
© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

ECE 299S 2008 Server Design Report

Team Members Student Numbers

1. Rohaan Ahmed 995374385

2. Mohammad Hasanain Arshad 995357411

3. Heesham Ali 995266224

4. Raza Ansari 995632267

Instructor Name: Dario D. Degan

Date Submitted: April 11, 2008 Number of Appendices: 5 (A to E)

Seminar Section: 0104 Lab Section: 0102

The ECE299 final project required the design team to create a fully functional,

C++ based web server by appending onto an existing basic server, from ECE299

Labs 1-4, and adding several new features. At the beginning of the design stage,

the team brainstormed and decided that the server design must be robust,

reliable, fail safe, maintainable, expandable, intuitive, versatile and efficient.

The design process was undertaken using a combination of the spiral and the

incremental design model. The server was designed in many separate modules

after assessing the objectives, project plan, risk factors and the inter-dependence

of features.

Testing was an integral part of the design process. A testing life cycle consisting

of modular, integration, regression, white box, and system testing was put in

place, and each module was taken through this testing phase.

The discovery of an error in the testing phase led directly to the debugging

phase. In this phase, the precise source and location of the error was first

detected, using output statements and debugging programs, and then fixed. The

module was then taken back through the testing cycle.

After the final server had been implemented, the design team evaluated each

module as well as the complete server with respect to the client requirements

and the team’s previously defined objectives. A successful performance by each

individual module as well as the completed server during the extensive

evaluation stage led the team to conclude that the server was a success. This

conclusion was further validated by the fact that the team was able to address

100% of the project requirements as well as an additional 93.33% of the desired

functionality that satisfied the various self-devised objectives.

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

1.0 Overview

The ECE299 Communication and Design course required our design team to

utilize the understanding of software engineering design and practices gained

throughout the semester and develop a Linux based, C++ programmed web

server for a fictional client, employing the experience and knowledge gained from

previous programming courses and ECE299 Labs 1 – 4. Apart from the basic

server, created in the labs, the design requirements provided were flexible, which

left most of the design decisions to the team.

In order to create a competitive and unique design, the team first derived the

following list of stakeholders will be of importance during the server’s life cycle.

 The design team

 The client (ECE299 course administration)

 The end user (will access the server through the internet)

Keeping these stakeholders in mind, the team then continued on to the design

phase of the project.

2.0 Initial Design Decisions

At the beginning of the design process, the team had to choose a basic server

from amongst the four servers built individually by each member during the labs.

This basic server would allow the team a solid platform on which to build our

more complex server during the design. In order to arrive upon the correct base

server, the team first decided to create an objectives list. Apart from the initial

decision making process, this list of objectives would also be useful throughout

the design process as it will serve as a rubric with which the team would compare

the server.

In order to come up with a strong list of objectives, the team employed two major

decision making techniques, brainstorming and an objectives comparison chart.

Free brainstorming was used to derive and sort an initial list of objectives during

the first team meeting. The team then compared the objectives with the

requirements of the project to shorten the list, which was then condensed further

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

using a silent brainstorming session. After the intensive brainstorming session,

the team compared each individual objective to every other objective in a chart to

obtain an objective ranking system.

After the extensive decision making process, the team decided that the following

design objectives must be achieved during the design process of the web server

(in no particular order).

 Robust Design: The server must be able to deal with most errors without

external administration.

 Fail Safe Design: In case of an error or bug, the server should be able to

inform the appropriate party (design team, administrator, client, user), and

then resume normal service.

 Debuggable / Maintainable Design: The server should be designed in a

way that would make it easier to debug and maintain.

 Flexible Design: The server should allow content and access flexibility to

the client and the end user.

 Intuitive Design: The server should allow easy access to features and

content for the client and the end user.

 Expandable Design: The server should be designed such that further

expansion is always possible.

 Concurrent / Versatile Design: The server should be able to achieve

multiple tasks of different types at the same time.

