawing and an-
imation frames as PNG images and an XML file that de-
scribes the layout of the frames. Similarly, we can load
this Pencil document into the application for editing. We
take advantage of this existing save/load functionality to
take periodic snapshots of the users progress into a tem-
porary location and log this event in a global XML file
listing all snapshots and their associated files needed for
replay. As part of the snapshot process, we also store op-
erations involving tools such as the pen, pencil and eraser
and their associated state (e.g. colour) into an operations
XML log file used for replay later.

Taking diffs of successive snapshots was considered to
reduce the storage overhead, however, we decided to take
full snapshots in order to remove the dependence between
snapshots due to data corruption bugs. Replay impact on
storage requirements is evaluated in Section 5.3. On a
successful user initiated save operation or normal program
exit, these temporary snapshot and log files are removed.

The Preferences UI component was extended to let the
user change the frequency of snapshots (number of draw-
ing area actions before a snapshot is taken), the location
of the temporary snapshot directory and ability to turn the

3



Figure 2: Sample Operations Log File

feature off and on. As mentioned, the Editor was modified
to take periodic snapshots and remove all temporary files
on a user initiated save operation or application close.

3.2 Log Operations

User operations performed on the drawing area and asso-
ciated toolset and palette state are recorded in an XML
state log file corresponding to the most recently taken
snapshot through logical indexing. A central log file con-
tains a listing of the saved snapshots and associated opera-
tion state XML files. A single global file handler is visible
to each of the Interface modules components. We did not
have to add logging code in the Structure and Graphics
modules. As an example, a stroke on the canvas using the
Pencil tool will produce a log similar to Figure 2.

The <operations>tag encapsulate a single user draw
event (such as mouse press, drag and release). Each
<operation>tag corresponds to a call to the drawLineTo
method which gets called numerous times during this
event, depending on the mouse drag movements. Since
Pencil is single threaded, maintaining a single file de-
scriptor is sufficient for an absolute logical ordering of
events. Our solution does not care about timing of succes-
sive events so long as the logical ordering is maintained.

3.3 Replay and Recovery

Assuming there is a crash prior to a user save event, the
existing snapshot files will remain. On application restart,
this is detected and the automated recovery mechanism is
initiated. First, the most recent snapshot is loaded onto the
canvas using Pencil’s facilities. The corresponding oper-
ations log file is then parsed to replay the recorded user
operations (occurring after the selected snapshot and be-
fore the crash).

During testing, we found there was moderate visible

slowdown when the log files was flushed to disk with ev-
ery new <operation>tag. As a result, we chose to imple-
ment a trivial memory storage structure and flushed the
file after a user-specified number of <operation>tags in-
stead. We evaluate this approach in Section 5.2. However,
by doing this, any operation not recorded in the file prior
to the crash will be permanently lost. Finally, a crash dur-
ing the recovery phase was not considered in this report
but is an interesting area of investigation for the future.

4 Evaluation Methodology
Algorithm accuracy and performance of the snapshot, log-
ging and recovery processes were evaluated to ensure that
the program is still usable and does not have prohibitively
high runtime processing and memory overhead. To evalu-
ate correctness, we make sure the image reconstructed by
the replay feature is the same as if it was saved by the user
right before the instrumented crash took place.

For runtime performance, we evaluate the overheads in-
troduced during runtime by measuring the time spent for
taking snapshots and logging operations needed for undo-
redo functionality. We instrument the code with crash in-
ducing bugs to ensure the functional correctness of our
features. We further evaluate the storage requirements of
the snapshots and log files and measure the time it takes
to recover user work after an application restart. Our eval-
uation methodology is described in more detail below.

4.1 Correctness
Verifying the correctness of the snapshot, logging and re-
covery algorithm is important for ensuring the user is able
to accurately recover their work and not end up with a
different canvas than the one prior to the crash. For test-
ing purpose only, we turn off the functionality to remove
snapshots and verify correctness as follows:

4



1. Image is saved at time 0 (e.g. image0).

2. User performs different operations from t0 -〉 t1 and
then saves the image in a new file (image1).

3. Immediately following the image save, the program
unexpectedly closes (e.g. killed by user, although no
bug has occurred).

