Chapter 2: Probability

Lecturer: Peyman Gohari

2.1 Sample space and events

- A statistical experiment has unpredictable outcomes, but all possible outcomes form a set. The set of all possible outcomes of a statistical experiment is called sample space and is represented by the symbol S. Members of S are sometimes called sample points, or outcomes.

Example 1 In the experiment of flipping a coin $S:=\{H, T\}$
Example 2 In the experiment of tossing a die, we could have $S:=\{1,2,3,4,5,6\}$ if we are interested in the exact value of the number shown by upper face of the die. If we are interested only in the parity of this number then $S:=\{$ even,odd $\}$.

- Tree diagrams are used to help us visualize sample spaces.

Exercise: Show the sample space of an experiment where 1. a coin is flipped, 2. IF a head shows up a second coin is flipped ELSE (i.e. if a tail shows up) a die is tossed.

- Sample space is a set. A set can be described in two ways: by listing its elements explicitly (this is known as extensional description), or by stating a property that characterizes its elements (intentional description).
- An event is a subset of the sample space. An event is said to be simple if and only if it consists of exactly one outcome (sample point), and is called compound otherwise.
- All operations and notions of set theory apply to events: complement, intersection, union, mutually exclusive (disjoint).
- Venn diagrams are used for illustration only. They can be used for representation of small sets as well. Results maybe verified using Venn diagrams, but not proved!

2.3 Counting

- Multiplication rule: if an operation can be performed in n_{1} ways, and for each of these a second operation can be performed in n_{2} ways, then the two operations can be performed together in $n_{1} n_{2}$ ways:

$$
n_{1}+n_{1}+\cdots+n_{1}\left(n_{2} \text { times }\right)=n_{1} n_{2} .
$$

- Generalized multiplication rule: for k independent operations.
- A permutation is an arrangement of all or part of a set of objects. The number of possible ways to arrange k objects from a set of n objects is:

$$
P(n, k):=n(n-1)(n-2) \ldots(n-k+1)
$$

- A circular permutation is an arrangement in circle of k objects from a set of n objects. The number of possible ways to make such an arrangement is $P(n, k) / k$.

To see why, suppose $k=4$ and we are arranging a, b, c, and d in a circle. Observe that all permutations that differ only in a shift will look the same in a circular arrangement. For example, $a b c d$ looks the same as $d a b c, c d a b$, and $b c d a$. Thus each circular permutation corresponds to $k=4$ different ordinary permutations. The total number of circular permutations therefore is:

$$
\frac{\text { number of ordinary permutations }}{k}=\frac{P(n, k)}{k}
$$

- The number of distinct permutations of n things, of which n_{1} are of one kind, n_{2} of a second kind,..., n_{k} of the $k^{\text {th }}$ kind is

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Theorem 2.7: the number of ways of partitioning a set of n objects into r cells with n_{1} elements in the first cell, n_{2} elements in the second, and so forth is

$$
\frac{n!}{\left(n_{1}!n_{2}!\ldots n_{r}!\right)}
$$

where $n=n_{1}+n_{2}+\cdots+n_{r}$.

- A combination of k objects from a set of n objects is simply a partition with two cells: selected (k objects), and rejected ($n-k$ objects).

2.4 Probability

- For simplicity we assume that the sample space is finite.
- To each sample point s we assign a nonnegative number $0 \leq P(s) \leq 1$ to indicate the likelihood of the simple event s, such that $\sum_{s \in S} P(s)=1$. Then the probability of event A is defined as:

$$
P(A)=\sum_{s \in A} P(s)
$$

Example 3 Suppose a sample space contains N elements, all of which are equally likely to occur, i.e. $P(s)=$ constant $=w$ (say). Then according to the above property we must have:

$$
\sum_{s \in S} P(s)=\sum_{s \in S} w=w \sum_{s \in S} 1=w N=1
$$

which gives $w=1 / N$. Now suppose an event A contains n elements. Then $P(A)$ would be:

$$
P(A)=\sum_{s \in A} P(s)=\sum_{s \in A} w=w \sum_{s \in A} 1=\frac{1}{N} n=\frac{n}{N}
$$

2.5 Additive rules

The only rules that you need to remember is:
If A and B are disjoint (i.e. $A \cap B=\emptyset$) then $P(A \cup B)=P(A)+P(B)$.
It follows that in general:

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
P(A \cup B \cup C) & =P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

2.6 Conditional probability

- The probability that an event B occurs given that another event A has already occurred is called conditional probability of B given A, denoted by $P(B \mid A)$. The sample space in this case is reduced from S to A :

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

- Conditional probability could be larger or smaller than the unconditional probability. Extreme cases:

1. When A and B are disjoint, $P(B \mid A)=0$.

Example. A : it is rainy, B : it is sunny. What is the likelihood that it is sunny today if it rained?
2. When $A \subseteq B, P(B \mid A)=1$.

Example. A : it is rainy, B : it is cloudy. What is the chance of today being cloudy if it rained?

- Two events A and B are independent if

$$
P(B \mid A)=P(B) \quad[\text { or equivalently, } P(A \mid B)=P(A)]
$$

2.7 Multiplicative rules

$P(A \cap B)=P(B) P(A \mid B)$: probability that both A and B occur is equal to the probability that B occurs, multiplied by the probability that A occurs, given that B has occurred.

2.8 Bayes' rule

Suppose the events $B_{1}, B_{2}, \ldots, B_{k}$ constitute a partition of the sample space such that $P\left(B_{i}\right) \neq 0$ for all $i=1,2, \ldots, k$.

- Theorem of total probability, or rule of elimination:

$$
P(A)=\sum_{i=1}^{k} P\left(A \cap B_{i}\right)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

- Bayes' theorem. For $r=1,2, \ldots, k$ we have:

$$
P\left(B_{r} \mid A\right)=\frac{P\left(B_{r}\right) P\left(A \mid B_{r}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