 Efficient Design: The server should perform tasks in a minimum amount of

time with minimum loss of data.

Keeping these objectives in mind, the team then decided to integrate specifically

well done features from each individual member’s base server and create a

robust platform for the large scale server [Appendix A – Brainstorming Map].

3.0 Component Breakdown & Project Plan

Before the team could begin the design of the server, an initial project plan had to

be devised. In order to create a relevant project plan, the design team had to first

decide the features it would implement into the server. The features to be

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

implemented, and their importance to the design, were decided based on the

following criteria, as decided by the team during a brainstorming session:

I. Objectives: How well it meets the objectives initially set by the team.

II. Time: How long it would take to implement the feature.

III. Dependability Analysis: Dependence of the feature on other features

IV. Risk Assessment: How the feature’s integration would affect other code

that has already been implemented.

Depending on the above criteria, the team then implemented the web server

features in the following order:

Stage I

1. Configuration File Format: Allows the client to easily configure the server

to their liking.

Figure 3.1 - Sample Config File formatting and information (actual text).

2. Error, Access and Debug Log Files: Allows the design team and the client

to easily view usage and error information and debugging logs.

Figure 3.2 - Sample Access log in the log file (actual text).

3. Error HTML Pages: Informs the end user of any errors.

4. Default Page: Displays a default web page for each domain.

5. Multiple Content Type Handling: Allows the client the ability to offer

content type other than text files.

6. Support for Upper Case Requests: Enabled the server to work with upper

and lower case client requests.

Stage II

1. Virtual Web Hosting: Allows the client to host multiple domain names.

2. Directory Content Listing: Informs the end user of the current directory’s

content.

InstallRoot:/home/ahmedroh/ece299/project/installation
DocRoot:/nfs/ugsparcs/a-c/a-c/ahmedroh/ECE299/Maverick/public_www
Port: 54092

192.168.4765 Sat Apr5 23:56:16 2008 get /index.html http/ 1.1 200 1985

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

3. Automatic Pathname Expansion: Allowed the end user to access other

accounts.

4. Dynamic Content Handling: Allows the client to provide user specified

dynamic content.

5. Concurrent Connection Capability: Allows multiple user connections

simultaneously.

6. Graceful Server Shutdown: Allows the client to gracefully shut the server

down.

7. Load Generation and Simulation: Allows the design team to test and

debug the server as well as log performance statistics.

8. Clustering: Allows the client to set up the server at multiple stations and

take advantage of a distributed server load setting.

Each feature was first studied for similarities and interdependencies and then

implemented as a new module or as a part of an existing module [Appendix B

– Component Breakdown].

4.0 System Overview

The proper functionality of the server depends on the successful execution of

some specific steps. The server must first open a port to allow client

transaction over the internet. Once a client request is received, the server

binds with the client and opens a communication stream. The server handles

the request depending on its validity. If a request is valid, the server responds

by sending the requested content back to the client, however, if the request is

invalid, the server sends back an error message to the client and resumes its

regular operation.

The server handles incoming requests in the following manner [Appendix C –

Software Flowchart]:

1. The server binds itself to a port by opening a socket (as specified in the

configuration file).

2. The server recognizes an incoming connection and binds to the client.

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

3. The server calls the Parallel Thread library to create a new thread

(instance) of the server (Netcom) object.

4. The server then receives an incoming request from the client through a

newly created input/output stream.

5. The HTTPrequest module reads and parses the incoming request and

authorizes its validity.

6. If the request is valid, using the previously created input/output stream, the

server finds and sends the correct content back to the client.

7. Upon successful completion of transaction, the server keeps the

connection with the client alive, until the user terminates the connection.

8. Along with the transactions, the server keeps track of the amount of open

threads and the reception of the shutdown signal at all times. It also keeps

a live log for all server activities.

9. If the server receives a terminate signal from the administrator, it waits

until all the currently open connections have been serviced, and then

gracefully shuts down.