4. Starting with image0 and logged operations, the pro-
gram would reconstruct the image (unaware of im-
age1 already being saved by the user).

5. Using a custom testing application and the QImage
object equality operator, the two images are loaded
into memory and compared against each other. Our
solution is correct if these images match.

4.2 Runtime Performance
One of our major concerns was the runtime performance
degradation introduced by our instrumentation. This is
due to various overheads such as additional time used
for logging every operation, writing to disk and, com-
putational time spent on replaying operations from log
files. Both of these I/O and computational time measure-
ments are taken using standard QT timing measurement
libraries. Since the undo and recovery changes are novel
to the program, this information is gathered solely for dis-
playing discrete values in the report and will not be com-
pared to other application runs or alternatives.

4.3 Storage Requirements
Depending on the frequency of taking checkpoints and the
jerkiness of mouse movements during a user draw event,
the size of our logs can vary. Analysis of the correlation
between these parameters is presented in the runtime and
storage analysis in Section 5.3.

4.4 Introduction of Software Bugs
The main application of our solution is to recover user
progress following a program crash. As such, code bugs
and configuration/other bugs leading to degraded perfor-
mance or crash were the main ones tested. For non-crash
bugs leading to performance degradation, we assume pro-
gram termination from the user, leading to a similar appli-
cation halt as the crash bug. We found it is surprisingly
easy to crash the program. For example, an extra parame-
ter in the API signature of the plugin module causes Pencil
to crash during import. One can think of more elaborate
ways to cause faulty behaviour including stack smashing
attack by overflowing a header parameter of the PNG file
read in by Pencil’s graphics component. However, due

to time constraints, we left testing and evaluation of such
scenarios to future work.

5 Evaluation Results
In this section, we analyze the results of our evaluation
methodology discussed in the previous section. For our
tests, the recovery process is automated, requiring no hu-
man input. Upon startup after a crash, Pencil loads the last
snapshot into the canvas and applies subsequent logged
user operations until the instrumented crash occurs. The
crash occurs deterministically which allowed for an objec-
tive comparison of the overheads incurred by our features
from one test case to another.

5.1 Correctness
We validated our snapshot, logging and recovery facili-
ties by following the algorithm presented in Section 4.1.
The topmost image in Figure 3 shows the restored snap-
shot (snap1) with replayed operations. The image in the
middle shows the original snap1 snapshot. This is affir-
mation of the logged operations being applied on top of
snap1 to generate the topmost image. Finally, the bottom
part shows image1 which was saved before the simulated
crash occurred. As shown in Figure 4, our comparator
tool uses QImage’s equality method native to QT to con-
firm the equality of the two images.

Figure 3: Top - replayed image; middle - snapshot; bottom
- image before crash

Figure 4: Replayed image is same as image before crash

5



5.2 Runtime Performance
A runtime and storage evaluation needs to take into ac-
count the number of operations saved in a single XML file
as well as their duration. Prolonged draw distances as op-
posed to short strokes would result in a larger operations
log since for each draw event (MousePress and MouseRe-
lease) more log entries are saved. For the results presented
in Table 1, the following parameters were changed:

• Number of draw events in each log file was varied
between 5 and 10. This has no effect on the per op-
eration runtime cost and linear effect in storage cost.

• Duration of user draw events. Each draw stroke is
performed in real-time for 1 or 2 seconds. The du-
ration was kept small to reduce the variance in the
number of operations logged between test cases.

• Number of cached operations before they are flushed
to disk are varied between 1, 2, 5 and 10.

Table 1: Runtime Performance Results

Table 1 shows an experiment where the number of
operations and their draw duration is varied with the in-
memory operation cache size kept constant. Varying the
number of user events (such as a pencil stroke) does not
directly affect the time needed by each operation tag to
be processed. The per-tag processing time includes the
file open/close and tag creation duration. The replay time
upon startup however is linearly-related to the number of
operations saved in the log file.

