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2.1 Sample space and events

• A statistical experiment has unpredictable outcomes, but all possible outcomes form a set. The set
of all possible outcomes of a statistical experiment is called sample space and is represented by the
symbol S. Members of S are sometimes called sample points, or outcomes.

Example 1 In the experiment of flipping a coin S := {H, T}

Example 2 In the experiment of tossing a die, we could have S := {1, 2, 3, 4, 5, 6} if we are interested
in the exact value of the number shown by upper face of the die. If we are interested only in the parity
of this number then S := {even,odd}.

• Tree diagrams are used to help us visualize sample spaces.

Exercise: Show the sample space of an experiment where 1. a coin is flipped, 2. IF a head shows up
a second coin is flipped ELSE (i.e. if a tail shows up) a die is tossed.

• Sample space is a set. A set can be described in two ways: by listing its elements explicitly (this is
known as extensional description), or by stating a property that characterizes its elements (intentional
description).

• An event is a subset of the sample space. An event is said to be simple if and only if it consists of
exactly one outcome (sample point), and is called compound otherwise.

• All operations and notions of set theory apply to events: complement, intersection, union, mutually
exclusive (disjoint).

• Venn diagrams are used for illustration only. They can be used for representation of small sets as well.
Results maybe verified using Venn diagrams, but not proved!

2.3 Counting

• Multiplication rule: if an operation can be performed in n1 ways, and for each of these a second
operation can be performed in n2 ways, then the two operations can be performed together in n1n2

ways:
n1 + n1 + · · ·+ n1(n2 times ) = n1n2.

• Generalized multiplication rule: for k independent operations.

• A permutation is an arrangement of all or part of a set of objects. The number of possible ways to
arrange k objects from a set of n objects is:

P (n, k) := n(n− 1)(n− 2) . . . (n− k + 1)
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• A circular permutation is an arrangement in circle of k objects from a set of n objects. The number
of possible ways to make such an arrangement is P (n, k)/k.

To see why, suppose k = 4 and we are arranging a, b, c, and d in a circle. Observe that all permutations
that differ only in a shift will look the same in a circular arrangement. For example, abcd looks the
same as dabc, cdab, and bcda. Thus each circular permutation corresponds to k = 4 different ordinary
permutations. The total number of circular permutations therefore is:

number of ordinary permutations
k

=
P (n, k)

k

• The number of distinct permutations of n things, of which n1 are of one kind, n2 of a second kind,. . .,
nk of the kth kind is

n!
n1!n2! . . . nk!

Theorem 2.7: the number of ways of partitioning a set of n objects into r cells with n1 elements in
the first cell, n2 elements in the second, and so forth is

n!
(n1!n2! . . . nr!)

where n = n1 + n2 + · · ·+ nr.

• A combination of k objects from a set of n objects is simply a partition with two cells: selected (k
objects), and rejected (n− k objects).

2.4 Probability

• For simplicity we assume that the sample space is finite.

• To each sample point s we assign a nonnegative number 0 ≤ P (s) ≤ 1 to indicate the likelihood of the
simple event s, such that

∑
s∈S P (s) = 1. Then the probability of event A is defined as:

P (A) =
∑

s∈A

P (s)

Example 3 Suppose a sample space contains N elements, all of which are equally likely to occur, i.e.
P (s) = constant = w (say). Then according to the above property we must have:

∑

s∈S

P (s) =
∑

s∈S

w = w
∑

s∈S

1 = wN = 1

which gives w = 1/N . Now suppose an event A contains n elements. Then P (A) would be:

P (A) =
∑

s∈A

P (s) =
∑

s∈A

w = w
∑

s∈A

1 =
1
N

n =
n

N
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2.5 Additive rules

The only rules that you need to remember is:

If A and B are disjoint (i.e. A ∩B = ∅) then P (A ∪B) = P (A) + P (B).

It follows that in general:

P (A ∪B) = P (A) + P (B)− P (A ∩B)
P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

2.6 Conditional probability

• The probability that an event B occurs given that another event A has already occurred is called
conditional probability of B given A, denoted by P (B|A). The sample space in this case is reduced
from S to A:

P (B|A) =
P (A ∩B)

P (A)

• Conditional probability could be larger or smaller than the unconditional probability. Extreme cases:

1. When A and B are disjoint, P (B|A) = 0.
Example. A: it is rainy, B: it is sunny. What is the likelihood that it is sunny today if it rained?

2. When A ⊆ B, P (B|A) = 1.
Example. A: it is rainy, B: it is cloudy. What is the chance of today being cloudy if it rained?

• Two events A and B are independent if

P (B|A) = P (B) [or equivalently, P (A|B) = P (A)].

2.7 Multiplicative rules

P (A ∩ B) = P (B)P (A|B): probability that both A and B occur is equal to the probability that B occurs,
multiplied by the probability that A occurs, given that B has occurred.

2.8 Bayes’ rule

Suppose the events B1, B2, . . . , Bk constitute a partition of the sample space such that P (Bi) 6= 0 for all
i = 1, 2, . . . , k.

• Theorem of total probability, or rule of elimination:

P (A) =
k∑

i=1

P (A ∩Bi) =
k∑

i=1

P (Bi)P (A|Bi)

• Bayes’ theorem. For r = 1, 2, . . . , k we have:

P (Br|A) =
P (Br)P (A|Br)∑k
i=1 P (Bi)P (A|Bi)