5.0 Design Strategy & Decisions

One of the requirements set by the course administration was that the design

must be implemented in the C++ programming language. There are many

reasons for this, the main being that C++ allows for an object-oriented style of

programming, which enables large scale design projects to be done in smaller

pieces. To successfully implement as many features as possible while meeting

all the objectives in a short time, the team also chose to follow a modular design

approach. This enabled us to expand the design by developing newer object-

oriented components separately and adding them to the larger, more complex

server rather than adding to existing functions and classes which may have been

developed by other team members, causing large scale conflicts.

Figure 5.1 - Sample code showcasing objects in one particular module.

Socket* sock = masterSocket->Accept();
Thread* thread = new Thread;
server = new netcom(sock, thread, networkbuffer);

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

Throughout the design process, the team employed a combination of two design

models, the incremental model and the spiral model. The overall design process

was incremental as each module was built by a different member of the team,

tested, and then integrated into the server according to the project plan. Due to

the time constraints, many modules were also implemented in parallel by

different members of the design team, as in the spiral model. Once a module had

been completed, it would undergo many steps within the testing cycle and then

integrated into the entire system as a component. The simultaneous processes

of development, testing and debugging allowed the team to concentrate on both

implementing various features as well as achieving the design objectives.

6.0 Programming Optimization

One of the objectives that the design team had set out to achieve in the design of

the server was efficiency. In particular, this means minimum runtime (due to

minimum code complexity) and minimum memory usage. Apart from system

efficiency, it is also important to write the server in a coding format that allows for

easy understanding and expandability by other programmers. Therefore, the

design team took special measures throughout the design process to achieve

efficiency.

6.1 Use of Global and External Variables

To limit memory use, runtime and compile time, global variables were used to

reduce the time it takes to create copy and pass variables throughout the

program.

To allow multiple objects to use one variable, extern variables were employed,

which limited memory use and runtime, but added to the compile time.

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

Figure 6.1 - requestedFile, a global variable, is set using two local variables.

6.2 Use of Public Functions

To allow multiple classes to take advantage of common or similar functions, the

design team implemented public functions within classes that can be accessed

from anywhere within the program.

Figure 6.2 - An example of a public function, readAndParse().

6.3 Derived Classes

To allow a new class to use an existing class’ functions, variables and

implementation, the team used derived classes wherever possible. These

classes could be derived from within an existing library or a previously

custom created class.

Figure 6.3 - The class HTTPmessage is derived from the class HTTPrequest

7.0 Testing

bool outputMessage (iostream, string URL, HTTPrequest object)

{

//Function responds back to the client on a valid request

 //access the requested directory and file

 string requestedFile = HTTPrequest-> Root directory + URL

}

//A function of HTTPrequest is being accessed in Server.C (Main file)

 response = HTTPrequest->readAndParse(netstream);

//HTTPmessage is a derived class of HTTPrequest

class HTTPrequest :public HTTPmessage

{// HTTPrequest Class…

…};

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

The adoption of the spiral model into our incremental design process increased

the risk of conflicts between different modules of the server. To reduce the

chances of errors and bugs, the design team devised an extensive testing

procedure which had each module undergo a complete testing cycle [Appendix D

- Testing Flowchart]. The following are the various phases of the testing phase:

1. Modular Testing: The designer of each module tested the module

separately, concentrating on only the features implemented within the

module.

2. Integration Testing: The designer of the module would integrate it with all

the basic server and test specifically for errors within the newer module.

3. Regression Testing: Upon successfully passing the first two phases, the

module would then be integrated into the larger server. In this phase, the

designer concentrates heavily on the corner cases, trying to cause the

newly created module or the server to crash.

4. White Box Testing: In this phase, the design team would test the newly

integrated module as part of the entire system, testing each path through

the server individually.

5. System Testing: In this black box testing phase, the design team tests the

server by inputting random requests and matching the correct outputs.