Table 2 below shows an experiment seeking to find cor-
relation between the in-memory operations cache size and
runtime. As expected, increasing the cache size (the num-
ber of operations saved in memory before flushing them
to disk) decreases the average time spent closing the file.
This is not reflected in opening of the log file, as most
of the runtime costs are hidden by XML structure initial-
ization and tag creations. Furthermore, runtime savings
from keeping the operations log file open to hide some of
the disk latency risks having open file descriptors during

a crash and would also be hidden by the QT XML oper-
ations. Note that the cached operations will be lost if the
program crashes before they are flushed out to disk but
after they are applied to the canvas. A large cache size
therefore may be intolerable depending on the use case.

Table 2: Varying Operations Cache Size

Both experiments above show user tolerable runtimes
(20-30 ms per mouse movement for an operation, 4-6ms
recovery per draw action), in addition to the 8-10ms over-
head of saving snapshots for each user draw action, since
the average users perception of delay occurs above the 100
ms point [16]. Future work could focus on decreasing the
number of recorded operation tags associated with each
user-initiated canvas event. This however has the tradeoff
of losing an entire draw operation even if only a part of it
was faulty. This could be due to a miscalculation resulting
in out of bounds exception in one part of the stroke. By
using finer operation logging like the current implementa-
tion, finer parts of a user event can be recovered. This is
advantageous for long duration strokes.

5.3 Storage Requirements
As seen in the experiments presented in the runtime eval-
uation section, the operations log size has a linear corre-
lation with the number of operations saved. On average,
with the current fine grained operation tag implementa-
tion, we found each discrete operation to consume ap-
proximately 7-10kB/operation per second in disk storage
of the snapshot and the logged files. This is in addition to
existing Pencil snapshot functionality which required 2-
3kB per draw event per second in our testing. By a simi-
lar argument as in the runtime evaluation section, logging
less of the mouse events of the discrete draw operation
could result in lower storage requirements but would de-
crease the recoverability of parts of the user event.

Associated with runtime, although the costs of remov-
ing snapshot and other associated recovery files is linearly
related to the number of these files, it is less so compared
to the size of the files. We think this is due to the re-
moval operation operating on inodes on the OS level. A

6



fairly constant runtime cost of 15-20 ms was observed for
removal of all snapshots and log files in the limited oper-
ational testing we performed.

5.4 Introduction of Software Bugs
Irrespective of the cause of the crash, the recovery process
is the same. It is completely agnostic toward which bug
caused the crash. Several types of bugs were emulated, all
resulting in successful restoration of canvas state, similar
to correctness testing. We introduced:

• Deterministic bugs (assertion faults at certain code
execution paths either at each or after a certain num-
ber of runs, out of bounds exceptions, segfaults)

• Non-deterministic bugs (assertion failures using ran-
dom number generation)

• Performance degradation causing program termina-
tion by emulation of misconfiguration impacts (e.g.
inducing sleep in certain code paths)

For succinctness and avoiding repetition, further tech-
nical detail of the design and results of these bugs (which
are similar to our correctness testing) is left for the inter-
ested reader to explore.

5.5 Recovery Times
From the results in the figures above, we observe the re-
covery time varying linearly with the number of logged
operations. The duration varied from 38-64 ms for 5
and 10 operations contained in each snapshot respec-
tively. Translated into percentage overhead, this ranges
from 14.6% to 26.0% with respect to application startup
without the replay mechanism in place. Although these
numbers seem prohibitively high, the absolute durations
are still below the human perceived lag tolerance thresh-
old of 100 ms [16].

