
Economics 210
Handout # 2 Jointly Distributed Random Variables

Consider the random experiment flip a coin three times.  Suppose that with each outcome 
we associate two numbers X = the number of heads, and Y = the number of changes in
the sequence.  For example, with the outcome HHH we associate X = 3 and Y = 0, with
the outcome HTH we associate X = 2 and Y = 2, and so forth.   X and Y are called jointly
distributed random variables.

Joint Probability Density Function

The joint probability density function of two jointly distributed random variables is
defined as follows.   P(X, Y) is the probability that X takes on the value X and Y takes on
the value Y.  For example, P(2,1) = the probability that X = 2 and Y = 1.  P(2,1) = the
sum of the probabilities of the outcomes with which we have associated the pair of
numbers X = 2 and Y=1. For the coin flipping example P(2,1) = 2/8 = the sum of the
probabilities of the outcomes HHT and THH.  We can represent a joint probability
density function with a table or a mathematical expression.

For the coin flipping experiment the joint
probability density function can be
represented by the following table.  As an
exercise you should verify all the values in
this table.

Marginal Probability

This simply means to find the probability that X takes on a specific value we sum across
the row associated with that value.  To find the probability that Y takes on a specific
value we sum the column associated with that value.  Note that a marginal probability
density function is just a probability density function, a concept with which you are
already familiar.

      Y
X

0 1 2

0 1/8 0 0

1 0 2/8 1/8

2 0 2/8 1/8

3 1/8 0 0



 Conditional Probability

For example: 

We can construct a conditional probability density function.  A conditional probability
density function is itself a probability density function which means that it has a mean
and variance and the probabilities sum to 1.

Conditional Expectation

Independence:  X and Y are independent if

(Note: A simple way to check whether two random variables are independent is to check
whether the probability in each cell is equal to the product of the associated marginal
probabilities)

Expected value of a function of X and Y.  Let  be a function of X and Y.  Then

Covariance: The covariance of two random variables X and Y 

Correlation: The correlation between two random variables X and Y



The relationship between the concepts of correlation and independence.  Correlation is a
measure of linear dependence between two variables.  If two variables are uncorrelated, there is
no linear dependence between them but there may dependence of another sort.  So uncorrelated
does not imply independence.  However if two variables are independent there is no dependence
between them, linear or otherwise.  So independence does imply uncorrelated.  Conversely, if
two variables are dependent they are not necessarily correlated, but if they are correlated they are
dependent.   

Linear combinations of two or more random variables.  Suppose that X and Y are two
random variables and that Z = a X + b Y.

These results can readily be extended to linear combinations of three on more random variables. 
For example if Z = aX + bY + c W, then

In addition a linear combination of normally distributed random variables is normally
distributed.

Continuous Jointly Distributed Random Variables

The formulas in this handout use summations.  If we are dealing with continuous random
variables you should substitute the appropriate formula using integrals.  For example, if X and Y
are continuous jointly distributed random variables.



Double Summations

Many of the formulas in this handout make use of double summations.  This sections presents
information which you will need to evaluate double summations.  There are three principle
methods used to calculate double summations.  We will refer to these methods as the definitional
method (I), the inside-out method (II) and the summation over pairs method (III).  

As an example let us evaluate 