The team used a web browser and the telnet command to connect to the server

directly for each testing phase. This allowed each individual tester to test for

unique cases, concentrating on the functionality of the new feature as well as the

features already implemented. In order to automate the white and black box

testing phases, the design team used an external program, called the load

generator, to simulate two important components of the runtime functionality of

the server.

1. Variable sized load (domain) files.

2. Simulation of incoming connections.

8.0 Debugging

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

If an error or bug was encountered in any of the testing phases, the designer of

the faulty module took it through a pre-planned debugging cycle. The debugging

cycle consisted of 2 phases:

1. Locating the error.

2. Resolving the error.

In order to locate an error, the designer employed one of two strategies.

1. Step-by-step Output Statements: The designer placed ‘cout’ statements in

relevant places within the code to determine which loop case or function

was causing the problem. This method also helped him determine whether

or not the path the program takes through the module is the correct one.

This method is most useful for quick debugging as it does not require too

much time or effort.

Figure 9.1 - Using ‘cout’ statements to determine the control flow path.

2. Debugging Program: If the step-by-step output method were unsuccessful

in locating the bug, the designer would then use a debugging program,

such as the Data Display Debugger or the GNU Debugger. These

programs are especially designed to display the internal workings of the

program and the memory to allow the designer to see exactly what the

computer system is doing at each step within the program. This method is

very extensive and was, therefore, always successful in locating a bug.

Once the bug was located, the designer would take it back through the

development cycle, fixing any and all sources of errors within the code. One this

is done, the module would once again go through all the testing processes until a

final, working version is completed.

9.0 Design Assessment

cout << "New Thread Created\n";
int response = httpreq->readAndParse(netstream);
cout << "Exits ReadAndParse and enters server.C\n";

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

The design team evaluated and assessed the functionality of the server at

various points during the design phase. In particular, two types of evaluation

processes were undertaken.

9.1 Component Analysis

Component analysis was mostly undertaken during the design process, upon the

successful completion of the testing cycle by each component. The following

components were evaluated in detail [Appendix E – Feature Models].

9.1.1 Configuration Files

The configuration file’s functionality was tested by using several versions of the

configuration file and testing the server to ensure it re-configures itself according

to the specifications provided.

The evaluation result for this component was positive as the server met the

desired specifications each time, and output an error message each time the

configuration file was defective.

9.1.2 Load Files

The load files were tested by sending random requests to the server and

checking whether or not the correct outputs were written into the test text files.

This feature performed well under testing and as the correct output text was

visible in the files.

9.1.3 Concurrency

The server’s concurrency was tested by using both web browsers and telnet.

Multiple simultaneous requests were made from the server, and the correct

output behavior was monitored.

This feature was quite troublesome since it was first implemented. When tested

in conjunction with other features, such as graceful server shutdown, it often

crashed the program. However, all the problems related to this module were later

resolved by devoting extra time to this feature and taking it through the testing

cycle twice.

9.1.4 Handling Other Content Type

This feature was tested by requesting several different types of content from the

server and studying the output.

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

This module performed well as it was able to handle all the content types the

team had implemented, and output an error when it encountered a type that was

not.

9.1.5 Load Generator

To test this external module the team tested it in two phases:

1. The program was ordered to generate multiple files of different sizes, filled with

random text.

2. The program was ordered to delete all the files it had created in a certain

directory.

The program performed perfectly in both cases, generating the correct load files

as well as deleting them when ordered.

9.1.6 Graceful Shutdown:

This feature was evaluated by ordering the server to shut down while it was still

in use by multiple connections. An output statement was used to test whether or

not the shutdown signal was received.

This feature did not perform very well when concurrency was first implemented.

However, after much testing, debugging and modifications, it all bugs were fixed

and the feature performed perfectly, i.e., it received the shutdown signal, did not

allow any new connections and shutdown as soon as the last connection was

terminated.

9.1.7 Automatic Pathname Expansion

This feature was evaluated by ordering the server to access files from the

directories of various other users.