6 Related work
There are a number of existing checkpoint and recovery
solutions in industry. Among them is Assure which can
recover from unknown software errors with the help of
rescue points [23]. Rescue points are existing locations in
the code for handling anticipated failures. When an unan-
ticipated error occurs, execution is restored to the closest
and most favourable rescue point. For instance, an out of
bounds exception can be turned into ”return from function
with error”. One can relate this to a transaction abort ap-
plied to functions. Any of the functions on the call stack
can be rolled back to provide the best recovery and the
execution then continues at the caller. Assure does not

require code changes, is automated and can tolerate poly-
morphic inputs unlike Rx [19]. Rx is another checkpoint
and recovery solution which tolerates both deterministic
and nondeterministic faults by replaying operations in a
modified execution environment.

Our solution does not prevent the application from
crashing, contrary to other existing solutions discussed in
this report such as Assure and Rx. Restarting applications
is expensive for large production systems and in our case,
interrupts the user’s workflow. Another recovery solution
is to partition the application into independent modules
that communicate via a well defined protocol, similar to
message passing systems [7]. When an error occurs, one
or more of the modules affected by the fault is restarted
instead of the entire system. Microreboot is one such sys-
tem [4]. The obvious benefits of this is availability.

Pencil has well defined modules that handle different
aspects of the application. Unfortunately, in its current
form, it is not modularized in a manner that would take
full advantage of microreboot. Although the Interface,
Structure, Graphics and Plugin components can be made
to restart independent of each other with minimal effort,
the Interface components are tightly dependent on each
other. For example, a single drawing operation ping-
pongs between methods in the ScribbleArea and the Edi-
tor. If the Editor fails, the entire Interface module would
need to restart. This will also require an unwieldy amount
of state to be saved as well for successful reintegration.

Application-level monitoring solutions like Chronus
[25] and ConfAid [2] focus on identifying configuration
token changes that cause the buggy behaviour, others such
as X-ray [1] can undo the operations and recover a stable
state prior to the crash or performance degradation. Be-
low we will briefly discuss the contributions of each tool,
and compare them to what we achieve with our solution.

Chronus captures disk-based modifications using snap-
shots (time disks) based on a user-based software state
probe. With the aid of Virtual Machine Monitors, binary
search and other tools (e.g. UNIX diff) it is able to show
when the incorrect configuration or input value was in-
troduced and what it is. In comparison to our solution,
Chronus captures information at a coarser granularity by
recording every write operation which is often prohibitive
because of the associated overhead. For example, the re-
moval of the Mozilla file tree produced 1432 MB of logs
in addition to time disk size. Reconstruction of user data
would take much longer. However, the overall method
of capturing snapshots and operation logs is the same as
ours. Searching through states would be applicable to fu-
ture work on Pencil, if the recovery and bug finding pro-
cess is to be automated. For instance, the application can
automatically apply as many operations as possible with-
out reintroducing the crash/bug.

ConfAid on the other hand instruments binaries and dy-

7



namically tracks causality, thus aiming to pinpoint when
a configuration change (and even which token) causes a
system misbehaviour such as a crash or error. Given an in-
put binary, source of configuration and erroneous external
output, it looks at control flow graphs, byte-level instruc-
tions and uses heuristics to deduce in a matter of minutes
(on production server software) what change is responsi-
ble for the observed behaviour. For our use case, binary
instrumentation is not necessary, and although ConfAid
could identify erroneous program configuration changes,
it will not be able to recover user work upon restart.

Similarly, X-ray attempts to solve performance degra-
dation by not only determining the events causing perfor-
mance anomalies but also the reason behind their occur-
rence. By recording checkpoints containing process sys-
tem call data and timings/values of signals, it is able to de-
terministically replay events in the kernel by using these
stored values in the program re-execution. This approach
is similar to our solution, where we use canvas snapshots
as checkpoints and logged operations for replaying events.

As described in the Purpose and Implementation De-
tails section, our tool aims to save very specific data from
the application to help remediate effects of crash bugs in
addition to just configuration ones. Overall, although sim-
ilar in methodology, logging (i.e. storage) and runtime
overhead from using industry solutions described above
are unnecessary, as they capture and process a lot more
high level information than is useful for our purposes.

