Example 3:
Consider the random variable X from Example 1.
E(X^2)= (-1)^2(0.05)+ 1^2(0.3) + 2^2(0.3) +
3^2(0.10) + 3^2(0.10) + 4^2(0.05)=
Calculate the VAR(X) in Example 1 using theroem 2.4-3.
Solution
Useful Web Resources
Variance and Standard Deviation- Statistics Canada
Math Centre:Variance and Standard Deviation- http://mlsc.lboro.ac.uk/documents/var_stand_deviat_ungroup.pdf
Mean, Standard Deviation and Variance applet
Chebychev's Theorem
Solutions
Solution to Example 1
Var(X)= (-1-1.35)^2 (0.05) + (0-1.35)^2(0.2) + (1-1.35)^2(0.3)+ (2-1.35)^2(0.3) + (3-1.35)^2(0.1) + (4-1.35)^2(0.05)
=0.276125 + 0.3645+0.03675+0.12675+0.27225+0.351125=1.4275
STD(X)=sqrt(VAR(X))=1.194780315=1.19748
Solution to Example 2
x |
-2 |
-1 |
1 |
2 |
4 |
p(y) |
0.20 |
0.40 |
0.10 |
0.10 |
0.20 |
E(X)= -2(02)-1(0.4)+ 1(0.1)+2(0.1)+4(0.2) =0.3
VAR(X)= (-2-0.3)^2(0.2) + (-1-0.3)^2(0.4) + (1-0.3)^2(0.1) + (2-0.3)^2(0.1) + (4-0.4)^2(0.2)
=0.072345567 + 0.676 + 0.049 + 0.289 + 2.738
=3.143345567
=3.14
STD(X)=sqrt(3.14)=1.77
VAR(Y)=VAR(97-6X)= 0+36VAR(X)=36(3.14)=113.04. (Remember -6 gets squared to give you +36.
VAR(97)=0 because the variance any constant is 0)
STD(Y)=sqrt(113.04)=10.63
Solution to Example 3
E(X^2)= (-1)^2(0.05)+ 1^2(0.3) + 2^2(0.3) + 3^2(0.10) + 3^2(0.10) + 4^2(0.05)
= 0.05+0.3+1.2+0.9+0.8
=3.25
..
.