This feature performed well under testing by allowing the user to access other

directories and outputting an error when they did not have permission.

9.1.8 Dynamic Content Handling

This feature was evaluated by ordering the server to run a specified program and

checking to see if the correct output was produced.

The feature performed well under all test conditions.

9.1.9 Directory Listing

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

This feature was tested by creating ‘dummy’ files in a directory and then

requesting the server to display the listing for that directory.

The feature performed well under all test cases; however, its correct operation is

heavy dependant on a working Configuration file.

9.2 Complete System Analysis

Upon the completion of the development and testing processes, the design team

undertook a final server evaluation. This objective of this evaluation was to

compare the final design of the server to our initial requirements and objectives

as well as the comparison to the various stakeholder needs.

9.2.1 Requirement Based Analysis

At the beginning of the design project, the course administration had set up a few

requirements for every design team while leaving most of the design decisions

up to the team. Our server was designed to meet all these requirements from the

beginning.

Requirement Server

C++ based Meets well

Object oriented Meets well

Linux based Meets well

Figure 9.1 - Mandatory course requirements and how the meets them.

9.2.2 Objectives & Functions Based Analysis

As stated in 2.0 Initial Design Decisions, the design team developed a list of

objectives derived after much brainstorming and debate. The server, right from

the beginning, was designed to meet these specific objectives along with the

mandatory functionality specified by the course administrators. Upon the

completion of the design phase, the team compared the final server’s features

and functionality with our initial objectives list to determine our success rate.

Features Implemented Objectives Met

 Configuration File Format Flexible, Intuitive, Maintainable

Log files Maintainable, Intuitive, Efficient

Graceful Server Shutdown Robust, Intuitive, Fail Safe

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

Error HTML Page Intuitive, Robust, Fail Safe

Default Page Intuitive

Upper-case Characters in URL Intuitive, Versatile, Flexible

Handling Other Content Types Versatile, Expandable

Virtual Web Hosting Versatile, Expandable

Automatic Pathname Expansion Flexible, Versatile

Listing Directory Contents Intuitive, Maintainable, Efficient

Supporting Dynamic GET Requests Versatile, Flexible

Adding Support for POST Requests Versatile, Flexible

Concurrency Versatile, Robust, Flexible, Efficient

Load Generator Robust, Intuitive

Figure 9.2 - List of program features and their contributions to the objectives.

9.2.3 Risk Analysis

One feature the design team chose not to implement is clustering. The decision

to not implement this feature came after a risk analysis session conducted during

an emergency team meeting. During the meeting it was decided that it was in the

favor of the team to pursue robustness in the concurrency feature as clustering is

heavily dependant on concurrency. Also, the need to implement a graceful server

shutdown mechanism, which became very complicated after concurrency had

been implemented, was realized to be far greater than the need for distributed

server load. For these reasons, and the fact that clustering would take an

additional two days to implement, the team decided to cancel its implementation.

10.0 Evaluation of Success

Considering that we were able to implement 14 out of the 15 features we had set

out to accomplish, and that each feature served to meet all our initial objectives

as well as add quality to the server, the design team has concluded that the

design was a tremendous success. By the end of the design, development and

testing phases, we were able to accomplish 100% of our requirements [Figure

9.1], 100% of mandatory functionality and 93.33% of our objectives within the

allotted time [Figure 9.2].

11.0 Conclusion

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

The final design of the web server was developed using an incremental-spiral

process, addressing the various needs of the stakeholders. The functionality

assessment of the server showed that it was robust, reliable, fail safe, easy to

debug and efficient. In addition, the object-oriented nature of the server made it

flexible and easy to expand in various usage situations. In the end, the design

team was able to accomplish all the major goals set out at the beginning of the

design process. This server met all the requirements that were listed in the

project requirement statement as well as all the mandatory functions and the

team’s objectives.

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder. All rights reserved.