7 Future Work

In this section we provide a few possible directions in
which the work presented in this report can be extended.
One task we started but could not complete in time for this
report is fully exposing the recovery process to the user
and making it interactive. This is discussed in more detail
in Section 7.1. We also implemented, tested and evaluated
recovery for a subset of Pencil’s drawing tools: Pencil,
Pen and Eraser. The logging facilities can be extended to
the other tools in a similar fashion. To enable support for
the other tools, one simply needs to add operation logging
code into the ScribbleArea method(s) that gets executed
when the respective tool is used on the drawing surface.

Currently we are writing directly to disk at the end of
every user event (mouse press, drag and release). Based
on the evaluation results, we find this has considerable
overhead. We can improve the performance by moving
the logging out of the critical path of the I/O operation.
That is, write the logging code to data structures in main
memory and offload the task of writing from memory to
disk to a separate thread. Similarly, we can also move the
periodic snapshot to a separate thread that sleeps until it
gets woken up when a snapshot needs to be taken.

During the recovery process the algorithm simply re-
performs the draw strokes on the canvas. More elaborate
processing such as including the event into the redo/undo
data buffers, logging and submission of bug reports for de-
tected faulty operations and other similar advanced tech-
niques are left for future exploration.

Finally, a crash during the recovery phase was not con-
sidered in the evaluation presented in this report. How-
ever, we do not log operations or take snapshots during
the restore operation. Additionally, the snapshot files gets
removed in subsequent successful open/save project and
program exit operations. This means if there was a crash
during recovery, the user can restart the application with
the snapshot data still intact and try to replay a smaller
subset of operations, or restore a different snapshot.

7.1 User Interactive Recovery

After an unexpected termination of the program, on ap-
plication restart, the Undo and Recovery feature should
allow the user to select a snapshot ordered by timestamps
from a list. The user will then be able to select which
set(s) of operations, occurring after the selected snapshot,
he/she would like to replay from those recorded in the
log file. The operations presented will include only user
events like a single paint stroke (i.e. user understandable
actions). This will allow the user to redo the desired oper-
ations in real-time. Functionally, this is a stripped version
of TimeWarp [6] where users can rewind, alter their his-
tories and replay them at any time. However, TimeWarp
performs rewind logically and we do it physically.

Besides giving users an interactive recovery experi-
ence, this feature was intended to mitigate the problem of
crashing repeatedly during recovery due to replaying de-
terministic bugs. We did not want to implement a mecha-
nism that would automate the detection of a bug and take
appropriate actions during recovery, as it is not trivial and
requires substantial programming effort. A generalized
detection tool exists that relies on inferring programming
rules from statically analyzing the code [8]. This allows it
to explore all avenues that can cause a problem but suffers
from path explosion and many false positives.

With respect to deterministic bugs, we offloaded the
task to achieve successful recovery to the user by pruning
out the operation that caused the bug by virtue of trial and
error. Rx is an example of an automated checkpoint and
recovery mechanism that dynamically alters the execution
environment based on the failure to avoid deterministic or
recurring errors [19]. Another example is Sweeper which
uses taint analysis on external inputs to identify the one(s)
that caused the failure [24]. Sweeper then creates an in-
put filter to remove the culprit and any other similar future
inputs, before rolling back to a checkpoint preceding the
erroneous behaviour and doing a replay with the filter ap-

8



plied. This is another automated approach to repairing the
environment that does not require human input, as was
discussed before.

8 Conclusion
This report introduces an Application Level Undo & Re-
covery scheme to the Pencil open-source software. Peri-
odic snapshots of the bitmap and vector animation layers
along with logs of user-performed operations and inter-
nal application state is persisted to disk for recovery in
case of a future crash. Upon normal program exit or suc-
cessful user project opening or saving, logs are purged to
reduce overhead. When an application crash occurs (due
to a code bug or performance degradation stemming from
configuration changes or other sources), the user would
be able to select recently saved snapshots and operations
to reapply in order to recover their work.

The current implementation uses existing Pencil snap-
shot functionality while introduces fine-grained draw op-
eration logging to enable replay based recovery of user
work. We have found, as expected, that runtime and
storage costs vary linearly with the number of operations
logged and the logging I/O costs can be partially hidden
by caching log operations. Additionally, recovery and I/O
times are not prohibitively high so as to discourage the
user from using this safety guard. We find 20-30 ms pro-
cessing per mouse movement in a discrete operation, 7-10
kB of storage space per discrete draw operation per sec-
ond and 4-6 ms per discrete event for recovery on startup.
This is in addition to existing snapshot overheads of ap-
proximately 8-10 ms processing and 2-3 kB storage for
each discrete draw event. As a result, our solution is a
worthwhile addition to Pencil in helping preserve the best
drawing experience for the end user in the face of un-
expected crashes from programmatic, environmental and
other unforeseen bugs.

References
[1] Mona Attariyan, Michael Chow, and Jason Flinn.

Automatic root-cause diagnosis of performance
anomalies in production software. In Proceedings of
the 10th USENIX conference on Operating systems
design and implementation, OSDI’12, pages 1–12,
Berkeley, CA, USA, 2012. USENIX Association.

[2] Mona Attariyan and Jason Flinn. Automating con-
figuration troubleshooting with dynamic informa-
tion flow analysis. In Proceedings of the 9th
USENIX conference on Operating systems design
and implementation, OSDI’10, pages 1–11, Berke-
ley, CA, USA, 2010. USENIX Association.

[3] Aaron B. Brown and David A. Patterson. Undo for
operators: building an undoable e-mail store. In Pro-
ceedings of the annual conference on USENIX An-
nual Technical Conference, ATEC ’03, pages 1–1,
Berkeley, CA, USA, 2003. USENIX Association.

[4] George Candea, Shinichi Kawamoto, Yuichi Fujiki,
Greg Friedman, and Armando Fox. Microreboot
&#8212; a technique for cheap recovery. In Pro-
ceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 3–3, Berkeley, CA, USA,
2004. USENIX Association.

[5] C. Cowan, F. Wagle, Calton Pu, S. Beattie, and
J. Walpole. Buffer overflows: attacks and defenses
for the vulnerability of the decade. In DARPA In-
formation Survivability Conference and Exposition,
2000. DISCEX ’00. Proceedings, volume 2, 2000.

[6] W. Keith Edwards and Elizabeth D. Mynatt. Time-
warp: techniques for autonomous collaboration. In
Proceedings of the ACM SIGCHI Conference on Hu-
man factors in computing systems, CHI ’97, pages
218–225, New York, NY, USA, 1997. ACM.

[7] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-
Min Wang, and David B. Johnson. A survey of
rollback-recovery protocols in message-passing sys-
tems. ACM Comput. Surv., 34(3):375–408, Septem-
ber 2002.

[8] Dawson Engler, David Yu Chen, Seth Hallem, Andy
Chou, and Benjamin Chelf. Bugs as deviant behav-
ior: a general approach to inferring errors in systems
code. In Proceedings of the eighteenth ACM sym-
posium on Operating systems principles, SOSP ’01,
pages 57–72, New York, NY, USA, 2001. ACM.

[9] Jim Gray. Why do computers stop and what can
be done about it? In Symposium on Reliability in
Distributed Software and Database Systems 1986,
pages 3–12, 1986.

[10] VMware Inc. Vmware virtualization software for
desktops, servers & virtual machines for public and
private cloud solutions:, 2012. [Online; accessed 4-
December-2012].

[11] David E. Lowell, Subhachandra Chandra, and Pe-
ter M. Chen. Exploring failure transparency and the
limits of generic recovery. In Proceedings of the 4th
conference on Symposium on Operating System De-
sign & Implementation - Volume 4, OSDI’00, pages
20–20, Berkeley, CA, USA, 2000. USENIX Associ-
ation.

9



[12] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pi-
rahesh, and Peter Schwarz. Aries: a transaction
recovery method supporting fine-granularity lock-
ing and partial rollbacks using write-ahead logging.
ACM Trans. Database Syst., 17(1):94–162, March
1992.