SERVER
ObjectivesFunctionality

Auto Pathname

Expansion

Directory Content

Listing

Virtual Web

Hosting

Robust

Fail Safe

Maintainable

Flexible

Intuitive

Desired Components

Requirements

Stakeholders

Object OrientedLinux Based

End User

Appendix A – Brainstorming Mind Map

Figure A1
This brainstorming mind map was used extensively by the team during the design process.

The map identifies all the stakeholders and presents the final requirements, functionalities and (self-derived) objectives.

Complex

Client Design Team

Dynamic Content

Handling

Concurrency

Graceful

Termination

Simulation

Program

Clustering

Configuration File

Format

Error, Access and

Debug Logs

Error HTML pages

Default Page

Multiple Content

Types

Upper Case

Request Support

Stage I

Stage II Expandable

Versatile

Efficient

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder. All rights reserved.

Socket

HTTP

Request

HTTP

Message
Directory

Netcom

Thread 2

Directory

Root

Directory

Configuration

File Client 2Simulator

HTTP

Request

HTTP

Message

Network

Buffer

Error

Files

Server Client 1

Netcom

Thread 1

Netcom

Thread 3

Log File

Appendix B – Component Breakdown

Figure B1
The large scale layout of the
final server design

Table B1
Displays in which module

each feature was
implemented

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder. All rights reserved.

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder. All rights

reserved.

Appendix C – Software Flowchart

Bind to Socket

Create New Netcom and Input / Output Stream Objects

Incoming
Connection?

Valid
Request?

Read and Parse the Incoming Request

Access the Requested
Module

Access the Requested
File

Access the Relevant Error
File

File Exists?

Yes No

No

No

Yes

Yes

Output the Content to the Client

Figure C1 – Software Flowchart
This flowchart displays the overall path through the server when it is
connected to a client

No Terminate Signal. Manage Logs and Open Threads.

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder. All rights

reserved.

Appendix D – Testing Flowchart

Figure D1
Outlines the various stages of the testing phase.

Modular Testing

Integration Testing

Regression Testing

While Box Testing

Black Box Testing

Development Cycle

Testing Cycle

Bug Found?
No

Yes

Debugging Cycle

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

Appendix E – Feature Models

Figure E1 - Configuration File
The server administrator configures the configuration file to change the behaviour /
characteristics of the server. When the server starts, it reconfigures itself according to
the instructions inside the configuration file.

Figure E2 - Automatic Pathname Expansion
When a client requests a file contained within a different folder / user account, the server
first prompts for a password from the Password.txt file. If the correct password is
entered, the server accesses the file from the directory and relays it to the client.

Admin

Configuration
File

Client

Password.txt

Server

Server

File

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

Figure E3 - Dynamic Content Handling
When the client requests dynamic content and provides the correct input parameters,
the server triggers an external program that generates the dynamic files from the inputs.
The server then sends the dynamic files back to the client.

Figure E4 – Directory Content Listing
When the client asks for a listing of the directory content, the server runs an internal
listing program that generates an up-to-date listing.html file within that directory. The
server then outputs this file back to the client.

Server

Client

External
Program

Server

Client

listing.html

File

Listing
Program

© Rohaan Ahmed, 2009
The contents of this document may not be reproduced or distributed in any way, shape of form without the prior consent of the author(s) and the Copyright holder.

All rights reserved.

Figure E5 – Load Generator
The load generator is a simulation program that is run locally. It can be used to do the
following functions:

1. Create custom load filed with random data.
2. Simulate incoming connections and requests.
3. Test the server.

Figure E6 – Multithreading
Anytime a new user tries to connect with the server, it creates a new Netcom object
thread dedicated to that one connection. The server grants all the client’s requests
through this object until a connection is closed, in which case, the server terminates the
thread.

Root
Directory

Directory

Simulator
Server

Server Client 2

Client 1

Client 3

Netcom 1

Netcom 2

Netcom 3