[13] James Newsome, David Brumley, and Dawn Xi-
aodong Song. Vulnerability-specific execution filter-
ing for exploit prevention on commodity software.
In NDSS. The Internet Society, 2006.

[14] US Department of Commerce NIST. National vul-
nerability database (nvd) cve statistics:, 2006. [On-
line; accessed 5-December-2012].

[15] Gene Novark, Emery D. Berger, and Benjamin G.
Zorn. Exterminator: automatically correcting mem-
ory errors with high probability. In Proceedings of
the 2007 ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI
’07, pages 1–11, New York, NY, USA, 2007. ACM.

[16] Lothar Pantel and Lars C. Wolf. On the impact of
delay on real-time multiplayer games. In Proceed-
ings of the 12th international workshop on Network
and operating systems support for digital audio and
video, NOSSDAV ’02, pages 23–29, New York, NY,
USA, 2002. ACM.

[17] Patrick Corrieri Pascal Naidon. Pencil - a trandi-
tional 2d animation software, 2009. [Online; ac-
cessed 4-December-2012].

[18] Jeff H. Perkins, Sunghun Kim, Sam Larsen,
Saman Amarasinghe, Jonathan Bachrach, Michael
Carbin, Carlos Pacheco, Frank Sherwood, Stelios
Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav
Zibin, Michael D. Ernst, and Martin Rinard. Au-
tomatically patching errors in deployed software. In
Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, SOSP ’09, pages
87–102, New York, NY, USA, 2009. ACM.

[19] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan,
and Yuanyuan Zhou. Rx: treating bugs as allergies—
a safe method to survive software failures. In Pro-
ceedings of the twentieth ACM symposium on Oper-
ating systems principles, SOSP ’05, pages 235–248,
New York, NY, USA, 2005. ACM.

[20] Martin Rinard, Cristian Cadar, Daniel Dumitran,
Daniel M. Roy, and Tudor Leu. A dynamic tech-
nique for eliminating buffer overflow vulnerabili-
ties (and other memory errors). In Proceedings
of the 20th Annual Computer Security Applications
Conference, ACSAC ’04, pages 82–90, Washington,
DC, USA, 2004. IEEE Computer Society.

[21] Olatunji Ruwase and Monica S. Lam. A practical
dynamic buffer overflow detector. In NDSS. The In-
ternet Society, 2004.

[22] Stelios Sidiroglou, Giannis Giovanidis, and Ange-
los D. Keromytis. A dynamic mechanism for recov-
ering from buffer overflow attacks. In Proceedings
of the 8th international conference on Information
Security, ISC’05, pages 1–15, Berlin, Heidelberg,
2005. Springer-Verlag.

[23] Stelios Sidiroglou, Oren Laadan, Carlos Perez,
Nicolas Viennot, Jason Nieh, and Angelos D.
Keromytis. Assure: automatic software self-healing
using rescue points. In Proceedings of the 14th in-
ternational conference on Architectural support for
programming languages and operating systems, AS-
PLOS ’09, pages 37–48, New York, NY, USA, 2009.
ACM.

[24] Joseph Tucek, James Newsome, Shan Lu, Chengdu
Huang, Spiros Xanthos, David Brumley, Yuanyuan
Zhou, and Dawn Song. Sweeper: a lightweight end-
to-end system for defending against fast worms. In
Proceedings of the 2nd ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems 2007, Eu-
roSys ’07, pages 115–128, New York, NY, USA,
2007. ACM.

[25] Andrew Whitaker, Richard S. Cox, and Steven D.
Gribble. Configuration debugging as search: finding
the needle in the haystack. In Proceedings of the 6th
conference on Symposium on Operating Systems De-
sign & Implementation - Volume 6, OSDI’04, pages
6–6, Berkeley, CA, USA, 2004. USENIX Associa-
tion.

[26] A.P. Wood. Software reliability from the customer
view. Computer, 36(8):37–42, 2003.

[27] Chris Wysopal. Veracode: State of software security.
4, 2011.

10


